湿式氧化法去除铝酸钠溶液中有机物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝酸钠溶液中的有机物主要来源于铝土矿以及生产流程中添加的絮凝剂(包括淀粉)、结晶助剂、防泡剂等,这些有机杂质进入溶液并在流程中循环累积,给生产带来负面影响,主要表现为降低氧化铝产量和产品质量,导致设备结疤,而且废气排放,还对环境造成破坏。过去三十年间,人们一直在寻求如何高效经济地去除铝酸钠溶液中有机物,其中很有潜力的就是湿式氧化法,即给铝酸钠溶液通入氧气,有机物在高温高压条件下发生氧化分解,最终形成CO2和水。
     本文提出用红外碳硫分析仪定量分析铝酸钠溶液中的总有机碳,研究了湿式氧化法和催化湿式氧化法对去除铝酸钠溶液中有机物的影响,并且对有机碳氧化分解过程中具体走向作了初步的研究,考查了草酸钠和碳酸钠的浓度变化。结果将对氧化铝生产提供一定的技术支持和理论依据,主要内容摘要如下:
     1建立了用红外碳硫分析仪定量铝酸钠溶液中总有机碳的方法,首次提出先将样品用(1+1)的盐酸酸化,赶走无机碳,然后再烘干制得固体样的原则流程。该方法稳定性好,操作方便;
     2研究了湿式氧化法对去除中州循环母液中有机物的影响,发现湿式氧化法对铝酸钠溶液中有机物具有良好的去除效果,是种很有潜力的有机物去除方法。温度越高越有利于有机物分解,当溶出温度为260℃,氧气分压为1MPa,搅拌速度250r/min,反应60mmin后,有机物的转换率达到64.1%,180min后能够达到79%;
     3研究了CuO催化氧化法对去除中州循环母液中有机物的影响,发现CuO是良好的催化剂。有CuO存在时,有机物分解得更快且更加彻底,当温度为260℃,氧气分压为1MPa,反应60min后,有机物的转换率达到86.2%,180min后能够达到94.6%;
     4湿式氧化铝酸钠溶液过程中,有机物分解,部分生成了较难氧化分解的草酸钠,反应初期,草酸钠浓度会逐步升高。当溶出温度为260℃,氧气分压为1MPa,有催化剂CuO存在,反应180min后,草酸钠能够完全被分解,这为草酸钠的去除提供了一个可能的方案。
Organic compounds enter the Bayer process liquor from a number of sources other than bauxite, including various chemical additives such as flocculants (including starch), crystal modifiers, and anti-foaming agents. However, the bauxite is the main source of organic compounds in terms of both quantity and complexity. The organic impurities recycled in the liquor has significant implications for all aspects of the Bayer process, including process yield, product quality,scale formation and environmental emission, all of which affect the overall viability of the process. Despite extensive research and development work over three decades, the quest continues for an effective low cost removal technology. One approach that has received considerable interest is wet oxidation. In this method, oxygen is introduced to the liquor under conditions of high temperature and pressure, resulting in the oxidative degradation of the organic compounds present.Organic compounds degrade via complete oxidation to carbon dioxide and water.
