甘油预处理固定杨木压缩变形机理及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界木材资源的日益紧缺,低质速生材的开发利用愈来愈受到重视。对木材进行压缩是一种行之有效的木材改性的方法,它不仅可以提高其物理力学性能,又保持了木材原有的优良特性,然而压缩木的变形容易发生回复使压缩木产品的应用受到很大的限制。
     本文从不同温度条件下甘油处理材的应力松弛、化学成分变化、细胞壁成分构造等方面探究了甘油预处理固定木材压缩变形的机理并将其应用于青杨(Populus cathayana Rehd.)的压缩变形固定,探索了一种环保、有效地固定木材压缩变形的方法,通过试验得出主要工艺参数,并检测了压缩木的物理力学性能、颜色变化、耐腐性能及耐老化性能。本研究的主要结论归纳如下:
     (1)甘油预处理压缩木的变形固定机理为:甘油进入木材无定形区后通过氢键结合吸附在木材无定形区的羟基上,使木材润胀、分子间容易发生滑移。在热压的过程中,木材的无定形区分子发生流动,半纤维素、木质素及少量的纤维素发生热解,分子链被切断,使蓄积在木材内的压缩应力得到松弛;木材组分热解生成的短链分子之间、短链分子与原来分子之间产生交联,无定形区分子发生序化重排,木材的相对结晶度提高,木材的压缩变形得到固定。
     (2)甘油预处理可加速木材的应力松弛,通过计算甘油处理材应力松弛过程的表观活化能(△E)发现,在25~180℃范围内,甘油处理材压缩应力松弛分为两个阶段,第一阶段25~100℃表观活化能(△E1)为8.24 kJ/mol,第二阶段120~180℃表观活化能(△E2)为81.38 kJ/mol。第一阶段对应着木材分子间滑移,氢键断裂引起的松弛,第二阶段对应着木材半纤维素及木质素分子链断裂所引起的松弛。
     (3)甘油处理可加剧热处理过程中木材主要化学成分的降解。甘油预处理木材140℃时部分纤维素开始降解;120℃时半纤维素开始降解,并且160℃时开始剧烈降解;120℃木质素开始降解,并且160℃开始剧烈降解。FT-IR谱图分析说明甘油处理材在高温条件下,半纤维素出现脱羧现象,分子链断裂;部分小分子的木质素的苯环发生断裂。
     (4)建立了不同温度条件下甘油处理材细胞壁成分构造模型。甘油仅能进入纤维素的非结晶区,对木材产生“结晶区间”润胀。甘油处理可以加快热处理材相对结晶度的提高,140℃以上甘油处理材结晶区宽度开始升高,200℃甘油处理材结晶区宽度降低。甘油分子进入木材无定形区后与水分子相似,通过氢键结合吸附在木材无定形区的羟基上的。甘油处理材E′的温度谱中观察到常温及120℃甘油处理材分子的“交联化”现象,甘油处理材tgδ的温度谱图中可观察到无定形区侧链吸附的甘油分子的运动引起的松弛过程及两个由木材分子链断裂生成的短分子链及短分子链发生交联或序化重排后形成的长分子链的微布朗运动引起的松弛过程。
     (5)甘油预处理压缩木同热水预处理压缩木相比压缩变形回复率明显降低,表面硬度提高,压缩后木材颜色明显加深,耐腐性能提高,老化后木材颜色的稳定性较好。甘油预处理杨木压缩木的主要工艺参数为:50%甘油水溶液预处理,热压温度160℃,保压60 min(抗弯强度较高);热压温度180℃,保压30 min(表面硬度较高)。
The development and utilization of fast-growing wood became more important with the decreasing wood resources. Wood compression is an effective modification method of wood because it can not only improve the physical and mechanical performance but also can maintain the superior characteristics of wood. However, the utilization of compressed wood has been greatly restricted because of the recovery of compression deformation.
