静电纺丝构建蚕丝蛋白基支架及其应用于神经修复的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米级的纤维材料是生物体系统的基本组成结构。如DNA双螺旋的直径大约是2 nm,螺距为3.5 nm左右,细胞骨架丝的直径是30 nm左右。纳米纤维材料与细胞外基质的微观结构存在一致性,因此其在生物医药领域的应用具有先天优势,目前加工纳米纤维材料的方法很多,如模板法、拉伸法、自组装法等,但由于各种条件限制,静电纺丝被认为是最有可能实现连续及大量制备纳米纤维材料的工艺技术。通过静电纺丝工艺可以将聚合物加工成直径为3 nm的纤维,小到3 nm的纤维其截面仅有6-7个大分子。
     近年来,利用天然材料制备纳米产品引起了广泛的注意,如将蚕丝纤维蛋白加工制备成微纳米纤维组织工程支架。蚕丝是一种天然高分子蛋白质,近年来获得各领域学者浓厚的研究兴趣,这主要归因于其优异的特性(强力和生物相容性)和潜在的应用价值,如用于智能纺织品、防护服、过滤材料、缓释材料和组织工程,特别是在组织工程领域的研究成为了热点。
     本课题选取桑蚕丝素蛋白(BSF)和柞蚕丝素蛋白(TSF)为主要实验对象,旨在研究丝素蛋白(SF)的静电纺丝性能,获得SF基微纳米纤维材料,在对材料形态、结构和性能研究的基础上,考察材料与神经类细胞的生物相容性并探索材料用于神经损伤修复的可行性。研究发现:
     纺丝溶剂的不同不仅会影响到纤维形态,而且对纤维材料聚集态结构及热性能产生影响。如以甲酸为溶剂所纺BSF微纳米纤维的直径远远小于以HFIP为溶剂所纺纤维,而且含有更多的β-折叠结构。此外,通过不同醇溶液及不同浓度乙醇溶液后处理实验发现,BSF微纳米纤维网的结构转变不受醇分子大小及水分含量的影响,分析认为溶剂极性、材料形态、初始结构及结晶结构将决定有机溶剂后处理是否能够促进蚕丝蛋白发生构象转变;通过在纺丝液中加入EDC,或进行EDC/NHS乙醇溶液后处理,均能明显提高BSF微纳米纤维材料的物理机械性能和尺寸稳定性。
     以六氟异丙醇(HFIP)为溶剂,通过静电纺丝方法纺制多种比例BSF/TSF共混微纳米纤维非织造网,研究发现随TSF含量的增加BSF/TSF共混纤维的直径显著降低;BSF/TSF共混纤维中两种成分在宏观融为一体,但结构分析表明两者在微观上是相分离的,即不能形成共晶结构;星形胶质细胞培养实验表明,BSF/TSF共混材料与常用神经细胞培养用聚赖氨酸包被板(PLL)在支持细胞的黏附、生长与增殖方面没有显著差异,显示出与星形胶质细胞良好的生物相容性。
     细胞培养实验表明:丝素蛋白微纳米纤维材料支持神经元、神经干、嗅鞘和雪旺细胞的黏附、铺展、生长发育和增殖,其支持效果与PLL板相近;与BSF纤维材料相比,TSF纤维材料更支持神经元细胞的存活及提高了神经元的复杂度;与BSF纤维材料相比,神经干细胞在TSF纤维材料上黏附、增殖和迁移更快,并且细胞的分布更均匀,而培养的雪旺细胞对材料成分并不敏感,因此TSF微纳米纤维材料更适合于神经元和神经干细胞的生长;与微米级BSF纤维材料相比,纳米级BSF纤维材料对嗅鞘细胞和雪旺细胞的生长与增殖更加有利,这主要表现在:嗅鞘细胞在纳米级BSF纤维材料上能够岩纤维排列并伸出胞突,细胞增殖速度更快;雪旺细胞在纳米级BSF纤维材料上能够相互连接,形成类Büngner带,细胞的纯度更高,细胞胞突较长。
     通过旋转收集装置的旋转与平移可以制得平行于轴向或周向的BSF微纳米纤维导管;导管SD大鼠体内实验表明:导管支架材料植入老鼠体内后无明显不良反应,两个月和四个月后均可发现再生神经通过整个导管,老鼠右腿运动及感觉功能得到部分恢复,再生修复效果TSF导管优于BSF导管。
Nanoscale polymeric fibrous materials are the fundamental building unit of live systems. For example, the diameter of double helix DNA molecules is 2 nm, and the cytoskeleton filament is 30 nm. Nano-scale fibrous materials are consistency in the aspect of microstructure with the extracellular matrix (ECM). To date, many distinct techniques have proved successful in preparing nanoscale fibrous materials, such as self-assembly, phase separation, template method etc; however, electrospinning is considered to be more likely to achieve continuous and mass production of nano-fiber material. Polymer can be electrospun to produce nanofibers of with diameters as small as 3 nm, and the 3 nm diameter fibers have only 6 or 7 molecules across the fiber.
     In recent years, there has been significant increasing interest in the utilization of natural materials for novel nano-products, such as silk fibroin nanofibrous tissue engineered scaffolds. Silkworm silk, a protein-base natural biopolymer, has received keen interest in various areas due to its unique properties (strength, biocompatibility) and vast potential applications such as smart textiles, protective clothing, filter materials, sustained-release material and tissue engineering, especially in the field of tissue engineering has become the hot spot.
     This research deals with fabrication of tissue scaffolds from Bombyx mori silk fibroin (BSF) and Tussah silk fibroin (TSF) for its abundant supply and excellent mechanical and biological property. The purpose of this study is to prepare silk fibroin (SF)-based nanofibrous scaffold, determine the property of electrospun silk fibroin nanofibers; to study the biocompatibility with nerve cells (neuron, neural stem cell (NSCs), Olfactory ensheathing cells (OECs), Schwann cells (SCs)), and to bridge 10-mm sciatic nerve defects of rats with silk fibroin-based artificial nerve tube.
     The BSF/TSF blends nanofibers were prepared by electrospinning with the solvent of HFIP, and the average diameters of BSF/TSF blend fibers increased from 404 to 1977nm, with the increase of BSF content in blend solutions, and the relationship between the average diameters of BSF/TSF and BSF content was proved to be linear correlation. Results from FTIR, TG-DTA and X-ray diffraction showed BSF and TSF were still immiscible even dissolved in hexafluoroisopropanol (HFIP) after electrospinning and ethanol treatment.
     Methanol, ethanol, isopropanol and different aqueous ethanol solution all were proved effective in inducing conformation transition of BSF nanofibers, it suggested that the material morphology, initial structure, crystalline structure determine if the conformation transition of silk fibroin when immersion in organic solution, and hydrophobic interaction is the driving force of structural change. The two methods of addition of EDC in electrospin solution, or EDC/NHS ethanol system were effective in improving mechanical integrity and stability.
     Analysis of the morphology and number of nerve cells cultured on silk fibroin nanofibers indicated that cell adhesive, complexity, and proliferation was more obvious on TSF and BSF nanofibers, importantly, cell gather to form büngner band which is important for nerve regeneration.
     SF nanofiber-based artificial nerve conduits were prepared by electrospinning and applied to bridge 10mm long sciatic nerve defect of rats. The present study shows that the electrospun silk fibroin tubes are successful in bridging a 10mm gap in the sciatic nerve of the rat, especially TSF tubes demonstrated a superior repair results.
引文
[1] Gogolewski S, Pennings AJ. High-modulus Fibers of Nylon-6 Prepared by a Dry- spinning Method. Polymer,1985,26,1394-1400.
    [2] Leenslag JW, Pennings AJ. High-strength poly(L-lactide) fibres by a dry-spinning/hot- drawing process. Polymer 1987,28,1695-1702.
    [3] O’Brien JP, Fahnestock SR, Termonia Y, et al. Nylons from nature: synthetic analogs to spider silks. Adv Mater,1998,10,1185-1195.
    [4] Liivak O, Blye A, Shah N, et al. A Microfabricated Wet-spinning Apparatus to Spin Fibres of Silk Proteins. Structure- Property Correlations. Macromolecules,1998,31,2947-2951.
    [5] Eling B, Gogolewski S, Pennings AJ. Biodegadable materials of poly(L-lactic acid): 1. Melt-spun and solution spun fibers.Polymer,1982,23,1587-1593.
    [6] Yamane H, Terao K, Hiki S, et al. Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer,2001,42,3241-3248.
    [7] Wu G, Li H, Wu Y, et al. Structure and property studies of poly(trimethylene terephthalate) high-speed melt spun fibers. Polymer 2002,43,4915-4922.
    [8]郭凤芝.纳米材料在纺织上应用的探讨[J].世界标准信息,2006,6:77-79.
    [9] Martin CR. Membrane-based synthesis of nanomaterials. Chem Mater, 1996,8:1739-1746.