     Quanititation of total organic carbon concentrations in Bayer liquors was coducted by CS-140 High Frequency Infrared Carbon-Sulphur Analyzer for the first time. Wet oxidation/CuO-catalyzed wet oxidation of Zhongzhou spent liquor was investigated in this paper, also concerned the concentations of sodium oxalate, sodium carbonate. Those results may be a technical support and theoretical guidance for alumina production. Main conclusions are drawn as follows:
     1 Total organic carbon concentrations in Bayer liquors were abtained using CS-140 High Frequency Infrared Carbon-Sulphur Analyzer, which involves first exclude the inorganic carbon by acidification to a pH of 2 or less with 6 M HC1, followed by drying to solid phase. The precision results showed that this method has emerged as a potentially more rapid, cost-effecitive method;
     2 Wet oxidation of Zhongzhou spent liquor was studied in this paper. Wet oxidation is a promising organics removal process being applied in Bayer process.The higher temperature, the more organic compounds removed. The results suggested that in the reaction conditions of temperature at 260℃, oxygen partial pressure of 1MPa, stirring speed at 250r/min,64.1% removal after 60min and 79% removal after 180min;
     3 CuO-catalyzed wet oxidation of Zhongzhou spent liquor was studied in this paper. CuO was found to catalyze the wet oxidation of Zhongzhou spent liquor. With the 5g/L of CuO catalyst, using the same reaction temperature, oxygen partial pressure, and stirring speed as wet oxidation,94.6% organic compounds removed after 180 min; and
     4 Sodium oxalate and carbonate concentrations actually increased in the wet oxidation and CuO-catalyzed wet oxidation tests, but hard-to-oxidise sodium oxalate only can be oxidised when reaction conditions become more tough, such as higher temperature, CuO catalyst.CuO catalyst is also capable of co-oxidizing the hard-to-oxidize compound, sodium oxalate, in a highly alkaline solution. The results suggested that in the reaction conditions of temperature at 260℃, oxygen partial pressure of IMPa,5g/L of CuO, stirring speed at 250r/min, sodium oxlate was complete oxidised.This method privide a appliable way to remove sodium oxalate from Bayer liquor.
引文
[1]Roskill. The Economics of Bauxite & Alumina[R].7th ed. Roskill Market Reports. Roskill Information Services Ltd, London,UK,2008.
    [2]陈万坤,彭关才,一水硬铝石型铝土矿的强化溶出技术[M].北京:冶金工业出版社,1997:34.
    [3]杨重愚轻金属冶金学[M].北京:冶金工业出版社,2002:30.
    [4]Hall CM. Method of making alumina [P]. U.S.663,167,1900.
    [5]Wolf F.F., Pudowkina O.I. Bayer process in application to Ural bauxites [J]. Swerdlowsk-Moscow,1935.
    [6]Pearson T.G. The Chemical Background of the Aluminium Industry [M]. The Royal Institute of Chemistry, London,1955.
    [7]Solymar K., Zsindely S. Der Einfluss der organischen Substanz bei der Aluminiumoxiderzeugung nach Bayer [J]. Freiberger Forschungshefte,1965, 103B:61.
    [8]Almendros G, Gonzalezvila F.J., Martin F. Room temperature alkaline permanganate oxidation of representative humic acids [J]. Soil BioL Biochem 1989,21:481.
    [9]Anashkin V.S., Grachev V.V., Kuznetsov S.I. Effect of organic compounds on the crystallization of vanadium salts from industrial aluminate solutions [J]. Tsvetn Metallurgy 1982,2:44.
    [10]Brown N., ColeT.J. The behaviour of sodium oxalate in a Bayer alumina plant [J]. Light Metals,1980:105.
    [11]Lever G. Identification of organics in Bayer liquor [J]. Light Metals,1978,71.
    [12]Salomon P. Contribution to the analysis of organic substances contained in bauxites and aluminate liquors of the'Bayer'cycle [J]. National Polytechnical Institute of Grenoble,1982:124.
    [13]Brindel F., Lectard A. Travaux du comite Internationale pour 1'etude des bauxites [J]. de l'alumine et d'aluminium,1983,13:353.
    [14]Guthrie J.D., The P.J., Imbrogno W.D. Characterization of organics in Bayer liquors [J]. Light Metals,1984:127.
    [15]Roe W.J, Malito J.T. Purification of Bayer process caustic liquors and slurries-by addition of vinylic cationic polymeric quataternary ammonium salts [P]. U.S. 4,578,255-A,1986.
    [16]Connop W., Morton R.A. Laboratory instrumentation at the Worsley alumina refinery[C]. in:Second International Alumina Quality Workshop, Perth, Western Australia,1990:264.
    [17]Grocott S.C., Jefferies L.P., Bowser T., et al. Applications of ion chroma to graphy and capillary ion electrophoresis in the alumina and aluminium industry [J]. Journal of Chromato graphy A,1992,602:257.
    [18]Solymar K., Gimpel-Kazar M., Molnar E. Determination and evaluation of organic balances of alumina refineries [J]. Light Metals,1996:29.
