内蒙古四子王旗卫境苏木电气石矿床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过综合利用野外调查取证和室内分析相结合的方法,对内蒙古四子王旗卫境苏木电气石矿床的地质特征及其产出的电气石矿物学特征进行了研究,探讨了矿床的成因,并进行了资源评价,为该电气石矿床的进一步工业开发利用奠定基础。
     野外调查表明,该电气石矿床按照电气石含量≥15%标准可圈定矿体38条,其中大多数矿体赋存于下二叠统江岸群新乌苏组中的变凝灰岩―白云质灰岩过渡岩段,平行于地层走向展布,集中产于西里庙向斜北西翼次一级褶皱查干哈达背斜的核部,艾力登查干德断层的上盘。
     成分分析统计表明,B2O3与MgO、Al2O3呈正相关,与SiO2和CaO负相关,成矿物质相对富Al、Mg,而贫Si、Ca。微量元素分析显示,电气石大离子亲石元素和深源元素亏损。稀土元素(La/Yb)N值介于0.41-8.74,呈高度分异型;δEu介于0.48-0.93之间,显示小负异常;标准化配分模式曲线为一右倾曲线,显示为轻稀土富集型。共生石英包裹体氢、氧同位素分析表明,δD值介于-82.65- -97.88,接近岩浆水的δD值(-80%~-40%)。薄片镜下特点显示,各类矿石均具有交代凝灰岩层的残余结构。总体反映该电气石矿床属火山沉积期后热液交代复合改造成因。
     电气石单矿物全岩化学分析和物相分析显示, MgO/(MgO+FeO)介于0.47~0.75之间,晶胞参数a=15.973 ?、c=7.221 ?、V=1595.4417?3,属黑电气石―镁电气石系列,偏于镁电气石。矿物特征表明,105μm粒级电气石样品的负离子释放量为42个/cm3,喷铝后的包覆粉体样品体积电阻率为1.55×108Ω.cm,具有较好的释放负离子性能和电磁屏蔽性能。
     根据经验法、经济分析法、统计分析法计算结果,确定本区电气石矿床的边界品位为电气石矿物含量15%;根据方案对比法,选择电气石矿物含量20%为电气石矿的最低工业品位。共求得<334>预测经济资源量为矿石量309.29万吨,电气石矿物量为133.06万吨。同时在工作区提出深部寻找硼矿床的可能性,发现沉积锰矿床找矿线索。
A systematical study has been carried out on the Weijingsumu tourmaline deposit in Inner Mongolia, with a focus on its mineralization, geological conditions, tourmaline mineralogical characteristics, genesis and resource evaluation.
     38 orebodies can be defined in the deposit according to the content of tourmaline≥15%. The majority of them exist in the transition part of metamorphosed tuff to dolomitic limestone in the Xinwusu formation of the Jiangan group of Lower Permian. The orebodies concentrate in core of the Xili Temple syncline fold, north-west wing Chaganhada anticline, top of Elidengchagan and the direction of them parallel to the stratigraphic distribution.
     Component analysis shows that B2O3 is positively correlated to MgO, Al2O3, but negatively correlated to SiO2 and CaO. Al, Mg are relatively rich, while Si ,Ca are poor in mineralization substance. Trace element analysis displays that the large-ion tourmaline stone elements and the elements of deep is depleted. The ratio of (La/Yb)N, which ranges from 0.41 to 8.74, is high-shaped;δEu, from 0.48 to 0.93, is slightly negative anomaly; normalized distribution patterns curve, with light REE enrichment, is right inclined. Symbiotic quartz inclusions in hydrogen and oxygen isotope analysis exhibitδD, between -82.65 and -97.88, is close to the magma waterδD (from -80% to -40%). Various types of ore appear tuff layer of the residual structure through slice observation. Generally, it reflects that the tourmaline deposits result from the hydrothermal transformation after volcanic sedimentary.