     In this study, the mechanism of compressive deformation fixation of wood pretreated by glycerin was investigated by stress relaxation, change on structre of cell wall components and chemical compositions at different temperatures. The mechanism was applied to fix compressed deformation of Poplar (Populus cathayana Rehd.). Thus, an environment-friendly and effective method to fix compressive deformation of wood was explored; the process variables were determined by experiments and the physical and mechanical properties, color change, decay resistance and anti-weathering properties of compressed wood were also examined. The main results of this research are as follows:
     (1)The mechanism of deformation fixation for compressed wood pretreated by glycerin is summarized as follows:
     Glycerin was adsorbed to hydroxyl groups through hydrogen bonding in amorphous region after pretreatment so the wood was in swollen state and the molecules were easy to slip. The matrix of wood began to flow, the hemicellulose, lignin and a small amount ofβ-cellulose were degraded and the molecular chains were cut so the recovery force of wood was relaxed; the cross-linking was formed between short-chain molecules from wood component degradation or between short-chain molecules and the original molecules, the crystallinity of wood increased, matrix rearranged so that the deformation of compressed wood was fixed.
     (2) The effect of temperature on the stress relaxation of wood was apparent, and the stress relaxation accelerated by the increase of tempereature and glycerin pretreatment. The stress relaxation during 25-180℃can be divided into two phases acorrding to the apparent activation energy{ΔE). TheΔE1 of PhaseⅠequals 8.24 KJ/mol andΔE2 of PhaseⅡequals 81.38 KJ/mol. PhaseⅠwas the relaxtion caused by the breakage of hydrogen bonding and PhaseⅡwas the relaxation caused by the breakage of hemicellulose and lignin molecular chains.
     (3) The degradation of wood components was accelerated by glycerin treatment. For glecerin-treated wood (GTW), a part of cellulose began to degrade at 140℃; Hemicellulose bagin to degrade at 120℃and degrade violently at 160℃; Lignin begin to degrade at 120℃and degrade violently at 160℃. FT-IR results showed that the molecular chains of hemicelluloses were broken by decarboxylic reaction and the benzene rings of lignin with small molecular weight were broken in GTW at high temperature.
     (4) The structural model of cell wall components of wood treated by glycerin was built. Glycerol can only enter the non-crystalline region of cellulose and swell wood between crystalline regions. The crystallinity of wood was improved by heat treatment and was acceletated by glycerin pretreatment at above 140℃, and decreased above 200℃. Glycerol was adsorbed on hydroxyl groups in amorphous region of wood by hydrogen bonding after entering into the amorphous region, which was similar to water molecules. The phenomenon of molecular "cross-linking" of glycerol treated wood at room temperature and 120℃was observed in E'temperature spectra. The relaxation process of glycerol molecule adsorbed to the side chains in amorphous region of glycerol treated wood can be observed in tgδtemperature spectra. Two relaxation processes due to the micro-Brownian motion of the short molecular chains formed by degradation and the new molecular chains formed by crossing-linking and rearrangement can also be observed in tg8 temperature spectra.
     (5) The recovery ratio of compressed wood pretreated by glycerin (CWPG) is significantly lower than the compressed wood pretreated by hot water (CWPW) and the surface hardness, decay resistance, stability of color after weathering of CWPG were higer than CWPW. The color of CWPG was darker than CWPW. The main process parameters of compressed wood pretreated by glycerin are: pretreat by 50% glycerin solution, compressed at 160℃for 60 min (with optimized MOR) or compressed at 180℃for 30 min (with optimized surface hardness).