    [19]Hind A.R., Bhargava S.K., Grocott S.C. Adsorption of Quaternary ammonium compounds on the surface of sodium oxalate:FTIR/ATR investigation under high-ionic-strength, highly alkaline conditions [J]. Langmuir,1997,13: 6255~6259.
    [20]Wilson M.A., Farquharson G.J, Tippett J.M., et al. Aluminophilicity of the humic acid degradation product 5-hydroxybenzene-1,3-dicarboxylic acid [J]. Industrial and Engineering Chemistry Research,1998,372410.
    [21]Wilson M.A., Ellis A.V., Lee G.S.H., et al. Structure of molecular weight fractions of Bayer humic substances.1. Low-temperature products [J]. Industrial and Engineering Chemistry Research,1999,38:4663.
    [22]Picard F., Audet D., Boily H., et al. Identification of hydrate active organics (HAO) present in spent Bayer liquors by state-of-the-art analytical methods[C]. 6th International Alumina Quality Workshop, AQW Inc., Australia, Brisbane, Australia.2002,46.
    [23]Ellis A.V., Kannangara G.S.K., Wilson M.A. Chemistry of sodium lactate formation under simulated alumina refinery conditions [J]. Industrial and Engineering Chemistry Research,2003,42:3185.
    [24]Whelan T.J., Shalliker R.A., McIntyre C., Wilson M.A. Development of a multidimensional High Performance Liquid Chromato graphy (HPLC) separation for Bayer humic substances[J]. Industrial and Engineering Chemistry Research, 2005,44:3229.
    [25]Patrick V.A., Patrick C.J., Karakyriakos E. Method for quantitative measurement of a concentration of chemical species present in an alumina processing stream, comprises measuring an infra-red transmission/absorption intensities, and forming a multivariable model, International [P] WO2007098525-A1, Central Chemical Consulting Pty Ltd,2006.
    [26]Power G., Loh J. Organic compounds in the processing of lateritic bauxites to alumina Part 1:Origins and chemistry of organics in the Bayer process [J] Hydro metallurgy,2010,105:1.
    [27]刘勇,蒋炜.电位滴定法测定拜耳法铝酸钠溶液中的草酸钠[J].有色金属分析通讯,2003,122:7-9.
    [28]张妮.拜耳法流程中有机物的行为研究[硕士学位论文].中南大学2008.
    [29]Solymar K., Gimpel-Kazar M. Determination and evaluation of organic balances of alumina refineries [C], Light Metals 1996. The Minerals, Metals and Materials Society, Anaheim, California, U.S.A.,199629~35.
    [30]Whelan T.J. Macro molecules in the Bayer process [J]. Reviews in Chemical Engineering,2003,19 (5):431~471.
    [31]倪良玉,李国乾.草酸盐对拜尔法氧化铝生产的影响[C].第十届全国氧化铝学术会议论文集,2004,12:94-96.
    [32]Smeulders D.E., Wilson M. A., Armstrong, L. Insoluble organic compounds in the Bayer process [J] Industrial and Engineering Chemistry Research,2001,40 (10)2243~2251.
    [33]Rao K.V.R., Goyal R.N. Organic carbon in Indian bauxites and its control in alumina plants [C]. Light Metals,2006 TMS:71~74.
    [34]Graham G., Capil R. Odour destruction for digestion vent gases [C].6th International Alumina Quality Workshop. AQW Inc, Brisbane, Australia,2002: 316~319
    [35]Chinloy D.R. Development of an industrial oxalate removal system [C]. Second International Alumina Quality Workshop, Cyanamid Workshop Secretariat, P.O.Box 161, Kwinana, WA6167, Australia, Perth, Western Australia,1990 130~140.
    [36]Power G.P., Tichbon W. Sodium oxalate in the Bayer process:its origin and effects[C]. Second International Alumina Quality Workshop, Perth, Western Australia,1990:99-115.
    [37]Rosenberg S. P., Tichbon W., Wilson D., etal. Process for the Removal of oxalate and/or sulphate from Bayer Liquors [P]. US 7,244,404,2004.