     Chemical analysis of tourmaline single mineral shows that the ratio of MgO/(MgO+FeO) rangs from 0.47 to 0.75. The parameters of tourmaline unit cell are a=15.973 ?, c=7.221 ? and V=1595.4417?3 through phase analysis. Both of analysis indicate that tourmaline in the deposit indulge in dravite, which belongs to schorl-dravite series. Tourmaline samples of 105μm particle release 42/cm3 anion and the sample coated by aluminum powder retain volume resistivity of 1.55×108?.cm. The experiment’s result shows that the tourmaline plays excellent performance on anion release and electromagnetic shielding.
     Based on experience, economic analysis and statistical analysis, the thesis determine this work area's boundaries grade of tourmaline deposit for tourmaline mineral content is beyond 15%; By the contrast of project, 20% tourmaline mineral content is the minimum of Electric Industrial grade quarry. The reserves of ore resources, with <334> economic forecast, are 3.09 million tons and tourmaline mineral amount to 1.33 million tons. Moreover, the possibility of deep seabed boron prospecting in work area is put forward and prospecting clues of sedimentary manganese ore bed are discovered.
引文
[1] 蔡克勤,葛文胜,林善园. 内蒙古四子王旗卫境苏木电气石矿床资源调查及技术经济评价成果报 告. 2006
    [2] 邓燕华. 宝(玉)石矿床. 北京:北京工业大学出版社,1991. 9
    [3] 地矿部地质技术经济研究中心矿床经济评价研究室. 实用矿床技术经济评价手册. 1987,44-58
    [4] 法默(Farmer)编.矿物的红外光谱,应育浦等译. 北京:科学出版社,1982.289-303
    [5] 国家质量技术监督局. 国家标准 GB/T 17766-1999. 固体矿产资源/储量分类. 1999
    [6] 国家质量技术监督局. 国家标准 GB 958-89. 区域地质图图例. 1989
    [7] 国家质量监督检验检疫总局. 国家标准 GB/T 13908-2002. 固体矿产地质勘查规范总则. 2002
    [8] 韩发,赵汝松,沈建忠,等. 大厂锡多金属矿床地质及成因. 北京:地质出版社,1997. 213
    [9] 化学工业部化学矿产地质研究院. 辽吉内生硼矿矿物学及找矿标志研究. 1993,51-73
    [10] 黄作良,莫珉,祖恩东. 辽东硼矿床中电气石的矿物学特征及成因意义. 岩石矿物学杂志,1996, 15(4):365-378
    [11] 冀志江. 电气石自极化及应用基础研究: 博士学位论文. 北京:中国建筑材料科学研究院,2003
    [12] 蒋少涌,于际民,倪培,等. 电气石----成岩成矿作用的灵敏示踪剂. 地质论评, 2000, 16(6): 594-604
    [13] 李赋屏,彭光菊,卢宗柳,等. 我国电气石资源分布、地质特征及其开发利用前景分析. 矿产与 地质,2004,18(5):493-497
    [14] 林善园. 电气石的宝石学特征、颜色成因及颜色改善研究:硕士学位论文. 北京:中国地质大学, 1998
    [15] 林善园. 宝石级电气石的研究. 地学前缘, 1999,6(2):350
    [16] 林善园,蔡克勤,蔡秀华,等. 电气石族矿物学研究的新进展. 中国非金属矿工业导刊,2004, 44(6):21-24
    [17] 林善园,蔡克勤,蔡秀华,等. 电气石族矿物学研究的新进展. 中国非金属矿工业导刊,2005, 45 (1): 20-23
    [18] 林善园,刘琰,蔡克勤,等. 具多环带的锂电气石振动光谱分析.现代地质,2007,21:35-40
    [19] 毛景文,陈毓川,陈晴勋,等. 中国桂北地区两类电英岩及其对成矿环境的指示. 岩石矿物学杂 志,1990,9(4):289-299
    [20] 内蒙古自治区地矿局 102 地质队. 1:50000Ⅱ-49-30-乙、丙、丁幅,Ⅱ-49-31-甲、乙、丙、丁幅,Ⅱ-49-42-甲、乙幅区域地质调查报告. 1986
    [21] 内蒙古地质局 102 地质队. 内蒙古四子王旗苏莫查干敖包矿区萤石矿矿产地质报告.1986
    [22] 内蒙古地质调查院. 中华人民共和国区域地质调查报告(1:250000)(满都拉幅).2004
    [23] 彭齐鸣,许虹. 硼同位素地球化学及其示踪意义. 地质地球化学,1994,5:55-59
    [24] 彭明生,王后裕. 电气石中水的振动谱学研究及其意义. 矿物学报,1995,15(4):372-377
    [25] SBM 研究会编.天然瑰宝电气石的神奇疗效(M),施圣茹译.台北:世潮出版社,2001