    [10] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial. Adv Mater, 2002, 14(24):1857-1860.
    [11] Liu GJ, Ding JF, Qiao LJ, et al. Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers - Preparation, characterization, and liquid crystalline properties Chem Eur J,1999,5,2740-2749.
    [12] Fan YY, Cheng HM, Wei YL, et al. Tailoring the diameters of vapor-grown carbon nanofibers. Carbon,2000,38:789-795.
    [13] Hongu T, Phillips GO. Eds.,In New Fibers;Woodhead Publishing Limited: Cambridge, England,1997. Ma PX, Zhang RJ. Biomed Mat Res,1999,46:60-72.
    [14] Ondarcuhu T, Joachim C. Drawing a single nanofibre over hundreds of microns. Europhys Lett,1998,42:215-220.
    [15] Fabbricante A, Ward G, Fabbricante T. US Patent 6,114,017,2000.
    [16] Torobin L, Findlow R. US Patent 6,183,670,2001.
    [17] Pike R. US Patent 5,935,883,1999.
    [18] Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science,2004,303:1352-1355.
    [19] Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci,2008,28(14):3814-3823.
    [20] Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science,2001,294:1684-1688.
    [21] Jayaraman K, Kotaki M, Zhang Y, et al. Recent advances in polymer nanofibers. J Nanosci Nanotechnol,2004,4(1-2):52-65.
    [22] Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Compos Sci Technol,2003,63(15):2223-2253.
    [23] Li D, Marquez M, Xia YN. Capturing electrified nanodroplets under Rayleigh instability by coupling electrospray with a sol-gel reaction. Chem Phys Lett,2007,445:271-275.
    [24] Marginean I, Nemes P, Vertes A. Order-Chaos-Order transitions in electrosprays: the electrified dripping faucet. Phys Rev Lett,2006,97(6):064502-4.
    [25] Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001,42:261-272.
    [26] Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity[J]. Philos Mag,1882,14,184-186.
    [27] Zeleny J. On the Conditions of Instability of Liquid Drops with Applications to the Electrical Discharge from Liquid Point[J]. Proc Camb Phil Soc,1915,18:71-83.
    [28] Taylor GI. Disintegration of Water Drops in an Electric Field[J]. Proc Roy Soc,1964, A280, 383-397.
    [29] Taylor G. Electrically Driven Jets. Proc Roy Soc London Ser A,1969,313(1515):453-475.
    [30] Hendricks CD, Carson RS, Hogan JJ, et al. Photomicrography of electrically sprayed heavy particles. J M AIAA, 1964,2(4),733-737.
    [31] Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys,2001,90:4836-4846.
    [32] Vaseashta A. Controlled formation of multiple Taylor cones in electrospinning process. Appl Phys Lett,2007,90(9):093115-3.
    [33] Smith DPH. The Electrohydrodynamic Atomization of liquids[J]. IEEE Trans Ind Appl,1986,IA-22:527-535.
    [34] Formhals A. Electrical spinning of fibers from solutions. US patent 1,975,504,1934.
    [35] Formhals A. US patent 2,160,962,1939.
    [36] Formhals A. US patent, 2,187,306,1940.
    [37] Formhals A. US patent, 2,323,025,1943.
    [38] Formhals A. US patent, 2,349,950,1944.
    [39] Vonnegut B, Neubauer RL. J Colloid Sci,1952,7:616-622.
    [40] Drozin VD. The electrical dispersion of liquid as aerosol[J]. J Colllid Sci,1995,10:158-164.
    [41] Simons HL. Process and apparatus for producing patterned non-woven fabrics. US patent,3280229,1966.
    [42] Baumgarten PK. Electrostatic spining of acrylic microfiber. J Colloid Interface Sci, 1971,36:71-79.
    [43] Larrondo L, Manley RST. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci B-Polym Phys Ed, 1981, 19:909-920.
    [44] Larrondo L, Manley RST. Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci B-Polym Phys Ed, 1981, 19:921-932.
    [45] Larrondo L, Manley RST. Electrostatic fiber spinning from polymer melts.Ⅲ. Electrostatic deformation of a pendant drop of polymer melt. J Polym Sci B-Polym Phys Ed, 1981, 19:933-943.
    [46]芦长椿.纳米纤维技术新进展[J].纺织导报,2008,5:60-62,64.
    [47] Zhou H, Green TB, Joo YL. The thermal effects on electrospinning of polylactic acid melts. Polymer,2006,47(21):7497-7505.
    [48] Kim JS, Reneker H. Mechanical properties of composites using ultrafine electrospun fibers[J]. Polym Compos, 1999, 20(1):124-131.
    [49] Lee KH, Kim HY, Bong HJ, et a1. The change of bead morphology formed on electrospun polystyrene fibers[J].Polymer,2003,44(14):4029-4034.
    [50]郭翠爱,王洪.静电纺丝射流分裂过程的探讨.合成纤维工业,2005,28(6):21-23.
    [51] Jean D, Bruce DC, John F. Effect of the electrospinning process on polymer crystallization chain conformation in Nylon-6 and Nylon-12[J]. Macromolecules,2004,37(3):877-881.
    [52] Dzenis Y. Spinning continuous fibers for nanotechnology[J]. Science,2004,304:1917-1919.
    [53] Matthew JA, Wnek GE, Simpson DG, et al. Electrospinning of collagen nanofibers [J]. Biomacromolecules, 2003,3:232-238.
    [54] Carnell LS, Siochi EJ, Holloway NM, et al. Aligned mats from electrospun single fibers[J]. Macromolecules,2008,41(14):5345-5349.
    [55] Bornat A. Production of electrostatically spun products. US Patent 4689186,1987.
    [56] Katta P, Alessandro M, Ramsier RD, et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector[J]. Nano Lett,2004,4(11): 2215-2218.
    [57] Sundaray B, Subramanian V, Natarajan TS, et al. Electrospinning of continuous aligned polymer fibers [J]. Applied physics Letters. 2004,84(7):1222-1224.
    [58] Lee KH, Kim HY, Khil MS, et al. Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via elect rospinning[J]. Polymer,2003,44:1287-1294.
    [59]杨翠茹,贾志东,刘嘉楠等.静电纺丝系统中有序纤维收集的探讨[J].高电压技术,2009,35(1):192-196.
    [60] Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibers[J]. Nanotechnology, 2001,12(3): 384-390.
    [61]胡雯,黄争鸣,陈卢松.静电纺纳米纤维束的制备与表征.塑料,2008,37(5):4-7.
    [62] Li D, Wang YL, Xia YN. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Adv Mater,2004,16(4):361-366.
    [63] Li D, Ouyang G, McCann JT, et al. Collecting Electrospun Nanofibers with Patterned Electrodes [J]. Nano Letters,2005,5(5):913-916.
    [64]赵亚洲,李从举.静电纺丝法制备有序纳米纤维[J].北京服装学院学报,2008,28(4):35-38,40.
    [65] Dalton PD, Klee D, Moller M. Electrospining with dual collection rings[J]. Polymer, 2005,46(3): 611-614.
    [66] Smit E, Buttner U, Sanderson RD. Continous yarns from electrospun fibers [J]. Polymer,2005,46:2419-2423.
    [67] Teo WE, Gopal R, Ramaseshan R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication [J]. Polymer,2007,48:3400-3405.
    [68] Deitzel JM, Kleinmeyer JK, Hirvonen JK, et a1. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer,2001,42(19):8163-8l70.
    [69] Wu Y, Yu JY, He J, et al. Controlling stability of the electrospun fiber by magnetic field [J]. Chaos Soliton Fract,2007,32:5-7.
    [70] Yang DY, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater,2007,19(21):3702~3706
    [71] Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers[J]. Electrostat,1995,35:151-160.
    [72] Zheng MH, Zheng YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Compos Sci Technol,2003,63(11):2223-2253.
    [73]鲍扬波,王家俊,胡巧玲.聚合物静电纺及在组织工程支架中的应用[J].纺织学报,2008,29(2):124-128.
    [74] Sun Z, Zussman E, Yarin AL, et a1. Compound core-shell polymer nanofibers by co-electrospinnig[J]. Adv Mater,2003,15:1929-1932.
    [75] Reznik SN, Yarin AL, Zussman, E, et al. Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Phys Fluids,2006,18(6):062101-13.
    [76] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel[J]. Adv Mater,2004,16:l151-l170.
    [77] Song T, Zhang YZ, Zhou TJ. Fabrication of magnetic composite nanofibers of poly(e-caprolactone) with FePt nanoparticles by coaxial electrospinning[J]. Journal of Magnetism and Magnetic Materials,2006,303:286-289.
    [78]黄争鸣,杨爱昭.将源药包覆到聚已内酯超细纤维的芯部[J].高分子学报,2006(1):48-52.