引文
[1]蔡家斌,李涛.高温热处理对杨木压缩板材物理力学性能的影响[J].林业科技开发,2009,23(3):104-106
    [2]成俊卿主编.木材学[M].北京:中国林业出版社,1985
    [3]程瑞英,魏萍,刘景宏等.压前含水率对杉木间伐材压缩木性能的影响[J].林产工业,2006,33(1):10-13
    [4]戴玉成,徐梅卿,杨忠,蒋明亮.中国储木及建筑木材腐朽菌Ⅰ[J].林业科学研究,2008,21(1):49-54
    [5]方桂珍,李淑君,崔永志等.PF预聚物对杨木压缩变形的固定作用[J].林产化工通讯,1998(5):16-19
    [6]方桂珍,刘一星,崔永志等.低分子量MF树脂固定杨木压缩木回弹技术的初步研究[J].木材工业,1996,10(4):18-21
    [7]何曼君,张红东,陈维孝等编著.高分子物理[M].上海:复旦大学出版社,2007
    [8]顾炼百,涂登云,于学利.炭化木的特点及应用[J].中国人造板,2007(5):30-37
    [9]国务院第七次中国森林资源清查报告[R],2009
    [10]过梅丽编著.高聚物与复合材料的动态力学热分析[J].北京:化学工业出版社,2002
    [11]胡赫良斯基著,申宗圻译.木材压缩与弯曲[M].北京:农业出版社,1965
    [12]黄广华,陈瑞英.人工林巨尾桉木材压缩密化的研究[J].福建林学院学报.2007,27(4):380-384
    [13]黄荣凤,吕建雄,曹永健等.高温热处理对毛白杨木材化学成分含量的影响[C].中国林学会木材工业分会论文集,2009(33):106-112
    [14]蒋佳荔,吕建雄,赵广杰.化学处理木材的动态粘弹性研究[J].北京林业大学学报,2006,28(1):87-92
    [15]雷亚芳,冉鲁威,李增超等.色木径向、弦向、非标向压缩木得主要力学性能[J].西北林学院学报,2000,15(2):29-32
    [16]李冒珠,蒋丽娟,程树棋.生物柴油-绿色能源[M].北京:化学工业出版社,2005
    [17]李坚等编著.木材科学[M].哈尔滨:东北林业大学出版社,1991
    [18]李坚,刘一星,刘君良.加热、水蒸汽处理对木材横纹压缩变形的固定作用[J].东北林业大学学报,2000,28(4):4-8
    [19]李坚等著.木材波谱学[M].北京:科学出版社,2002
    [20]陆文达主编.木材改性工艺学[M].哈尔滨:东北林业大学出版社,1993
    [21]刘一星,刘君良,李坚等.水蒸汽处理法制作压缩整形木的研究(Ⅰ)构造变化和尺寸稳定性[J].东北林业大学学报,2000,28(4):9-12
    [22]刘一星,于海鹏,赵荣军编著.木质环境学[M].北京:科学出版社,2007
    [23]刘君良.木材流变学研究综述[J].吉林林学院学报,1998,14(1):48-53
    [24]刘君良.木材压缩变形固定机理及压缩整形木的研究[D].东北林业大学博士学位论文.1999
    [25]刘建学编著.实用红外光谱分析技术[M].北京:科学出版社,2008
    [26]刘亚兰,李庆峰.压缩木制造技术的研究概述[J].林业科技,2005,30(1):62-64
    [27]刘星雨,黄荣凤,吕建雄.高温热处理对针叶材天然耐腐性及其力学性能的影响[C].中国林学会木材工业分会木材保护研究会会议论文集,2009,33:118-122
    [28]龙传文,龙博,韦文邦.PF树脂对杉木浸渍与压缩工艺的研究[J].中国胶黏剂,2008,17(4):27-29
    [29]钱俊,沈哲红,金永明等.人工林杉木压缩整形过程中的定形工艺[J].木材工业,2005,19(4):25-27
    [30]齐华春,程万里,刘一星.高温高压过热蒸汽处理木材的力学特性及化学成分变化[J].东北林业大学学报,2005,33(3):44-46
    [31]秦莉,于文吉.木材光老化的研究进展[J].木材工业,2009,23(4):33-36
    [32]唐晓淑.热处理变形固定过程中杉木压缩木材的主成分变化及化学应力松弛[D].北京林业大学博士论文,2004
    [33]唐德国.高温水蒸汽处理固定大青杨木材横纹压缩变形的研究[J].吉林林业科技,2008,37(6):40-44
    [34]王培元.白杨木材横纹压缩流变性能(Ⅰ)粘弹性[J].林业科学,1987(2):182-190
    [35]王逢瑚.木质材料流变学[M].哈尔滨:东北林业大学出版社,1997