    [26] 孙海田,葛朝华. 中条山层控铜矿床条纹状电气石岩及容矿富硼化学沉积岩系的发现及意义. 科 学通报, 1988, 18:1412-1415
    [27] 孙海田等.中条山铜矿区电气石特征对成岩成矿作用的示踪意义.岩石矿物学杂志,1989,8(3): 232-241
    [28] 汤云晖,马喆生,吴瑞华,等. Mg-Fe 电气石的热膨胀与相变. 矿物学报,2002,22(4):383-386
    [29] 汤云晖. 电气石的表面吸附与电极反应研究: 博士学位论文.北京:中国地质大学,2002
    [30] 王登红,陈毓川. 广西大厂电气石的成分与成因初探. 岩石矿物学杂志,1996,15(3):280-287
    [31] 王濮,潘兆橹、翁玲宝,等.系统矿物学(中).北京:地质出版社,1984.159-163
    [32] 王天雕. 新疆电气石 60Coγ辐照变色研究. 辐射研究与辐射工艺学报, 1995, 3(2):102-104
    [33] 王元龙,康旭,王淑珍,等. 新疆阿尔泰彩色电气石的颜色成因研究. 矿产与地质,1996,3:172-178
    [34] 吴瑞华,王春生,袁晓江. 天然宝石的改善及鉴定方法. 北京:地质出版社,1994
    [35] 吴瑞华,林善园,白峰,等. 辐照处理对碧玺物理性质的影响. 岩石矿物学杂志,1998, 4(12): 371-376
    [36] 吴瑞华,汤云晖,张晓晖. 电气石的电场效应及其在环境领域的应用前景. 岩石矿物学杂志,2001, 4:474-476
    [37] 肖荣阁,大井隆夫,蔡克勤,等. 硼及硼同位素地球化学在地质研究中的应用. 地学前缘,1999, 6(2):361-368
    [38] 肖荣阁,张汉城,陈卉泉,等. 热水沉积岩及矿物岩石标志. 地学前缘,2001,8(4):379-385
    [39] 肖荣阁,大井隆夫,费红彩,等. 辽东地区沉积变质硼矿床及硼同位素研究. 现代地质, 2003, 17(2):137-142
    [40] 许虹. 变质地体中富电气石岩石的成因及其意义. 地学前缘,1994,1(3-4):53
    [41] 许虹,曹积富. 辽东古元古宙成矿带中的变质蒸发岩及其意义. 世界地质,2001,2:124-132
    [42] 许虹,彭齐鸣. 辽宁古元古代地体中富电气石岩石的成因:蒸发岩硼源的证据. 中国地质,2004, 3:240-253
    [43] 徐培苍,李如壁等编著. 地学中的拉曼光谱. 西安:陕西科学技术出版社,1996.4-19, 46-59
    [44] 杨如增,廖宗廷,陈晓栋,等. 天然黑色电气石热释电特性的研究. 宝石和宝石学杂志,2000, 2(1):34-37
    [45] 杨如增,杨满珍,廖宗廷,等. 天然黑色电气石红外辐射特性研究. 同济大学学报,2002,30(2): 183-188
    [46] 姚鼎山. 环保与健康新材料-托玛林. 东华大学出版社,2001
    [47] 永井龙造.拯救地球环境的电气石(M).トスム出版社,2000
    [48] 袁见齐,朱上庆,翟裕生. 矿床学. 北京:地质出版社,1985
    [49] 翟裕生,邓军,李晓波.区域成矿学. 北京:地质出版社,1999
    [50] 翟裕生,邓军,汤中立等.古陆边缘成矿系统.北京地质出版社,2002
    [51] 张开永,成学海,曲鸿鲁. 国内外电气石开发研究现状及应用前景展望. 矿冶,2004,13(1): 97-100
    [52] 张良钜. 碧玺的宝石学特征. 桂林工学院学报, 1996, 16(3):291-296
    [53] 张晓晖等. 电气石的自发极化在水质净化和改善领域的应用研究. 中国非金属矿工业导刊,2004, 40(3):39-42
    [54] 张晓晖. 微米级电气石表面包覆 ZnO 及其电磁屏蔽性能研究:博士学位论文. 北京:中国地质大 学,2006
    [55] 郑水林,杜高翔,李杨,等. 超细电气石粉体的制备和负离子释放性能研究. 矿冶,2004,13(4): 50-53
    [56] Agrosi G, Bosi F, Lucchesi S, et al.. Mn-tourmaline crystals from island of Elba(Italy): Growth history and growth marks. American Mineralogist, 2006, 91:944-952
    [57] Barton R J. Refinement of the crystal structure of buergerite and the absolute orientation of tourmaline. Acta Crystallographica, 1969, B25:1524-1533
    [58] Bebout G E, Nakmura. Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology (Boulder), 2003, 31-5:407-410
    [59] Benvenuti M, Lattanzi P. Tourmaline-associated Pb-Zn-Ag mineralization at Bottino, Apuane Alps, Italy: Geologic setting, mineral textures and sulfide chemistry. Economic Geology, 1989, 84: 1277-1292
    [60] Cech F, Litomisky J, Novotny J. Contribution to the chemis of toyrmaline, Sbornik Geologickych Ved:Technologie, Geochemie. Prague, 1965, 5:45-74.(Zeech,English summary)
