受损牙齿结构修复过程理论分析及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于颗粒增强有机树脂基复合材料(Particulate reinforced resin matrix composite)良好的综合性能和魅力的外观,已经逐步取代传统的银汞合金,成为现代口腔医学牙齿修复材料的首选。然而,作为牙齿修复的复合材料在修复早期会出现聚合收缩现象,由此而产生的收缩应力将引起修复材料与天然牙齿之间脱胶,形成微空洞,甚至修复材料与牙齿完全脱落导致修复失败。另一方面,复合材料处于口腔湿润的环境中,会吸湿膨胀,复合材料内水分比的变化将会改变材料的应力状态,从而对材料的物理、力学性能产生不利影响,会造成材料的不可逆损伤。针对聚合收缩和吸湿膨胀耦合作用对复合材料性能及修复牙齿结构力学特性的影响问题,传统的研究主要采用试验方法。
     为了模拟在聚合收缩和吸湿膨胀耦合作用下的复合材料性能变化及修复牙齿结构力学行为,从而为牙齿修复选择合适的材料提供力学依据,基于三维单胞模型和有限元技术,本文进行了如下主要研究工作:
     1、假设口腔中水分扩散满足著名的Fick第二定律,导出了湿扩散有限元方程,进一步实现湿-力耦合有限元分析,拓展了有限元方法的应用范围。
     2、从材料的角度分析了牙齿填充修复材料性能影响因素。用立方体单胞模型对颗粒增强复合材料的性能进行了深入的探讨,研究发现:(1)充填颗粒体积分数是复合材料弹性模量的重要影响因素,复合材料的弹性模量随颗粒的体积分数增加而增大;(2)当基体与充填颗粒粘结良好时,颗粒的强度决定了复合材料的强度;(3)界面层性能对复合材料性能有很大的影响。
     3、考虑界面脱胶损伤效应,采用三种立方单胞模型,通过有限元法研究了吸湿率对颗粒增强复合材料力学行为的影响。得到如下结论:(1)相同的吸湿性,在30%PVF(颗粒体积分数:Particle volume fraction,PVF)前增加PVF,层间脱胶损伤值显著增加;此后损伤值的增加趋于平缓;(2)保持层间强度和PVF不变,层间脱胶损伤随吸湿率的增加而接近线性增加;(3)FCC(面心立方:Face-centred cubic,FCC)模型层间脱胶损伤的预测结果和实验数据基本吻合;同时此模型可以用于预测牙齿填充材料三点弯曲实验的临界载荷。
     4、建立理想牙齿修复结构,利用有限元方法研究了同时考虑聚合收缩和吸湿膨胀耦合作用下的填充修复材料和粘结界面层材料性能对牙齿修复结构的力学行为的影响,得到如下结论:(1)低弹性模量的牙齿填充修复材料能限制天然牙组织的位移,但天然牙组织的位移与粘结界面层的弹性模量无关。减小粘结界面层弹性模量会对牙尖弯曲产生影响,而改变修复材料的弹性模量则不会;(2)低弹性模量的填充修复材料会导致牙齿修复结构相对低的应力场和位移场。高的粘结界面层材料弹性模量会引起修复材料中的高应力,但不会引起天然牙中的高应力;(3)在三种不同吸湿率:超吸水率、等吸水率和次吸水率的条件下,牙齿修复结构的应力场基本上相同,但位移场却差别很大。
     5、考虑聚合收缩作用下,粘结界面层的性能对牙齿修复结构力学性能的影响,将聚合收缩过程简化为粘弹性模型,通过有限元计算分析得出如下结论:(1)应用较低弹性模量和较大厚度的粘结界面层可以一定程度的缓解粘结界面层顶端与牙釉质交接处的应力集中。然而,粘结界面层厚度的增加会导致牙齿修复腔底部粘结界面层和修复材料连接处的应力增大;(2)敏感度分析表明,粘结界面层的弹性模量和厚度都对修复牙齿结构的残余应力都有较大影响。
Composites with particulate reinforced resin matrix are now increasingly applied for replacing traditional restorative materials, such as silver amalgam, because of their advantage mechanical properties and good aesthetic. However, polymerization shrinkage of the resin-based materials is of concern because the resulting shrinkage stresses can lead to failure of the interfacial bonds, which results in marginal leakage, premature failure of the restoration, and in some cases micro-cracking of the tooth. In addition, the composite resin appears to be capable of uptaking water in aqueous environment of oral, which exerts an obviously detrimental effect on the physical/mechanical properties, and even results in irreversible damage to the dental composite. To determine the properties of composite and restoration-tooth structure under polymerization shrinkage and water diffusion, the previous studies of others were based on trial-and error methods.
     As a numerical method, the finite element technology can be used to solve complex engineering problems. There are currently no options in commercial finite element programs specifically designed to address the issue which take into consideration both polymerization shrinkage and water sorption due to its difficulty.