    [79]何创龙,黄争鸣,韩晓建.壳-芯电纺超细纤维作为药物释放载体的研究[J].高技术通讯,2006:16(9):934-938.
    [80] Min BM, You Y, Kim JM, et al. Formation of nanostructured poly (lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr Polym,2004,57:285-292.
    [81] Huang L, Apkarian RP, Chaikof EL. High-resolution analysis of engineered type I collagen nanofibers by electron microscopy[J]. Scanning, 2001, 23: 372-375.
    [82] Zhong SP, Teo WE, Zhu X, et al. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning. Mat Sci Eng C,2007,27(2):262-266.
    [83] Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: effects on the behavior ofnormal human keratinocytes and early-stage wound healing. Biomaterials,2006,27(8):1452-1461.
    [84] Yusof NL, Wee A, Lim LY, et al. Flexible chitin film s as potential wound-dressing materials: wound model studies. J Biomed Mater Res A,2003,66(2):224-232.
    [85] Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng,2004,10(1-2):33-41.
    [86] Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials,2005,26(19):4139-4147.
    [87] Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, et al. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol Biosci,2006,6(1):70-77.
    [88] Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials,2005,26 (31):6176-6184.
    [89] Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials,2006,27(16):3115-3124.
    [90] Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol,2005,120(3):327-339.
    [91] Fujihara K, Kotaki M, Ramakrishn S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials,2005,26:4139-4147.
    [92] Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (epsilon-caprolactone) scaffolds. J Biomed Mater Res A,2003,67(4):1105-1114.
    [93] Matthews JA, Boland ED, Wnek GE, et al. Electrospinning of collagen typeⅡ: a feasibility study. J Bioact Com at Polym,2003,18:125-134.
    [94] Shin HJ, Lee CH, Cho IH, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed,2006,17(1-2):103-119.
    [95] Farand P, Garon A, Gerard E. Plante Structure of large arteries: Orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media[J]. Microvascular Research,2007,73:95-99.
    [96] Stitzel JD, Pawlowski KJ, Wnek GE, et al. Arterial smooth muscle cell proliferation on a novelbiomimicking, biodegradable vascular graft scaffold. J Biomater Appl,2001,16(1):22-33.
    [97] Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials,2005,26:3929-3939.
    [98] Venugopal J, Ma LL, Yong T, et al. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biology International,2005,29:861-867.
    [99] Boland ED, Matthews JA, Pawlowski KJ, et al. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci,2004,9:1422-1432.
    [100] Stitzel J, Liu J, Lee SJ, et al. Controlled fabrication of a biological vascular substitute. Biomaterials,2006,27(7):1088-1094.
    [101] Inoguchi H, Kwon IK, Inoue E, et al. Mechanical responses of a compliant electrospun poly(L-lactide-co-epsilon-caprolactone) small-diameter vascular graft. Biomaterials,2006,27(8):1470-1478.
    [102] Mo XM, Xu CY, Kotaki M, et al. Electrospun P(LLA -C L) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials,2004,25(10):1883-1890.
    [103] Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials,2006,27(5):724-734
    [104] Vaz CM, van Tuijl S, Bouten CV, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater,2005,1(5):575-582.
    [105] Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials,2004,25(5):877-886.
    [106] Yang F, Murugan, R. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials,2005,26(15):2603–2610.
    [107] Bini TB, Gao SJ, Tan TC, et al. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofiber tubes for peripheral nerve regeneration. Nanotechnology, 2004,15:1459-1464.
    [108] Chew SY, Mi RF, Hoke A, et al. Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Adv Funct Mater,2007,17(8):1288-1296.
    [109] Kenawy ER, Bowlin GL, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun polyethylene-co-vinylacetate), poly(lactic acid), and a blend. J ControlRelease, 2002, 81: 57-64.
    [110] Chu B, Hsiao BS, Hadjiargyrou M, et al. Cell delivery system comprising a fibrous matrix and cells. US Patent, 6,790,455, 2004.
    [111] Zong XH, Kim K, Fang DF. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002, 43: 4403-4412
    [112] Zeng J, Yang LX. Infuence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation [J]. J Control Release,2005,105:43-51.
    [113]景遐斌,曾敬,陈学思.阿霉素的超细纤维剂型及其制备方法[P].中国专利: 1543972,2004.
    [114] Verreck G, Chun I, Rosenblatt J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble[J]. Controlled Release,2003,92:349-360.
    [115] Kim K, Luu YK, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co- lycolide)-based electrospun nanofibrous scaffolds [J]. J Control Release,2004,98(1):47-56.
    [116] Bergshoef MM, Vansco GL. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fibers reinforcement[J]. Adv Mater, 1999,11(6):1362-1365.
    [117] Frenot A, Chronakis I. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Mterface Science,2003,8:64-75.
    [118] Kwoun SJ, Lec RM, et al. Proceedings of the Annual IEEE International Frequency Control Symposium, 2000: 52~57.
    [119]康卫民,程博闻,庄旭品等.静电纺纳米级纤维复合膜及其过滤性能.纺织学报,2006,27(10):6-8,13.
    [120] Kim SH, Nam YS, Lee TS, et al. Silk Fibroin Nanofiber. Electrospinning, Properties, and Structure[J]. Polymer Journal, 2003, 35: 185-190.
    [121] Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials,2003, 24:401-416.
    [122] Unger RE, Wolf M, Peters K, et al. Growth of human cells on a nonwoven silk fibroin net: a potential for use in tissue engineering. Biomaterials,2004,25(6):1069–1075.
    [123] Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules,2004,5(3):718–726.
    [124] Kim H, Kim H, Matsumoto A, et al. Processing windows for forming silk fibroin biomaterials into a 3D porous matrix. Aust J Chem,2005,58:716–720.
    [125] Rammensee S, Huemmerich D, Hermanson KD, et al. Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A,2006:82261–82264.
    [126] Jin HJ, Park J, Valluzzi R, et al. Biomaterial films of B. mori silk fibroin with poly(ethylene oxide). Biomacromolecules,2004,5(3):711–717.
    [127] Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci,2007,32:991-1007.
    [128] Zarkoob S, Ebya RK, Reneker DH, et al. Structure and morphology of electrospun silk nanofibers[J]. Polymer, 2004, 45: 3973–3977.
    [129] Ohgo K, Zhao CH, Kobayashi M, et al. Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method[J]. Polymer, 2003, 44: 841–846.
    [130]徐梅,左保齐.再生蓖麻蚕丝素蛋白静电纺丝的结构研究.丝绸,2008,3:16-18,39.
    [131] Jeong L, Lee KY, Liu JW, et al. Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor[J]. Int J Biol Macromol, 2006,38:140–144.
    [132] Park KE, Jung SY, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers.Int J Biological Macromolecules,2006, 38(3-5): 165-173.
    [133] Yoo CR, Yeo IS, Park KE, et al. Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes. Int J Biological Macromolecules,2008,42(4):324- 334.
    [134] Yeo IS, Oh JE, Jeong L, et al. Collagen-based biomimetic nanofibrous scaffolds: Preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules,2008,9(4):1106-1116.
    [135] Sukigara S, Gandhi M, Ayutsede J, et al. Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties[J]. Polymer, 2003, 44: 5721–5727.
    [136] Sukigara S, Gandhi M, Ayutsede J, et al. Regeneration of Bombyx mori silk by electrospinning—Part 2. Process optimization and empirical modeling using response surface methodology[J]. Polymer, 2004, 45: 3701–3708.
    [137] Ayutsede J, Gandhi M, Sukigara S, et al. Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat[J]. Polymer, 2005, 46: 1625–1634.
    [138] Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules,2006, 7(1):208-214.
    [139] Pan ZJ, Qiu XW, Li CP, et al. Electrospun Regenerated Silk Fibroin Nanofibers : the Fiber Diameter Distributions and Mechanical Properties[J]. Journal of Materials Science & Engineering, 2006, 24: 1673-2812.
    [140] Park WH, Jeong L, Yoo DI, et al. Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer,2004,45:7151-7157.
    [141]常丽娜,张幼珠,张晓东.静电纺丝工艺参数对丝素/壳聚糖纳米纤维的形貌及直径的影响.合成纤维,2006,2:14-17.
    [142]王曙东,吴佳林,张幼珠.丝素/胶原蛋白共混纳米纤维的结构分析.丝绸,2007,7:22-24.
    [143]鲍韡韡,王曙东,张幼珠等.静电纺再生丝素/明胶纳米纤维的结构与性能.纺织学报,2008,29(3):1-4,8.
    [144]王曙东,张幼珠,王红卫等.静电纺丝素-明胶管状支架的结构与性能.丝绸,2009,7:18-20.
    [145] Silva SS, Maniglio D, Motta A, et al. Genipin-modified silk-fibroin nanometric nets. Macromol Biosci,2008,8:766-774.
    [146] Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J]. Biomaterials, 2004, 25: 1289–1297.