    [36]王洁瑛.热处理及γ射线辐射杉木压缩木材的固定[D].北京林业大学博士论文,2000
    [37]王洁瑛,赵广杰,杨琴玲等.饱水和气干状态杉木的压缩成型及其热处理永久固定[J].北京林业大学学报,2000,22(1):72-75
    [38]王洁瑛,赵广杰,中野隆人.热处理过程中杉木压缩木材的材色及红外光谱[J].北京林业大学学报.2001,23(1):59-64
    [39]王洁瑛,赵广杰.空气介质中热处理杉木压缩木材的蠕变[J].北京林业大学学报,2002,24(3):52-58
    [40]王晓旭.高温热处理条件对速生材炭化木性能的影响[J].北京林业大学硕士论文,2007
    [41]吴帅.橡胶木炭化技术的初步研究[J].中国人造板.2008,12:7-12
    [42]谢满华.化学处理木材的应力松弛[J].北京林业大学博士论文,2006
    [43]尹思慈主编.木材学[M].北京:中国林业出版社,1996
    [44]杨霞,高爽.不同热处理方法固定人工林杨木压缩变形的研究[J].长春工业大学学报(自然科学版).2006a,27(1):75-77
    [45]杨霞.异氰酸酯树脂固定人工林杨木压缩变形的研究[J].吉林林业科技.2006b,35(3):39-40
    [46]尤新.生物质替代石化产品的发展动向[J].精细与专用化学品,2008(6):15-17
    [47]严衍禄主编.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005
    [48]赵广杰.木材流变学-基础构筑及研究现状[J].北京林业大学学报,2001,23(5):66-70
    [49]赵钟声.木材横纹压缩变形回复率的变化规律与影响机制[D].东北林业大学博士论文.2003
    [50]赵钟声,刘一星,沈隽.落叶松、杨木热处理材及压缩材热动态力学特性分析[J].东北林业大学学报.2008,36(4):17-19
    [51]郑志峰.木材的颜色是如何产生的[J].云南林业,2005,26(2):32-33
    [52]周光泉,刘孝敏编著.粘弹性理论[M].中国科学技术大学出版社,1996
    [53]周利,卢晓宁,丁慧.水热处理对杨木顺纹压缩性质的影响[J].南京林业大学学报(自然科学版),2008,32(1):61-64
    [54]周建斌,邓丛静,张齐生.杉木炭化前后化学成分变化的研究[J].林产化学与工业,2008,28(3):105-107
    [55]张云岭.低分子量三聚氰胺-甲醛树脂固定泡桐压缩木回弹的研究[J].木材工业.1996,10(6):15-18
    [56]曾祥谓,崔宝凯,徐梅卿等.中国储木及建筑木材腐朽菌Ⅱ[J].林业科学研究,2008,21(6):783-791
    [57]GB1936.1-1991.《木材抗弯强度试验方法》[S],1991
    [58]GB/T1936.2-1991.《木材抗弯弹性模量测量方法》[S],1991
    [59]GB/T13942.1-1992《木材天然耐久性试验方法—木材天然耐久性实验室试验方法》[S],1992
    [60]GB/T2677.10-1995《造纸原料综纤维素含量的测定》[S],1995
    [61]GB/T744-1989《纸浆α-纤维素的测定》[S],1989
    [62]GB/T2677.8-1994《造纸原料酸不溶木质素含量的测定》[S],1994
    [63]井上 雅文.压缩木研究现状与今后展望[J].人造板通讯,2002,9:3-10
    [64]#12
    [65]#12
    [66]则元 京.木材の热および水蒸汽处理[J].木材工业,1994,27(12):31-40
    [67]樋口隆昌.木质生命科学シリ一ズ.东京:文栄堂出版,1994
    [68]ASTM G154-06.Standard practice for operating fluorescent light apparatus for UV exposure of nonmetallic materials 1[S],2006
    [69]Aoki T, Yamada T. Creep of wood during decrystallisation and of decrystallised wood [J]. Mokuzai Gakkaishi.1977a,23(1):10-16.