    [61] Chaudhry M N, Howie R A. Lithium tourmalines from the Meldon aplite, Devonshire, England.Mineralogical Magazine, 1976, 40:747-751
    [62] Dana E S. The system of mineralogy of James Dwight Dana, Wiley, New York, 1892, 6th ed.1837-1868
    [63] Deb M, Tiwary A, Palmer M R. Tourmaline in the Proterozoic massive sulfide deposite from Rajasthan, India. Mineralium Deposita, 1997, 32:94~99
    [64] Deer W A, Howie R A, Zussman J. Rock-Forming Minerals.vol.1.Wiley , New York. 1962
    [65] Dietrich R V. The Tourmaline Group. New York: Van Nostrand Reinhold Company. 1985
    [66] Donnay G, Ingamells C O, Mason B. Buergerite, a new species of tourmaline. American Mineralogist, 1966, 51: 198-199
    [67] Dunn P J. Elbaite from Newry Maine. Mineralogical Record. 1975,6:22-25
    [68] Dunn P J, Appleman D, Nelen J A, et al. Uvite, a new(old) common member of the tourmaline group and its implications for collectors. Mineralogical Record, 1977a, 8: 100-108
    [69] Dunn P J, Appleman D E, Nelen J E. Liddicoatite, a new calcium end-member of the tourmaline group, American Mineralogist, 1977b, 62: 1121-1124
    [70] Fuge R, PowerR G M. Chlorine in tourmalines from SW(southwest) England. Mineralogical Magazine, 1969, 37:293-294
    [71] Grice J D, Robinson G W. Feruvite, a new member of the tourmaline group and its ctystal structure. Canadian Mineralogist, 1989, V.27:199-203
    [72] Griffin W L, Slack J F, Ramsden A R, et al. Trace elements in tourmaline from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications. Economic Geology, 1996, 91:657~675
    [73] Grum-Grzhimailo S V. The color of tourmalines: their ecamination in polarized ultraviolet light, Trudy Instituta Kristallogrufii. Akademii Nauk SSSR. 1956,12:79-84(Russian)
    [74] Hānni H A, Frank E, Bosshart G. Golden yellow tourmaline of gem quality from Kenya. Journal of Gemmology, 1981, 17:437-442
    [75] Hawthorne F J, Henry D J. Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 1999, 11:201-216
    [76] Hellingwerf R H, Gatedal K, Gallagher V, et al. Tourmaline in the central Swedish ore district. Mineralium Deposita, 1994, 29: 189-205
    [77] Henry D H, Guidotti C V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist., 1985. 70:1-15
    [78] Henry D J, Dutrow B L. Metamorphic tourmaline and its petrologic applications. In: Grew E S, Anovitz L M, ed. Boron: Mineralogy, Petrology, and Geochemistry. Review in Mineralogy, 1996, 33: 503-557
    [79] Henry D J, Dutrow B L. Compositional zoning and element partitioning in nickeloan tourmaline from a metaphosed karstbauxite from Samos, Greece. American Mineralogist, 2001, 86:1130-1142
    [80] Ito T, Sadanaga R. A Fourier analvsis of the structure of tourmaline. Acta Crystallographica. 1951, 4:385-390.