    [147] Alessandrino A, Marelli B, Arosio, et al. Electrospun Silk Fibroin Mats for Tissue Engineering[J]. Engineering in life sciences,2008,8(3):219-225.
    [148] Jin HJ, Fridrikh SV, Rutledge GC, et al. Electrospinning Bombyx mori Silk With Poly(ethyleneoxide)[J]. Biomacromolecules, 2002, 3: 1233-1239.
    [149]杭怡春,张耀鹏,邵慧丽等.再生丝素/丝胶共混蛋白水溶液的静电纺丝[J]. 2010,41(1):108-111.
    [150] Wang H, Shao HL, Hu XC. Structure of Silk Fibroin Fibers Made by an Electrospinning Process from a Silk Fibroin Aqueous Solution[J]. J Appl Polym Sci, 2006, 101: 961–968.
    [151] Chen C, Cao CB, Ma XL, et al. Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method[J]. Polymer, 2006, 47: 6322-6327.
    [152] Zhou J, Cao CB, Ma XL. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Int J Biolog Macromol,2009,45: 504–510.
    [153] Yu JH, Fridrikh SV, Rutledge GC. Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater,2004,16(17):1562-1566.
    [154] Wang M, Yu JH, Kaplan DL, et al. Production of Submicron Diameter Silk Fibers under Benign Processing Conditions by Two-Fluid Electrospinning[J]. Macromolecules, 2006, 39: 1102-1107.
    [155] Zhu JX, Shao HL, Hu XC. Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH[J]. International Journal of Biological Macromolecules, 2007, 41: 469–474.
    [156] Cao H, Chen X, Huang L, et al. Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution[J]. Mater Sci Eng C, 2009, 29(7):2270-2274.
    [157] Jin HJ, Chen JS, Kapageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats[J]. Biomaterials, 2004, 25(6): 1039-1047.
    [158] Zhang XH, Baughman CB, Kaplan DL, et al. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth[J]. Biomaterials, 2008, 29: 2217-2227.
    [159] Soffer L, Wang XY, Zhang XH, et al. Silk-Based Electrospun Tubular Scaffolds for Tissue-Engineered Vascular Grafts[J]. Journal of Biomaterials Science Polymer Edition, 2008, 19(5): 653–664.
    [160] Lundborg G. A 25-year perspective of peripheral nerve surgery envolvingneuroscientific concepts and clinical significance. J Hand Surg Am,25(3):391-414.
    [161] Nakamura T, Inada Y, Fukuda S, et al. Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen(PGA-collagen) tube[J]. Brain Res, 2004,1027(1-2):18-29.
    [162] Williams LR. Rat aorta isografts possess nerve regeneration-promoting properties in silicone Y chambers. Exp Neurol.1987,97:555-563.
    [163] Abrahamsen B, Zhao J, Asante CO, et al. The cell and molecular basis of mechanical, cold, and inflammatory pain[J]. Science, 2008, 321(5889):702-705.
    [164] Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review[J]. Neurosurg Focus, 2004, 16(5):1-7.
    [165] Brenner MJ, Moradzadeh A, Myckatyn TM, et al. Role of timing in assessment of nerve regeneration[J]. Microsurgery, 2008, 28(4):265-272.
    [166]潘华,郭树忠.复合组织异体移植后功能恢复的研究进展[J].中国美容医学,2009,18(1):117-120.
    [167] Liu HM. Biology and pathology of nerve growth [M]. New York: Academic press Inc,1981:1-5.
    [168] Naff NJ, Ecklund JM. The History of Peripheral Nerve Surgery Techniques. Neurosurg Clin N Am,2001,12(1), 197- 209.
    [169] Daoutis NK, Gerostathopoulos NE, Efststhopoulos DG, et al. Microsurgical reconstruction of large nerve defects using autologous nerve grafts. Micorsurgery,1994,15(7):502-505.
    [170] Zachar V, Hulin IJ, Fedeles J. Free nerve transplants in the reconstruction of secondary defects of the Peripheral nerve of the hand. Bratisl Lek List,2000,101(4):226-228.
    [171] Atchabahian A, Genden EM, Mackinnon SE, et al. Regeneration through long nerve grafts in the swine model. Microsurgery,1998,18(6):379-382.
    [172] Schwabegger AH, Hussl H. Fetal spinal-cord allograft as a substitute for peripheral-nerve reconstruction: a preliminary experimental and histologic study. J Reconstr Microsurg, 2001,17(1):45-50.
    [173]田立杰,战杰,王淑华等.胎儿神经移植修复感觉神经缺损.中国修复重建外科杂志,1998,12(3):138-140.
    [174] Fansa H, Schneider W, Wolf O, et al. Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts. Transplantation,2002,74(3):381-387.
    [175]朱国臣,娄卫华,孙永强等.同种异体神经修复面神经缺损的实验研究.中国临床康复,2004;8(11):2068-2069.
    [176] Borschel GH, Kis KF, Kuson WMJr, et al. Mechanical properties of acellular peripheral nerve. J Surg Res,2003,14(2):133-139.
    [177] Sondell M, Lundborg G, Kanje M. Regeneration of the ratsciatic nerve into allografts made scellular through chemical extraction. Brain Res,1998,795(1-2):44-54.
    [178]刘洪飞,胡敏,刘洪臣等.去细胞同种异体移植面神经材料的制备[J].口腔医学研究,2005,21(1):8-11.
    [179] Hu J, Zhu QT, Liu XL, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol, 2007,204(2):658-666.
    [180] Gluck T. Ueber Neuroplastik auf dem Wege der Transplantation. Archiv für Klinische Chirurgie,1880,25:606–616.
    [181] Gluck T. Ueber Transplantation, Regeneration und entzu¨ndliche Neubildung. Berliner Klinische Wochenschrift, 1881a,18: 554–557.)
    [182] Gluck T. Ueber Transplantation, Regeneration und entzu¨ndliche Neubildung. Archiv fu¨r Klinische Chirurgie,1881b,26: 896–915.
    [183] Vanlair C. De la re′ge′ne′ration des nerfs pe′riphe′riques parleproce′de′de la suture tubulaire. Archives de Biologie,1882a,3:379–496.
    [184] Vanlair C. De la ne′vrotisation du cartilage osseux dans la suture tubulaire des nerfs. Archives de Physiologie Normale et Pathologique,1882b,10:595–614.
    [185] Neuber G. Ein antiseptischer Dauerverband nach gru¨ndlicher Blutstillung. Archiv fu¨r Klinische Chirurgie, 187924: 314–330.
    [186] Weiss P. The technology of nerve regeneration: sutureless tubulation and related methods of repair[J]. Neurosury,1944,1:400.
    [187] Seckel BR. Enhancement of peripheral nerve regeneration. Muscle Nerve,1990,13(9):785-800.
    [188] Chiu DTW, Strauch B. A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less [J]. Plast Reconstr Surg,1990,86(5):928-34.
    [189] Tang JB, Gu YQ, Song YS. Repair of digital nerve defect with autogenous vein graft during flexor tendon surgery in zone 2. J Hand Surg,1993 Aug,18(4):449-53.
    [190] Meek MF, Coert JH. Clinical use of nerve conduits in peripheral nerve repair: review of literature. J Reconstr Microsurg,2002,18:97-109.
    [191]卫晓恩,韩西城.多种移植体修复周围神经的比较实验研究[J].中国修复重建外科杂志,1996,10:12-15.
    [192] Jkema-Paassen J, Jansen K, Gramsbergen A, et al. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials,2004,25(9):1583-1592.
    [193] Battiston B, Tos P, Cushway TR, et al. Nerve repair by means of vein filled with muscle graftsⅠ.Clinical results[J]. Microsurgery,2000,20(1):32-36.
    [194] Brandt J, Dahlin LB, Kanje M, et al. Functional recovery in a tendon autograft used to bridge a Peripheral nerve defect. Scand J Plast Surg Hand Surg,2002,36(1):2-8.
    [195]张琪,顾晓明,俞光岩等.复合许旺细胞的羊膜衍生物膜修复神经缺损的动物实验.中华口腔医学杂志,2006,41 (2):98-101.
    [196] Merle M, Dellon AL, Campbell JN, et al. Complications from silicone polymer entubulation of nerves[J]. Microsurgery,1989,10:130-133.
    [197] Lundborg G, Danielsen N. Ulnar nerve repair by the silicone chamber technique: case report[J]. Scand J Plast Reconstr Hand Surg,1991,25:79-82.
    [198] Braga SJ. The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm[J]. J Hand Surg, 1999,24:703-706.
    [199] Chen YS, Hsieh CL, Tsai C C, et al. Increased success of Peripheral nerve regeneration using silicone rubber chambers filled with collagen ,laminin and fibronectin. Biomaterials,2000 ,21:1541-1547.