    [70]Aoki T, Yamada T. Chemorheology of wood. Ⅰ. Stress relaxation of wood during acid hydrolysis [J]. Mokuzai Gakkaishi.1977b,23(2):107-113.
    [71]Aoki T, Yamada T.Chemorheology of wood. Ⅱ. Torsion of wood during acid hydrolysis [J]. Mokuzai Gakkaishi.1977c,23(3):125-130.
    [72]Aoki T, Yamada T. Chemorheology of wood.Ⅲ. Diffusion controlled stress relaxation in wood [J]. Mokuzai Gakkaishi.1978a,24(6):380-384.
    [73]Aoki T, Yamada T. Chemorheology of wood. Ⅳ. Relaxation time and rate constant [J]. Mokuzai Gakkaishi.1978b,24(11):784-789.
    [74]Back E L, Salmen N L. Class transitions of wood components hold implications for molding and pulping process [J]. Tappi Journal,1982,65:107-110
    [75]Blomberg J, Persson B, Bexell U. Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking [J]. Holzforschung,2006,60:322-331
    [76]Boonstra M J, van Acker J, Kegel E et al. Optimisation of a two-stage heat-treatment process: durability aspects [J]. Wood Science and Technology,2007,41:31-57
    [77]Cao J Z, Xie M H, Zhao G J. Tensile stress relaxation of copper-ethanolamine (Cu-EA) treated wood [J]. Wood Science Technology,2006,40:417-426
    [78]Dwianto W, Norimoto M, Morooka T et al. Radial compression of sugi wood (Cryptomeria japonico D. Don) [J]. Holz als Roh-und Werkstoff,1998a,56 (6):403-411
    [79]Dwianto W, Morooka T, Norimoto M. The Compressive stress relaxation of Albizia (Paraserienthes falcata Becker) wood during heat treatment [J]. Mokuzai Gakkaishi,1998b,44 (6):403-409
    [80]Dwianto W, Morooka T, Norimoto M et al. Stress relaxation of sugi(Cryptomeria Japonicа d.Don) wood in radial compression under high temperature steam [J]. Holzforschung,1999,53(5):541-546
    [81]Fengel D and Wegener G. Wood: chemistry, ultrastructure, reactions[M]. New York: Walter de Gruyter,1984
    [82]Francis W M R. Schwarze, Melanie S. Resistance of thermo-mechanically densified wood to colonization and degration by brown-rot fungi [J]. Holzforschung,2005,59(3):358-363
    [83]Funaoka M, Kako T, Abe I. Condensation of lignin during heating of wood [J]. Wood science and technology.1990,24:277-288
    [84]Fukuta S, Takasu Y, Sasaki Y et al. Compressive deformation process of Japanese cedar (Cryptomeria japonica) [J]. Wood and Fiber Science,2007,39 (4):548-555
    [85]Gibson E J. Creep of wood: role of water and effect of changing moisture content [J]. Nature, 1965,206(4980):213-215
    [86]Glasstone, Glasstone S, Laidler K J et al. The theory of rate processes [M]. New York:McGraw Hill,1941
    [87]Hearmon R F S, Paton J M. Moisture content changes and creep of wood [J]. Forest products Journal,1964,357-359
    [88]Higashihara T, Morooka T, Norimoto M. Permanent fixation of transversely compressed wood by heating and its mechanism [J]. Mokuzai Gakkaishi 2001a,47 (3):205-211
    [89]Higashihara T, Inoue M, Morooka T et al.Stress relaxation of glycerin-saturated wood [J]. Mokuzai Gakkaishi,2001b,47 (5):447-451
    [90]Higashihara T, Morooka T, Hirosawa S et al. Relationship between changes in chemical components and permanent fixation of compressed wood by steaming or heating [J]. Mokuzai Gakkaishi,2004,50(3):159-167