    [81] Jiang S Y, Palmer M R, Slack J F, et al. Trace element and rare earth element geochemistry of tourmaline from the Sullivan Pb-Zn-Ag deposit and regional tourmalinites. In: Lydon J W, Turner R J W, Slack J F, ed. The Sullivan Pb-Zn-Ag Deposit, British Columbia, And Its Geological Environment. Geological Association of Canada Special Paper.1995
    [82] Jiang S Y, Palmer M R, Slack J F, et al. Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Economic Geology, 1998, 93: 47-67
    [83] Jiang S Y, Han F, Shen J Z, et al. Chermical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P. R. China. Chemical Geology, 1999, 157:49~67
    [84] Jiang S Y, Palmer M R, Slack J F, et al. Trace element and rare earth element geochemistry of tourmalines and related and ores from the Sullivan deposite and vicinity, Southeastern British Columbia. In: Lydon J W, Hoy T, Slack J F, et al. (Eds), The Geological Environment of the Sullivan Pb-Zn-Ag Deposit, British Columbia. 2000. Vol.1, 482-495
    [85] Jiang S Y, Yu J M, Lu J J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chemical Geology, 2004, 209: 193-213
    [86] Jolliff B L , Papike J J, Shearer C K. Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim. Cosmochim. Acta, 1987, 51: 519-534
    [87] Keller P, Robles E R, Perez A P, et al. Chemistry, paragenesis and significance of tourmaline in pegmatites of the Southern Tin Belt, central Namibia. Chemical Geology, 158(1999): 203-225
    [88] Kubo T. Interface activity of water given rise by tourmaline. Solid State Physics, 1989, 24(12)
    [89] Leckebusch R. Chemical composition and colour of tourmaline from Darre Pech (Nuristan, Afghanistan). Neues Jahrbuch fur Mineralogie, Abhandlungen, 1978,133: 53-70
    [90] Macdonald D J, Hawthorne F C, Grice J D. Foitite, a new alkali-deficient tourmaline: Description and ctystal structure. American Mineralogist, 1993, V78:1299-1303
    [91] Manning P G. Optical absorption spectra of chromium-bearing tourmalkine. Black tourmaline. And buergerite. Canadian Mineralogist, 1969b.10:57-70
    [92] Mattson S M, Rossman G R.Ferric iron in tourmaline. Physics and Chemistry of Minerals, 1984, Vol.11:225-234
    [93] Moravian Museum, Brno, Czech Republic and University of Manitoba, Winnipeg, Manitoba, Canada. “TOURMALINE 1997” International Symposium on Tourmaline: ABSTRACTS
    [94] Nakamura T. Kubo T. Tourmaline group crystals reaction with water. Ferroelectrics,1992, 137:13-31
    [95] Nakano T, Nakamura E. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Physics of the Earth and Planetary Interiors, 2001, 127-1-4:233-252
    [96] Nassau K. Gamma ray irradiation induced changes in the color of tourma-lines. American Mineralogist, 1975,60:710-713
    [97] Nassau K. Gemstone enhancement. Butterworth Scientific, London. 1984
    [98] Novak F, et al. Dravite asbestos from Chvaletice. Acta Universitatis Carolinae, Geologica 1970,3: 223-264
    [99] Novak M, Taylor M C. Foitite: Formation during late stages of Evolution of complex grantic pegmatites at Dobra Voda, Czech Republic, and Pala, California, U.S.A. the Canadian Mineralogist, 2000, 38:1399-1408
    [100] Palmer M R, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalines. Contributions to Mineralogy and Petrology, 1989, 103:434~451
    [101] Peng Q M, Palmer M R. The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin provinces, Northeast China. Economic Geology and the Bulletin of the Society of Economic Geologists, 2002, 97-1:93-108