    [38]Shibue Y., Sakamoto A., Arakawa N., et al. Liquor burning process-its modification and increase in capacity [J]. Light Metals,1990 TMS:35~40.
    [39]LallaA., Arpe R.12 years of experience with wet oxidation [J]. Light Metals, The Minerals, Metals and Materials Society, Seattle, WA,2002:177~180.
    [40]Zoldi J., Solymar K., Feher I. Organic removal and its effect on precipitation and alumina quality [J]. Magy. Alum.,1988,25 (11-12)356~368.
    [41]Power G., Loh J. Organic compounds in the processing of lateritic bauxites to alumina Part 1:Origins and chemistry of organics in the Bayer process [J]. Hydro metallurgy,2010,105:1.
    [42]吕子剑,毕诗文等.草酸钠对赤泥沉降过程的影响[J].材料与冶金学报,2006,52:105.
    [43]Norman E.C., Dixon I.R., Graham C.L., et aL. Investigations of the impacts of humic type substances on the Bayer process, humic substances in soils, peats and waters:health and environmental aspects [J]. Royal Society of Chemistry, Cambridge, Great Britain,1997:237~245.
    [44]Sato C., Kazama S. Behaviour of organic matter inaluminate solution [J]. Light Metals,1971:63~74.
    [45]Smeulders, D.E., Wilson, M.A., Armstrong, L. Poisoning ofaluminum hydroxide precipitation by high-molecular-weight fractions of Bayer organics [J]. Industrial and Engineering Chemistry Research,2001,40 (25):5901~5907.
    [46]Watling H., Loh J., Gatter H., et al. Gibbsite crystallization inhibition—1. Effects of sodium gluconate on nucleation, agglomeration and growth [J]. Hydrometallurgy,2000,55 (3):275~288.
    [47]陈宝民选矿拜耳法氧化铝生产过程中有机物影响的分析与对策[J].轻金属2006,6:11.
    [48]蒋玉仁,薛玉兰,刘克一.铝土矿选精矿拜耳法系统中的捕收剂分布行为[J].有色金属,2000,4:31-33
    [49]Brown N. Kinetics of copper-catalysed oxidation of Bayer liquor organics [J]. Light Metals, The Minerals, Metals and Materials Society, Las Vegas, Nevada, U.S.A.,1989:121~130.
    [50]Sato C, Yamada Y, shibue Y. New process for removal of organics from Bayer Liquor [J]. Light Metals,1982:119~128.
    [51]Dominicus A. S., Adamstown H. et al. Removal of organics from Bayer process streams [P]. U.S.4,836,990,1989.
    [52]Inao J., Yamada K., Harato T. Method for the removal of organic subatances from alkali metal aluminate solution [P].U.S.4,215,094 1980.
    [53]Shin H.J.,.Lee S.O, etaL. Study on the effect of humate and its removal on the precipitation of aluminium trihydroxide from the Bayer process [J]. Minerals Engineering,2004,17:387~391.
    [54]Power G.R., Tichbon W. Sodium oxalate in the Bayer process:its origin and effects[C]. Second International Alumina Quality Workshop, Perth, Western Australia,1990:99~115.
    [55]Byrns A. C. Purifying caustic aluminate solutions with ammonia [P]. U. S. 3,337,305 1964.
    [56]The P. J., Bush J. F.Solubility of sodium oxalate in Bayer liquor and a method of control [J]. Light Metals,1987:5~10.
    [57]Pareek V. K., Brungs M. P., Adesina. A. A. Continuous process for photo-degradation of industrial Bayer liquor [J]. Industrial and Engineering Chemistry Research,2001,40:5120-5125.
    [58]《有色金属工业分析丛书》编辑委员会.轻金属冶金分析[M].北京:冶金工业出版社,1992:53-54.
    [59]GBT 601-2002化学试剂标准滴定溶液的制备[S].北京:中国标准出版社.2002:124.
    [60]Matyasi J., Siklosi P., Ziegenbalg S. Liquor purifications-wet air oxidation [J]. Light Metals,1986:1057.
    [61]De Angelo D. J., Wilhelmi A. R.Wet air oxidation of spent caustic liquors [J]. Chem Eng. Prog.,1993, Mar 68.