    [200] Kosaka M. Enhancement of rat peripheral-nerve regeneration through artery-including silicone tubing, Exp Neurol, 1990,107(1):69-77.
    [201] Gibson KL, Paniloff JK. Comparison of sciatic nerve regeneration through silicone tube and nerve allograft[J]. microsurgery, 1989,10:126-129.
    [202] Pogrel MA, Mcdonald AR, Kaban LB. Gore-Tex tubing as a conduit for repair of lingual and inferior alveolar nerve continuity defects: a preliminary report[J]. J Orol Maxillofac Surg, 1998,56:319-321.
    [203] Luciano RM, de Carvalho Iavaglia CA, de Rerende Duek EA. Preparation of bioabsorbable nerve guide tube[J]. Artif Organs, 2000,24(3):206-208.
    [204] Hoppen HJ, Leenslag JW, Pennings AJ, et al. Two-plybiodegradable nerve guide: basic aspects of design, construction and biological performance. Biomaterials,1990,11:286-290.
    [205] Mackinnon SE, Dellon AL. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube[J]. Plast Reconstr Surg,1990,85: 419-424.
    [206] Weber RA, Breidenbach WC, Brown RE, et al. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans[J]. Plast Reconstr Surg,2000,106:1036-1045.
    [207] Yannas IV, Hill BJ.Selection of biomaterials for peripheral nerve regeneration using data from the nerve chamber model[J]. Biomaterials,2004,25(9):1593-1600.
    [208] Weber RA, Breidenbach WC, Brown RE, et al. A randomized perspective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg,2000,106:1036–1045.
    [209] Navissano M, Malan F, Carnino R, et al. Neurotube for facial nerve repair[J].Microsurgery, 2005,25(4):268-271.
    [210] Den Dunnen WF, Van der Lei B, Robinson PH, et a. Biological performance of a degradable poly (lacticacid-ε-caprolac-tone) nerve guide: influence of tube dimensions[J]. J Biomed Mater Res, 1995,29(6):757-766.
    [211] Freier T, Montenegro R, Shan Koh H, et a1. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials,2005,26:4624-4632.
    [212]匡勇,侯春林,苟三怀等.几丁质及几丁糖与雪旺氏细胞相容性的实验研究.中国修复重建外科杂志.1998,12(2):90-93.
    [213]苟三怀,侯春林,王东荣等.几丁质桥接周围神经缺损的实验研究及临床应用[J].中华骨科杂志,1996,16(3):148-151.
    [214] Sieminski AL, Gooch KJ. Biomaterial-microvaseulature interactions. Biomaterials, 2000,21:2233-2241.
    [215] Ahmed MR, Vairamuthu S, Shafluzama M, et al. microwave wave irradiated collagen tubes as a better matrix for peripheral nerve regeneration. Brain Res,2005,1046(1-2): 55- 67.
    [216] Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterias, 2003,24(2):357-365.
    [217]陆艳,迟放鲁,赵霞等.丝素导管修复面神经缺损的实验研究.中华耳鼻咽喉头颈外科杂志,2006,41(8):603-606.
    [218] Yang YM, Chen XM, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials,2007,28:1643-1652.
    [219]吴坚,严小莉,赵亚红等.人工神经移植物丝素蛋白导管的生物相容性的初步研究.组织工程与重建外科杂志.2009,5(2):86-88.
    [220]谭学新,马丽,李波等.丝素-壳聚糖神经导管修复兔面神经缺损的神经电生理变化.中国医科大学学报.2009,38(4):253-255.
    [221] Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature[J]. J Reconstr Microsurg,2002,18:97-109.
    [1] Ha SW, Tonelli AE, Hudson SM. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 2005,6:1722-1731.
    [2] Tsukada M, Gotoh Y, Nagura M, et al. Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions[J]. J Polym Sci Part B:Polym Phys,1994,32(5), 961-968.
    [3] Kweon HY, Park YH. Antheraea pernyi silk fibroin films treated with methanol solution. J Appl Polym Sci,1999,73:2887-2894.
    [4] Li MZ, Tao W, Kuga S, Nishiyama Y. Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment. Polym Adv Technol,2003,14: 694-698.
    [5] Ma L, Gao C, Mao ZW. Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials,2004,25:2997-3004.
    [6] Park SN, Lee HJ, Lee KH, et al. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials,2003,24:1631-1641.
    [7] Lu QJ, Ganesan K, SImIonescu DT, et al. Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials,2004,25:5227-5237.
    [8] Wang XH, Li DP, Wang WJ, et al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 2003,24:3213-3220.
    [9] Powell HM, Boyce ST. EDC cross-linking improves skin substitute strength and stability. Biomaterials 2006,27:5821-5827.
    [10] Choi YS, Hong SR, Lee YM, et al. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res 1999,48:631-639.
    [11] Sukigara S, Gandhi M, Ayutsede J, et al.Regeneration of Bombyx mori silk by electrospinning. Part 2.Process optimization and empirical modeling using response surface methodology. Polymer 2004,45(11):3701-3708.
    [12] Kim SH, Nam YS, Lee TS, et al. Silk fibroin nanofiber. Electrospinning, properties, and structure. Polymer J 2003,35(2): 185-190.
    [13] Jeong L, Lee KY, Liu JW, et al. Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor. Int J Biological Macromolecules 2006,38(2): 140-144.
    [14] Yutaka K, Atsushi N, Noriaki M, et al. Structure for electro-spun silk fibroin nanofibers. J AppliedPolymer Sci 2008,107(6): 3681-3684.
    [15] Park KE, Jung SY, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biological Macromolecules 2006,38(3-5): 165-173.
    [16] Min B M, Lee G, Kim S H, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004,25:1289–1297.
    [17] Min B M, Jeong L, Lee K Y and Park W H. Regenerated Silk Fibroin Nanofibers: Water Vapor-Induced Structural Changes and Their Effects on the Behavior of Normal Human Cells. Macromol Biosci 2006,6:285–292.
    [18]顾书英,任杰等.聚乳酸的静电纺丝行为及其纤维结构研究[J].材料导报,2005,19:383-385.
    [19] Demir MM, Yilgor I, Yilgor E, et a1. Electrospinning of polyurethane fibers. Polymer,2002, 43:3303-3309.
    [20]冯淑芹,付中玉,李从举.溶剂对静电纺PA6纤维可纺性的影响[J].合成纤维工业.2007, 30(1):8-10.
    [21]周文,陈新,邵正中.红外和拉曼光谱用于对丝蛋白构象的研究[J].化学进展,2006,18(11):1 514-1522.
    [22] Lenormant, H. Infrared spectra and structure of the proteins of the silk glands[J]. Trans Faraday Soc,1956,52:549-553.
    [23] Liang CX, Hirabayashi K. Improvements of the Physical Properties of Fibrrin Membrances with Sodium Alginate. J Appl Polym sci. 1992,45:1937-1943.
    [24] Qiang Lv, Cao CB, Zhang Y. The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres. J Mater Sci,2004,15:l193-1197.
    [25] Hidetoshi Teramoto, Mitsuhiro Miyazawa. Analysis of Structural Properties and Formation of Sericin Fiber by Infrared Spectroscopy. J Insect Biotechnol Sericology,2003(3): 157-162.
    [26] Um IC, Kweon HY, Hudson S. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol,2001,29:91-97.
    [27]刘明,闵思佳,朱良均.冷冻干燥对丝素蛋白凝胶结构的影响[J].蚕业科学,2007;33(2):246-249..
    [28]时有明,刘刚,周湘萍.基于曲线拟合的形态相似鹅膏菌的傅里叶变换红外光谱研究[J].分析化学研究简报,2008;36(8):1105-1108.
    [29]秦身钧,王建滨,姚宏伟.计算机辅助解析FTIR定量研究蛋白质构象的应用进展[J].河北师范大学学报(自然科学版),2006,30(3):331-335.
    [30]刘媛,谢孟峡,康娟.三七总皂甙对牛血清蛋白溶液构象的影响[J].化学学报,2003,61(8):1305-1310.
    [31] Zhou SB, Peng HS, Yu XJ, et al. Preparation and Characterization of a Novel Electrospun Spider Silk Fibroin/Poly(D,L-lactide) Composite Fiber. J Phys Chem B, 2008,112(36):11209-11216.
    [32] Ki CS, Lee KH, Baek DH, et al. Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid Mixture Solvent System. J Appl Polym Sci,2007,105:1605-1610.
    [33] Weidinger A, Hermans PH. On the determination of the crystalline fraction of isotactic polypropylene from x-ray diffraction. Makromol Chem,1961,50:98-115.
    [34]程友刚,林红,陈宇岳.桑蚕丝纤维经纳米ZnO处理后的聚集态结构研究[J].江苏纺织,2008,3:43-44,52.
    [35]吴佳林.静电纺分层构建PLA/丝素—明胶复合纤维膜的研究(D).苏州大学,2008.