    [102] Pirajno F, Smithies R H. The FeO/(FeO+MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. Journal of Geochemical Exploration, 1992, 42: 371-381
    [103] Plimer I R. The association of tourmalinite with stratiform scheelite deposits. Mineralium Deposita, 1987, 22: 282-291
    [104] Povondra P. The crystal chemistry of tourmalines of the schorl-dravite series. Acta Universitatis Carolinae Geologica, 1981, no.3:223-264
    [105] Roda E, Pesquera A, Velasco F. Tourmaline in pegmatites and their country rocks, Fregeneda area, Salamanca, Spain. Canadian Mineralogist, 1995, 33:835~848
    [106] Rossman G R, Mattson S M. Yellow, manganese-rich elbaite with manganese-titanium intervalence charge transfer. American Mineralogist, 1986, 1:599-602
    [107] Rumansteva E V. Chromdravite, a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo obshchestvo, 1983, 112:222-226(in Russian)
    [108] Schmetzer K, Bank H. East African tourmalines and their nomenclature. Journal of Gemmology, 1979, 16:310-311
    [109] Selway J B, Novak M, Hawthorne F C, et al. Rossmanite, a new alkali-deficient tourmaline: Description and crystal structure. American Mineralogist, 1998, V.83:896-900
    [110] Sengupta N, Mukhopadhyay D, Sengupta P, et al. Tourmaline-bearing rocks in the Singhbhum shear zone, eastern India: Evidence of boron infiltration during regional metamorphism. American Mineralogist, 2005, 90: 1241-1255
    [111] Serdyuchenko D P. Chemical constitution of tourmaline, Problemy Geologii Redkikh Elementov, Izdanija Nauka, Moscow, 1978, pp. 225-250(Russian)
    [112] Sidney B L. The history of pyroelectricity: from ancient Greece to space Missions. Ferroelectrics, 1999, 230: 99-108
    [113] Slack J F, Palmer M R, Stevens B P, et al. Origin and significance of tourmaline-rich rocks in the Broken Hill district. Australia. Economic Geology, 1993, 88: 505-541
    [114] Slack J F. Tourmaline associations with hydrothermal ore deposits. In: Grew E S, Anovitz L M, ed. Boron: Mineralogy, Petrology and Geochemistry. Review in Mineralogy, 1996, 33: 559-643
    [115] Smith G. Low-temperature optical studies of metal-metal charge-transler transitions in various minerals. Canadian Mineralogist, 1977, 15:500-507.
    [116] Talor B E, Slack J E. Tourmalines from Appalachian-Caledonian masive sulfide deposits: Textural, chemical, and isotopic relationships. Economic Geology, 1984, V.79:1703-1726
    [117] Tschermak G. Lehrbuch der Mineralogie(1 st.ed.), A Holder, Wien, 1885, ns
    [118] Vernadsky W. Uber die chemische formel der turmaline, Zeitschrift fur Kristallographie, Kristallogeometri Kristallphysik Kristallchemie, 1913, 53: 273-288
    [119] Vinokurov V M, Zaripov M M. Magnetic properties of tourmaline Kristallografiya. 1960. 4:873-887
    [120] Walenta K, Dunn P J. Ferridravite, a new mineral of tourmaline group from Bolivia. American Mineralogist, 1979, 64: 945-948
    [121] Wu Ruihua, Lin Shanyuan, Bai Feng, et al. The effects of irradiation on some physical properties of tourmaline. Acta Petrologica et Mineralogica, 1998,4(12): 371-376(in Chinese with English abstract)
    [122] Yamaguchi S. Electron diffraction of a pyroelectric tourmaline crystal. Journal of Applied Physics, 1964, 35:1654-1655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700