    [62]Copa W. M., Momont J. A., Beula D. A.The application of wet air oxidation to the treatment of spent caustic liquor [C]. In Chemical Oxidation, Proceedings of the 1st International Symposium; Eckenfelder, W. W., Bowers, A. R., Roth, J. A., Eds.; Technomic:Lancaster, PA,1991:299~310.
    [63]Foussard J. N., Chakchouk M., Peyrille B., Debellefontaine H. Efficient elimination of organic liquid wastes:wet air oxidation [J]. J. Environ. Eng.,1989, 115:367.
    [64]Akolekar D. B., Bhargava S. K., Prasad J., et al. Catalytic wet oxidation:An environmental solution for organic pollutant removal from paper and pulp industrial waste liquor [J].AppL Catal. A,2002,236255.
    [65]Belkacemi K., Larachi F., Hamoudi S., Sayari A. Catalytic wet oxidation of high-strength alcohol-distillery liquors [J]. Appl. CataL A,2000,199 (2):199.
    [66]Ingale M. N., Joshi J. B., Mahajani V. V., et aLWaste treatment of an aqueous waste stream from a cyclohexane oxidation unit [J]. Trans. Inst. Chem Eng. 1996,74:265.
    [67]Zimmermann F.J. New waste disposal process [J]. Chem. Eng.,1958,25:117.
    [68]Eyer S., Bhargava S., Tardio J., et al. Selective wet oxidation and catalytic wet oxidation of disodium malonate in the alumina industrial liquor [J]. Industrial and Engineering Chemistry Research,2002,41:1166.
    [69]Hind A. R., Bhargava S. K., Nunes M. D., et al.The Bayer process:an Australian perspective [J]. Chem. Aust.,1997,64 (10):36.
    [70]Loh J., Brodie G., Power G., Vernon C. Mechanisms of degradation of hydrate yield inhibitors by wet oxidation [C].8th International Alumina Quality Workshop. AQW Inc, Australia, Darwin, Australia,2008:199~205.
    [71]Power G.P. The impact and control of organic compounds in the extraction of alumina from bauxite [C]. Fifth Aus IMM Extractive Metallurgy Conference, Australian Institute of Mining and Metallurgy, Perth, Western Australia,1991:337-345
    [72]Kapoor S., Barnabas F.A., et al. Kinetics of hydrogen formation from formaldehyde in basic aqueous solutions [J]. Journal of Physical Chemistry 1995,99 (18):6857~6863
    [73]Costine A., Loh J., McDonald R. et al. Unique high-temperature facility for studying organic reactions in the bayer process [C]. Light Metals 2010, The Minerals Metals & Materials Society,184 Thorn Hill Road, Warrendale PA 15086-7528 U.S.A.
    [74]The P.J., Williams F.S., Guthrie J.D. Masstransfer studies on wet oxidation of Bayer liquor [J]. Light Metals,1985:103~116.
    [75]Loh J.S.C., Brodie GM., Power G., et al. Wet oxidation of precipitation yield inhibitors in sodium aluminate solutions:Effects and proposed degadation mechanisms [J]. Hydro metallurgy,2010,104:278~289.
    [76]Tadio J., Bhagava S., Eyer S., et al. Interactions between specific organic conpounds during catalytic wet oxidation of Bayer liquor [J]. Industrial and Engineering Chemistry Research,2004,43:847~851.
    [77]Dong J., Power G, Loh J., et al. Fundamentals of wet oxidation of Bayer-process Liquor:Reactivity of malonates [J]. Industrial and Engineering Chemistry Research,2010,49:5347~5352.
    [78]Tardio J., Bhargava S.,Prasad J., et al. Catalytic wet oxidation of the sodium salts of citric, lactic, malic and tartaric acids in highly alkaline, high ionic strength solution [J].Topics in Catalysis,2005,33:193~199.
    [79]Tardio J. Wet oxidation and catalytic wet oxidation of specific organic compounds in highly alkaline solution (Synthetic Bayer Liquor)[PhD]. Dissertation (RMIT University, Melbourne, Australia,2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700