    [36] Gandhi M, Yang H, Shor L, Ko F. Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx mori silk and carbon nanotubes[J]. Polymer,2009,50:1918-1924.
    [37] Magoshi J, Magoshi Y, Nakamura S, Kasai N, Kakudo M. J Poly Sci: Polym Phys Ed 1977,15:1675-1683.
    [38] Tsukada M, Freddi G, Kasai N. Physical and chemical properties of tussah silk fibroin film. J Polym Sci Part B Polym Phys 1994,32:1175-1182.
    [39]陈新,周丽,邵正中等.时间分辨红外光谱对丝蛋白膜构象转变动力学的研究[J].化学学报,2003,61(4): 625-629.
    [40] Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers,1986,25,469-487.
    [41] Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 1995,30,95-120.
    [42]徐俊良译.惨死的形成和结构[M].北京:农业出版社,1990.
    [43]闻荻江,王辉,朱新生等.丝素蛋白的构象与结晶性.纺织学报,2005,26(1):110-112. [44] Zuo BQ, Liu LG, Wu ZY. Effect on properties of regenerated silk fibroin fiber coagulated with aqueous methanol/ethanol. J Appl Polym Sci,2007,106:53-59.
    [45]陶慰孙,李惟,姜涌明主编.蛋白质分子基础[M].高等教育出版社,1995,319.
    [46] Freddi G, Gotoh Y, Tsutsui T, et al. Chemical structure and physical properties of antheraea assama silk. J Appl Polym Sci 1994,53:775-781.
    [47] Canetti M, Seves A, Secundo F, et al. CD and small-angle X-ray-scattering of silk fibroin in solution. Biopdymer,1989,28(9):1613-1624.
    [48] Inoue S, Magoshi J, Tanaka T, et al. Atomic force microscopy: Bombyx mori silk fibroin molecules and their higher order structure. J Polym Sci Part B Polym Phys 2000,38:1436-1439.
    [49]陶慰孙,李惟,姜涌明主编.蛋白质分子基础[M].高等教育出版社,1995,319.
    [50]董纪震,王鸿烈,王庆瑞等.合成纤维生产工艺学[M] .北京:纺织工业出版社,1991.
    [51]穆光照,陈敏为,欧阳仁耀.实用溶剂手册[M].上海:上海科学技术出版社,1990.
    [52] Rafat M, Li FF, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagenchitosan hydrogels for corneal tissue engineering. Biomaterials 2008,29:3960-3972.
    [53] Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopham 2004,57:19-34.
    [54] Asakura T, Kuzuhara A, Tabeta R, et al. Conformation characterization of Bombyx mori silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules 1985,18,1841-1845.
    [55] Zhu JX, Zhang YP, Shao HL, et al. Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration. Polymer 2008, 49: 2880-2885.
    [1] Lysaght MJ, Reyes J. The Growth of Tissue Engineering [J]. Tissue Eng,2001,7(5): 485-493
    [2] Lysaght MJ. Product Development in Tissue Engineering [J]. Tissue Eng,1995,1(2):221-228.
    [3] Gelain F. Novel opportunities and challenges offered by nanobiomaterials in tissue engineering [J]. Int J Nanomed,2008,3(4):415-424.
    [4] RG辛克莱, JR普雷斯顿.可生物降解的组合物及其制备方法[P].CN:1159462,1997.
    [5] J洛克斯, W波梅兰茨, H施米特.生物可降解的聚合物混合物[P].CN:1181098,1998.
    [6]千田公,味冈正伸,田法正.生物可吸收聚合物及其制备方法[P].CN:1159456,1997.
    [7]汉纳·劳里·索米内恩.生物降解膜及其制备方法[P].CN:1051188,1991.
    [8]小原仁实,泽诚治,川本达司.聚乳酸的制备方法[P].CN:1108669,1995.
    [9] Kweon HY, Um IC, Park YH. Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol. Polymer,2000;41:7361–7367.
    [10] Minoura N, Aiba S, Higuchi M, et al. Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophy Res Commun 1995;208:511–516.
    [11] Kirimura J. Studies on amino acid composition and chemical structure of silk protein by microbiological determination. Sanshi Shikenjo Houkoku,1962,17:447-522.
    [12] Hirabayashi K, Kondo Y, Go Y. Studies on t he fine structure of silk fibroin. Sen-I Gakkaishi, 1967,23(5):199- 207.
    [13] Freddi G, Monti P, Nagura M. Structure and molecular conformation of tussah silk fibroin films: effect of heat treatment. Polym Sci B:Polym Phy,1997,35:841-847.
    [14] Tsukada M, Freddi G, Gotoh Y, et al. Physical and Chemical Properties of Tussah Silk Fibroin Films. J Polym Sci B: Polym Phys,1994,32:1407-1412.
    [15] Kweon HY, Park YH. Structural and Conformational Changes of Regenerated Antheraea pernyi Silk Fibroin Films Treated with Methanol Solution. J Appl Polym Sci,1999,73:2887-2894.
    [16] Kweon HY, Woo SO, Park YH. Effect of Heat Treatment on the Structural and Conformational Changes of Regenerated Antheraea pernyi Silk Fibroin Films. J Appl Polym Sci,2000,81: 2271-2276.
    [17] Tao W, Li M, Zhao CX. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution[J]. Int J Biol Macromol,2007,40(5):472-478.
    [18] Zuo BQ, Liu LG, Zhang F. Structure and properties of regenerated Antheraea pernyi silk fibroin filaments. J Appl Polym Sci,2009,113:2160-2165.
    [19]房乾,陈登龙,姚清华等.柞蚕丝素蛋白复合材料的制备及其构象与力学性能[J].材料科学与工程学报,2008,26(5):775-778,823.
    [20]Pierschbacher MD,Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specifity in cell adhesion. Nature,1984, 309:30-33.
    [21]Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Pro Natl Acad Sci USA,1984, 81:5985-5988.
    [22] Sofia S, McCarthy MB, Gronowic G, et al. Functionalized silk Based biomaterials for bone formation. Biomed Mater Res,2001,(54):139-148.
    [23]纪平雄,陈芳艳,周艳华等.盐类对丝素溶解效应的研究[J].广东蚕业,2000,34(3):54-57.
    [24]贾延华,秦锡海.柞蚕丝素肽生产技术[J].辽宁丝绸,2001,3:33-35.
    [25]常德城,左保齐,杨迎敏等.柞蚕丝蛋白粉的制备及性能测试分析[J].丝绸,2002,8:40-43.
    [26]冀瑞琴,王学英,石生林等.磷酸催化水解柞蚕丝制取复合氨基酸的研究[J].沈阳农业大学学报,2002,3:200-201.
    [27]李岩亮,刘颖,贾延华.硫酸水解制备柞蚕丝素肽的研究[J].辽宁丝绸,2004,(4):8-9.
    [28]刘爱莲,荒井三雄,平林洁.盐酸水解法进行柞蚕丝素粉末的制作[J].日蚕杂,1996,65(5):392-394.
    [29]唐树戈,李宝华,夏泉.应用微波技术水解柞蚕丝的研究[J].沈阳农业大学学报,2004,35(3):280-282.
    [30] Magoshi J, Magoshi Y, Nakamura S. Physical properties and structure of silk.Ⅲ. the glass transition and conformational changes of tussah silk fibroin[J]. Appl Polym Sci,1997,21:2405-2407.
    [31] Tsukada M. Effect of the drying rate on the strutureof tussah silk(antheraea pernyi) fibroin[J]. Polym Sci Part B:Polym Phys,1986,(24):457-460.
    [32] Tsukada M, Freddi G, Gotoh Y, Kasai N. Physical and Chemical Properties of Tussah Silk Fibroin Films. J. Polym. Sci.B: Polym. Phys.,1994,32:1407–1412.
    [33] Kweon HY, Park YH. J. Dissolution and characterization of regenerated Antheraea pernyi silk fibroin. J Appl Polym Sci,2001; 82(3):750–758.
    [34] Kweon HY, Um IC, Park YH. Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polymer,2001,6651-6656.
    [35] Woo SO,Kweon HY, Um IC, et al. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. Korean J Seric Sci,2000,42:114-119.
    [36] Tsukada M. Structure of enzyme-resistant fraction of tussah silk fibroin. J Polym Sci Part B: Polym Phys 1988, 26, 949-952.
    [37] Li MZ, Tao W, Lu SZ, et al. Porous 3-D scaffolds from regenerated Antheraea pernyi silk fibroin[J]. Polym Adv Technol,2008,19:207-212.
    [38] Li MZ, Tao W, Kuga S, Nishiyama Y. Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment. Polym Adv Technol,2003;14: 694-698.
    [39] Li MZ,Tao W, Lu SZ, et.al.Compliant film of regenerated antheraea pernyi silk fibroin by chemical crosslinking[J]. Int J Biol Macrom, 2003, (32):159-163.