    [91]Hakkou M, Petrissans M, Zoulalian A et al. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis [J]. Polymer Degradation and Stability,2005,89:1-5
    [92]Inoue M, Norimoto M, Otsuka Y et al.Surface compression of coniferous wood lumber II: Permanent set of compression wood by low molecular weight phenolic resin and some physical properties of the products [J]. Mokuzai Gakkaishi,1991a,37 (3):227-233
    [93]Inoue M, Norimoto M, Otsuka Y et al.Surface compression of coniferous wood lumber III: Permanent set of the surface compressed layer by a water solution of low molecular weight phenolic resin [J]. Mokuzai Gakkaishi,1991b,37 (3):234-240
    [94]Inoue M, Norimoto M.Premanent fixation of compressive deformation in wood by heat treatment[J].Wood Research Technology Note,1991c,27:31-40
    [95]Inoue M, Norimoto M, Otsuka Y et al. Dimentional stability, mechanical properties, and color changes of a low molecular weight melamine formaldehyde resin impregnated wood [J]. Mokuzai gakkaishi,1993a,39 (2):181-189
    [96]Inoue M, Ogata S, Kawai S et al. Fixation of compressed wood using melamine formaldehyde resin[J].Wood and Fiber Science,1993b,25(4):404-410
    [97]Inoue M, Minato K, Norimoto M.Permanent fixation of compressive deformation of wood by crosslinking [J].Mokuzai Gakkaishi,1994,40 (9):931-936
    [98]Inoue M, Hamaguchi T, Morooka T et al. Fixation of compressive deformation of wood by wet heating under atmospheric pressure [J]. Mokuzai Gakkaishi,2000,46 (4):298-304
    [99]Inoue M, Sekino N, Morooka T et al.Fixation of compressive deformation in wood by pre-steaming [J]. Journal of Tropical Forest Science,2008,20 (4):273-281
    [100]Iida I, Norimoto M, Imamura Y. Hygrothermal recovery of compression set [J]. Mokuzai Gakkaishi,1984,30(5):354-358
    [101]Iida I, Norimoto M. Recovery of compression set [J]. Mokuzai Gakkaishi,1987,33(12):929-933
    [102]Iida I. Hygrothermal recovery of compression set: The effect of moisture content and heating in water on recovery of set [J].京都府立大学学术报告(农学第42号),1990
    [103]Iida I, Imamaura Y, Kashiwa N et al. Liquid penetration of precompression wood Ⅱ:Effects thickness and length of specimen on liquid uptake. Wood Preservation,1992,18(1):31-37
    [104]Iida I, Ikeuchi A, Imamura Y. Liquid penetration of precompression wood Ⅲ:Effects of moisture contents of specimens and ambient temperatures while compression on liquid uptake of softwoods and hardwoods [J]. Mokuzai Gakkaishi,1995a,41(9):811-819
    [105]Iida I, Imamura Y. Liquid pentration of precompression wood IV:Mechanical properties of set-fixed wood before and after recovery [J]. Mokuzai Gakkaishi,1995b,41(12):1165-1172
    [106]Itoh T, Ishihara S. Compressive deformation of wood using hot rollpress and its fixation by glyoxal resin [J]. Mokuzai Gakkaishi,1997,43(1):52-60
    [107]Ito Y, Tanahashi M, Shigematsu M et al. Compressive-molding of wood by high-pressure steam-treatment: Part2. Mechanism of permanent fixation [J]. Holzforschung,1998,52 (2):217-221
    [108]Jamsa S, Viitaniemi P. Heat treatment of wood better durability without chemicals[C].Rapp AO, editor.2001 Review on heat treatments of wood. Cost Action E22.