    [40] Houseman BT, Mrksich M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion[J]. Biomaterials,2001,22(9):943-955.
    [41]栾希英,段巧艳,段祥等.再生柞蚕丝素蛋白对人骨髓间充质干细胞体外扩增的支持作用[J].中国生物医学工程学报,2007,26(2):276-281.
    [42]Kristensen, B.W., J. Noraberg, P. Thiebaud, M. Koudelka-Hep, and J. Zimmer. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures. Brain Res, 2001, 896(1-2): 1-17.
    [43] Zhang, H., L. Vutskits, M.S. Pepper, and J.Z. Kiss. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol, 2003, 163(6): 1375-84.
    [44] Freddi G, Gotoh Y, Tsutsui T, et al. Chemical structure and physical properties of antheraea assama silk. J Appl Polym Sci 1994; 53:775-781.
    [45]周文,陈新,邵正中.红外和拉曼光谱用于对丝蛋白构象的研究[J].化学进展,2006,18(11):1514-1522.
    [46] Tsukada M, Freddi G, Kasai N. Physical properties and phase separation structure of Antheraea pernyi/Bombyx mori silk fibroin blend films. J Polym Sci Part B Polym Phys 1994;32:1175-1182.
    [47]吴徵宇,金宗明,徐立群.丝素的结晶度和结构变化的研究[J].蚕业科学,1993,19(2):105-110.
    [48] Tsukada M, Freddi G, Kasai N. Physical properties and phase separation structure of Antheraea pernyi/Bombyx mori silk fibroin blend films, Journal of polymer science Part B: polymer physics, 1994, 32, 1175-1182.
    [49] Zhu JX, Zhang YP, Shao HL, et al. Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration. Polymer,2008; 49: 2880-2885.
    [50] Inoue S, Magoshi J, Tanaka T,et al. Atomic force microscopy: Bombyx mori silk fibroinmolecules and their higher order structure. J Polym Sci Part B: Polym Phys 2000;38:1436-1439.
    [51]吴徵宇,金宗明,徐力群.丝素的结晶度和结构变化的研究[J].蚕业科学,1993,19:105-110.
    [52]陶伟,李明忠,卢神州等.再生柞蚕丝素蛋白膜的制备及其结构研究[J].东华大学学报,2005, 31(6):23-26.
    [53]王世华,杨红征等编译.差热分析DTA技术及其应用指导[M].北京师范大学出版社, 1981.
    [54] Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Polymer 2006; 47:2911.
    [55]封云芳,冯香琴,徐辉.桑蚕茧的热性能研究,浙江丝绸工学院学报,1986,3(3):1-4.
    [56] Fawcett, J.W., R.A. Asher. The glial scar and central nervous system repair. Brain Res Bull, 1999, 49: 377-91.
    [57] Fitch, M.T., and J. Silver. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol, 2008, 209: 294-301.
    [1] Yang YM, Chen XM, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials,2007,28:1643-1652.
    [2] Chen XM, Yang YM, Wu J, et al. Biocompatibility studies of silk fibroin-based artificial nerve grafts in vitro and in vivo. Prog Natur Sci,2007,17(9):1029-1034.
    [3] Yang YM, Wu J, Ding F, et al. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials,2007,28:5526-5535.
    [4]陆艳,迟放鲁,赵霞等.丝素导管修复面神经缺损的实验研究.中华耳鼻咽喉头颈外科杂志,2006,41(8):603-606.
    [5] Borys B,Sabine F,Charles J. K. et al. Functionality of endothelial cells on silk fibroin nets: Comparative study of micro- and nanometric fibre size . Biomaterials.2008,29(5):561-572.
    [6] Ki CS, Park SY, Kim HJ, et al. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration[J]. Biotechnol Lett,2008;30:405–410.
    [7] Yang F, Murugan R. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials,2005,26(15):2603–2610.
    [8] Gupta D, Venugopal J, Prabhakaran MP, et al. Aligned and random nanofibrous substrate for the in vitro culture of Schwann Cells for neural tissue engineering[J]. Acta Biomaterialia, 2009,5(7):2560-2569.
    [9] Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation[J]. Biomaterials,2008;29:653-661.
    [10] Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly (D,L-lactic-co-glycolic acid) meshes[J]. Biomaterials,2006:27:5681-5688.
    [11] Galli R, Gritti A, Bonfanti L, et al. Neural stem cells: an overview[J]. Circ Res,2003,92(6): 598-608.
    [12] Marshall CA, Suzuki SO, Goldman JE. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia,2003,43(1):52-61.
    [13] Galve-Roperh I, Aguado T, Palazuelos J et al. The endocannabinoid system and neurogenesis inhealth and disease. Neuroscientist,2007, 13: 109-14.
    [14] Murakami M, Ide C., and Kanaya H.. Regeneration in the rat optic nerve after cold injury. J Neurosurg, 1989, 71: 254-65.
    [15] Phillips, JB, Bunting SC, Hall SM, et al. Brown. Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng, 2005, 11: 1611-1617.
    [16] Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng, 2003, 5: 293-347.
    [17] Woerly S, Plant GW, Harvey AR. Neural tissue engineering: from polymer to biohybrid organs. Biomaterials, 1996, 17: 301-310.
    [18] Young TH, Hung CH. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates. Biomaterials, 2005, 26: 4291-4299.
    [19] Anil Kumar PR, Varma HK, Kumary TV. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering. Biomed Mater, 2007, 2: 48-54.
    [20] Kim CH, Khil MS, Kim HY, et al. An improved hydrophilicity via electrospinning for enhanced cellattachment and proliferation. J Biomed Mater Res B Appl Biomater,2006,78(2):283-290.
    [21] Bhattarai SR, Bhattarai N, Viswanathamurthi P, et al. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J Biomed Mater Res A,2006,78(2):247-257.
    [22] Min BM, You Y, Kim JM, et al. Formation of nanostructured poly (lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr Polym,2004,57:285-292.
    [23] Park KE, Kang HK, Lee SJ, et al. Biomimetic nanofibrous scaffolds: preparation and characterization of PGA /chitin blend nanofibers. Biomacromolecules,2006,7(2):635-643.
    [24] Duan B, Yan XY, Zhu Y, etal. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur Polym J,2006,42:2013-2022.
    [25] He W, Ma Z, Yong T, et al. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005,26(36):7606-7615.
    [26] Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature,1984,309:30-33.
    [27] Minoura N, Aiba S, Gotoh Y, et al. Attachment and growth of fibroblast cells on silk fibroin.Biochem Biophys Res Commun, 1995,208(2):511-516.
    [28] Freddi G, Gotoh Y, Tsutsui T, et al. Chemical structure and physical properties of Antheraea assama silk. J Appl Polym Sci,1994,52:775-781.
    [29] Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials,2006,27(4):596-606.
    [30] Christopherson GT, Song HJ, Mao HQ. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials,2009,30(4):556-564.
    [31] Keun Kwon, Satoru Kidoaki and Takehisa Matsuda. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials,2005,26(18):3929-3939.
    [32] Chen M, Patra PK, Warner SB, et al. Optimization of electrospinning process parameters for tissue engineering scaffolds. Biophys Rev Lett, 2006,1(2):189-214.
    [33] Noh HK, Lee SW, Kim JM, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to norm al human keratinocytes and fibroblasts. Biom aterials,2006;27(21):3934-3944.
    [34] Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Orthop Clin North Am,2000,31:485-498.
    [35] Bianco P, Robery PG. Stem cells in tissue engineering. Nature,2001,414:118-121.
    [36] Dubey N, Letourneau PC, Tranquillo RT. Guided neurite elongation and schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol ,1999 ,158 :338-350.
    [37]王光林,杨志明,解慧琪等.周围神经组织工程材料的体外预构研究.中国修复重建外科杂志,2000,14:110-114.
    [38]沈尊理, Alfred B, Robert H等.组织工程化人工神经修复长段神经缺损实验的初步报告.中华手外科杂志,2001,17:112-115.
    [39] Woerly S. Restorative surgery of the central nervous system by means of tissue engineering using neurogel implants. Neurosurg Rev,2000,23:59-77.
    [40]Recknor, JB, Mallapragada SK. Nerve Regeneration: Tissue Engineering Strategies, in The Biomedical Engineering Handbook: Tissue Engineering and Artificial Organs, JD Bronzino, Editor. 2006, Taylor & Francis:New York.
    [1]李晓强,莫秀梅,范存义.神经导管研究与进展[J].中国生物工程杂志,2007,27(7):112-116.
    [2] Watchmaker GP. Mackinnon SE. Advances in peripheral nerve repair. Clin Plast Surg,1997,24(1):63-73.
    [3] Den-Dunnen WF, Vander Lei B, Robinson PHJ. A new PLLA/PCL copolymer for nerve regeneration. J Mater Sci Mater Med,1993;4:521-525.
    [4] Kiyotani T, Teramachi M, Takimoto Y, et al. Nerve regeneration across a 25 mm gap bridged by a polyglycolic acid collagen tube, a histological and electrophysiological evaluation of regenerated nerves. Brain Res, 1996;740(1-2): 66-74.
    [5] Den-Dunnen WF, Vander Lei B, Schakenraad JM, et al. Long-term evaluation of nerve regeneration in a biodegradable nerve guide. Microsurg,1993,14(8):508-515.
    [6] Dellon AL, Mackiinnon SE. An alternative to the classical nerve graft for the management of the short nerve gap. Plast Reconstr Surg,1988;82:849.
    [7] Archibald SJ, Shefner J, Krarup C, et al. Monkey median nerve repaired by nerve graft or collagen nerve guide tube. J Neurosci,1995;15(5):4109.
    [8] Den-Dunnen WF, VanderLei B, Schaknevard JM, et al. Poly DL-Lactide-∑-Caprolactone nerve guides perform better than autologous nerve grafts. Microsurg,1996;17(7) :348-357.
    [9] Meyer RS, Abrams RA, Botte MJ, et al. Functional recovery following neurorrhaphy of the rat sciatic nerve by epineurial repair compared with tubulization. J Orthop Res,1997;15(5) :664-669.
    [10] Mackinnon SE, Hudson AR. Clinical application of peripheral nerve transplantation. Plast Reconstr Surg,1992,90 (4):695-699.
    [11] Crawley WA, Dellon AL. Inferior alveolar nerve reconstruction with a polyglycolic acid, bioabsorbable nerve conduit.1992,90(2):300-302.
    [12] Doolabh VB ,et al . Rev Neurosci ,1996 ;7(1) :47
    [13] Woolford J, Toriumi DM. The enhancement of nerve regeneration using growth factors: a brief review. J Long Term Eff Med Implants. 1995 ;5(1) :19-26.
    [14] Meek MF, Coert JH. Clinical use of nerve conduits in peripheral nerve repair: review of literature. J Reconstr Microsurg,2002,18:97-109.
    [15]卫晓恩,韩西城.多种移植体修复周围神经的比较实验研究[J],中国修复重建外科杂志,1996,10:12-15.
    [16] Lundborg G, Dahlin LB, Danielsen N, Nachemson AK. Tissue specificity in nerve regeneration. Scand J Plast Reconstr Surg. 1986;20(3): 279–283.
    [17] Gibson KL, Paniloff JK. Comparison of sciatic nerve regeneration through silicone tube and nerve allograft[J]. microsurgery, 1989,10:126-129.
    [18] Lundborg G, Dahlin LB, Danielsen N. Ulnar nerve repair by the silicone chamber technique[J]. Scand J Plast Reconstr Surg Hand Surg, 1991,25(1):79-82.
    [19]Carrell CP, Joe YL.E1ectrospinning of viscoelastic Beger fluids:Modeling and experiments. Physics of fluids,2006,18:053102—14.
    [20] Feng JJ. Stretching of a straight electrically charged viscoelastic jet. J Non-Newtonian Fluid Mech,2003,116:55-70.
    [21] Spivak AE, Dzcnis YA, Reneker DH. A model of steady state in the electrospinning process. Mechanics research communications,2000,27(1):37-42.
    [22] Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl Phys Lett,2001,78(8): 1149-1151.
    [23] Reneker DH, Yarin AL, et a1. Bending instability of electrically charged 1iquid jets of polymer solutions in electrospinning. J Appl Phys,2000,87(9):4531-4547.
    [24] Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. J Appl Phys,2001,89(5):3018-3026.
    [25] Hohman MM, Shin M, Rutledge G, Brenner MP. E1ectrospinning and electrically forced jets. Phys Fluids,2001,13(8):2221-2236.
    [26] Xu CY, Inaic R, Kotaki M. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering[J]. Biomaterials,2004,25:877-886.
    [27] Ju YW, Choi GR, Jung HR. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole[J]. Electrochimica Acta,2008,53(19):5796-5803.
    [28] Shin MK, Kim YJ, Kim SI. Enhanced conductivity of aligned PANi/PEO/MWNT nanofbers by electrospinning[J]. Sens Actuators B 2008,134: 122-126.
    [29] Dalton PD, Klee D, Moller M. Electrospinning with dual collection rings[J]. Polymer,2005,46:611-614.
    [30] Xin Yi,Huang Zonghao,Chen Jinfeng. Fabrication of well-aligned PPV/PVP nanofibers by electrospinning[J]. Mater Lett,2008,62:991-993.
    [31] Baker Brendon M.,Mauck Robert L. The effect of nanofiber alignment on the maturation of engineered meniscus constructs[J]. Biomaterials,2007,28:1967-1977.
    [32] Yu J,Qiu YJ, Zha XX, et al. Production of aligned helical polymer nanofbers by electrospinning[J]. Eur Polym J,2008,44(9):2838-2844.
    [33]戴有刚. SF/PLGA共混静电纺丝人工血管材料的研究[D].苏州大学,2009.
    [34]刘丽娜.再生柞蚕丝丝素静电纺及结构研究[D];苏州大学,2008.
    [35]左保齐,张锋,孙春光等.再生桑蚕丝素/柞蚕丝素蛋白静电纺无纺网结构的研究[J].高分子材料科学与工程,2007,23(4):207-210.
    [36] Han T, Reneker DH, Yarin AL. Buckling of jets in electrospinning. Polymer,2007,48:6064-6076.
    [37] Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology an proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes[J]. Biomaterials,2006,27:5681-5688.
    [38] Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review[J]. Neurosurg Focus, 2004, 16(5):1-7. Brenner MJ, Moradzadeh A, Myckatyn TM, et al. Role of timing in assessment of nerve regeneration[J]. Microsurgery, 2008, 28(4):265-272.
    [39]孙明芳,胡韶楠,徐建光.神经导管修复周围神经的临床应用[J].国外医学·骨科学分册,2005,26(6):371-373.
    [40] Abrahamsen B, Zhao J, Asante CO, et al. The cell and molecular basis of mechanical, cold, and inflammatory pain[J]. Science, 2008, 321(5889):702-705.
    [41]潘华,郭树忠.复合组织异体移植后功能恢复的研究进展[J].中国美容医学,2009,18(1):117-120.
    [42] Silva SS. Novel genipin-cross-linked chitosan/silk sibroin sponges for cartilage engineering strategies[J]. Biomacromolecules,2008,9(10):2764-2774.
    [43] Yang YM, Chen XM, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials,2007,28:1643-1652.
    [44] Chen XM, Yang YM, Wu J, et al. Biocompatibility studies of silk fibroin-based artificial nerve grafts in vitro and in vivo. Prog Natur Sci,2007,17(9):1029-1034.
    [45] Yang YM, Wu J, Ding F, et al. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials,2007,28:5526-5535.
    [46]谭学新,马丽,李波等.丝素-壳聚糖神经导管修复兔面神经缺损的神经电生理变化.中国医科大学学报,2009,38(4):253-255.
    [47]陆艳,迟放鲁,赵霞等.丝素导管修复面神经缺损的实验研究.中华耳鼻咽喉头颈外科杂志,2006,41(8):603-606.
    [48]宋琳,朱爱思,徐路尧等.大鼠骨髓间充质干细胞在静电纺丝素/聚乳酸纳米纤维上的培养及成神经诱导.苏州大学学报(医学版),2009,29(3):393-395.
    [49]董运海,张锋,左保齐等.再生丝素蛋白纳米纤维网支持和引导神经胶质细胞的生长与迁移[J].中国生物医学工程学报,2009,28(1):96-102,116.
    [50] Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review[J]. Neurosurg focus,2004,16(5):1-7.
    [51]许文静,于海龙,孙明学等.化学去细胞同种异体神经移植术后病人的护理[J].中国矫形外科杂志,2008,16(5):379-380.
    [52]王琳,马玉林.枸杞多糖对大鼠坐骨神经损伤修复后影响的实验研究[J].宁夏医学杂志,2004,26(5):264-266.
    [53] Recknor, JB, Mallapragada SK. Nerve Regeneration: Tissue Engineering Strategies, in The Biomedical Engineering Handbook: Tissue Engineering and Artificial Organs, JD Bronzino, Editor. 2006, Taylor & Francis:New York.
    [54] Nakamura T, Inada Y, Fukuda S, et al. Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen(PGA-collagen) tube[J]. Brain Res, 2004,1027(1-2):18-29.
    [55] Brenner MJ, Moradzadeh A, Myckatyn TM, et al. Role of timing in assessment of nerve regeneration[J]. Microsurgery, 2008, 28(4):265-272.
    [56] Strauch B. Use of nerve conduits in peripheral nerve repair[J]. Hand Clin, 2000, 16 :123-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700