    [109]Kuriyama A. On the changes in the chemical composition of wood within the temperature range up to 200℃ [J].Materials,1967,16(169):772-776
    [110]Kishino M, Nakano T. Artificaial Weathering of tropical woods. Part Ⅰ:Changes in wettability [J].Holzforschung,2004,58:552-557
    [111]Kamdem D P, Pizzi A, Guyonnet R et al. Durability of heat-treated wood [C]. International Research Group on Wood Protection (IRG),1999, Document No: IRG/WP 99-40145
    [112]Kartal S N. Combined effect of boron compounds and heat treatments on wood properties: Boron release and decay termite resistance[J], Holzforchung,2006,60,455-458
    [113]Lemiszka T. Whitwell J.C. Stress relaxation of fibers as a means of interpreting physical and chemical structure [J]. Textile Research Journal,1955,25(11):947-955
    [114]Manabe S, Fujioka R. Thermal molecular motion from 150 to 350K for regenerated cellulose solids [J]. Polymer Journal,1996,28:860-866
    [115]Mooney M, Wolstenholme W.E., Willars D S. Drift and Ralaxation of rubber [J]. Journal of Applied Physiology,1944,15:324-337
    [116]Murakami K, Ono K. Chemorheology of polymers [M]. Elsevier Scientific Publishiing Company, Amsterdam, Oxford: New York,1979
    [117]Morooka T, Norimoto M, Yamada T et al. Viscoelastic properties of cellulose acylates [J]. Wood research.1983,69:61-70
    [118]Morooka T, Norimoto M, Yamada T et al. Viscoelastic properties of cellulose (oligo-oxymethylene ether) acylates Ⅱ [J].W ood research.1986,72:12-26
    [119]Muller U, Ratzsch M, Schwanninger M et al. Yellowing and IR-changes of spruce wood as the result of UV-iirradiation [J]. Joural of Photochemistry and Photobiology B:Biology,2003,69(2): 97-105
    [120]Marcos M G, Michael D C H. The effect of chemical changes on the wood-moisture relationships in thermally-modified wood [C].2009, IRG/WP09-40473
    [121]Norimoto M. Large compressive deformation in wood [J]. Mokuzai Gakkaishi, 1993,39(8):867-874
    [122]Obataya E, Fumio T, Misato N et al. Hygroscopicity of heat treated wood Ⅰ:Effects of after-treatments on the hygroscopicity of heat treated wood [J]. Mokuzai Dakkaishi,2000,46(2):77-87
    [123]Rawat S P S, Breese MC, Khali DP. Chemical kinetics of stress relaxation of compressed wood blocks [J]. Wood Science and Technology,1998,32 (2):95-99
    [124]Seborg R M, Millett M A, Stamm A J. Heat stabilized compressed wood (staypak) [M]. Madison: Forest Products Laboratory,1956
    [125]Stamm A J. Wood and Cellulose Science [M]. Ronald Press, New York,1964
    [126]Stamm A J, Hansen L A. Minimizing wood shrinkage and swelling: Effect of heating in various gases [J]. Industrial and engineering chemistry research,1937,29:831-833
    [127]Sugiyama M, Obataya E, Normoto M. Viscoelastic relaxation of chemically treated wood [J]. Wood research,1995,82:31-33
    [128]Sugiyama M, Obataya E, Normoto M. Viscoelastic perperties of the matrix substance of chemically treated wood [J]. Journal of materials science.1998(33):3505-3510
    [129]Tanahashi M, Takda S, Aoki T et al. Characterization of explosive wood Ⅰ:Structure and physical properties [J]. Wood Research,1982,69:36-51
    [130]Tanahashi M, Goto T, Horii F et al. Characterization of steam-exploded wood Ⅲ:Transformation of cellulose crystals and changes of crystallinity [J]. Mokuzai Gakkaishi,1989,35(7):654-662
    [131]Tjeerdsma, B F, Boonstra M, Pizzi A et al. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement [J]. Holz als Roh-und Werkstoff,1998,56(3): 149-153
    [132]Tobolsky A V, Prettyman I B, Dillon J H. Stress relaxation of natural and synthetic rubber stocks [J]. Journal of Applied Physiology,1944,15:380-395
    [133]Toshimi H. Kinetics of pyrolysis of wood and cellulose [J]. Mokuzai Gakkaishi,1995, 41(10):879-886
    [134]Weiland J J, Guyonnet R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy [J]. Holz als Roh-und Werkstoff.2003,61:216-220
    [135]Yan L, Cao J Z, Gao W et al. Interaction between glycerin and wood at various temperatures from stress relaxation approach [J]. Wood Sci Technol.Online pressed, DOI10.1007/s00226-010-0322-x

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700