     To simulate the behavior of the restoration-tooth under polymerization shrinkage and water diffusion, the following investigations have been done based on the three-dimensional unit cell model and the finite element analysis:
     1 Moisture distribution in the restoration-tooth structure which expose to oral environment can be evaluated by assuming that moisture diffusion is described by a Fickian process. The strain analysis and moisture diffusive finite element formulations were obtained, respectively. The finite element formulation applicable for hygro-mechanical problem was derived by coupling solution.
     2 Impact factors about the performance of restorative material were analyzed considering varying material properties. The performance of the particulate reinforced composites (PRC) was studied deeply using the cubic unit cell model. It was found: (1) The stiffness of the PRC increase as the PVF increase. (2)The strength of the PRC depended on the strength of the particulate. (3)The interphase property has the strong effect on the property of the PRC.
     3 Damage effects of water sorption on mechanical properties of the PRC have been predicted using 3D finite cell models. The results were found as following: (1) The damage value increases more significantly with the increase in PVF before 30% PVF, beyond which the increasing trend becomes gradually gentle. (2)Keeping the interphase strength and PVF unchanged, the damage increase with increasing moisture concentration in a nearly linear relation. (3)The results generated from the FCC model with consideration of the interphase debonding are in good agreement with the experimental data, meanwhile, the FCC model is also capable of predicting the critical load for the damaged and the undamaged dental composite subject too the 3-point flexural test.
     4 A 3D-fmite element analysis has been successfully exploited to examine the mechanical behavior of the restoration-tooth structure under the polymerization shrinkage and water sorption. It was found: (1) The low stiffness of the composite has the effect to limit the displacement occurring in the remaining tooth tissue. For lower interphase, the cuspal flexures are litter higher. The high interphase modulus acts as a 'shielding effect' for stress transfer. (2)The mildest composite results in the lowest tooth stress and displacement. The stiffest restoration-tooth interphase leads to the lowest displacement and highest stress in composite. The stresses generated in the models increased with the stiffness of the composite. The stress and displacement are reduced due to the compensation action of water sorption. (3)The hyper-water sorption results in maximum stress and displacement within the models, while the equi-water sorption lead to minimum value.
     5 The effect of properties of the interphase on the mechanical behavior of the restoration-tooth structure under the polymerization shrinkage was discussed. The behavior of polymerization shrinkage was described using the model of viscoplasticity. Some results were got using the FEM method: (1) The low stiffness and thick interphase can release the high residual stresses which are located at the occlusal surface along the tooth-composite joint, but the thick interphase can result in the stress concentration in the angle surrounding the pulp wall. (2)Sensitivity analysis indicated that the modulus and thickness of the adhesive have the strong effect on the residual stresses of the restoration-tooth, a thin interphase of a more flexible adhesive exhibits the same mechanical performance as a thick interphase of a less flexible adhesive for the restoration-tooth within limits.
引文
[1] 赵云凤.现代固定修复学.北京:人民军医出版社,2007.
    [2] Osorio E., Toledano M., Bravo M., et al. Short-term changes in lymphocytes after placement of silver amalgam restorations in healthy subjects. Dental Materials, 1995, 11: 323-326
    [3] Feilzer A.J., De Gee A.J., Davidson C.L.. Quantitative determination of stress reduction by flow in composite restoration. Dental Materials, 1990, 6:167-171
    [4] Jianying L.H., Siu L.F.. A mathematical analysis of shrinkage stress development in dental composite restorations during resin polymerization. Dental Materials, 2008, 24: 923-931
    [5] Santos C., Clarke R.L., Braden M., et al. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 2002, 23(8): 1897-1904
    [6] Lee M.C., Peppas N.A.. Hydrothermal fatigue on interface of glass-epoxy laminates. Journal of Composite Materials, 1993, 27: 1146-1149
    [7] Delphine T.B., Sophie D.C., Jacques D., et al. A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dental Materials, 2006, 22: 405-412
    [8] Nunes T.G., Fcaplg R., Osorio R., et al. Polymerization efficacy of simplified adhesive systems studied by NMR and MRI techniques. Dental Materials, 2006, 22:963-972
    [9] Fernanda C.F., Leticia C.B., Roberto R.B.. Polymerization stress related to radiant exposure and its effect on microleakage of composite restorations. Journal of Dentistry, 2007, 35:945-962
    [10] Asaoka K., Hirano S.. Diffusion coefficient of water through dental composite resin. Biomaterials, 2003, 24(6): 975-979
    [11] Sideridou I., Tserki V., Papanastasiou G.. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials, 2003, 24(4): 655-665
    [12] 徐恒昌.口腔材料学.北京:北京大学医学出版社,2005.
    [13] Munck J V.L.K., Peumans M., Poitevin A., et al. A critical review of the durability of adhesion to tooth tissue: methods and results. Jounral of Dental Research, 2005, 84: 118-132
    [14] Lorenzo A.M., Alessandra R., Milena C., et al. Dental adhesion review: Aging and stability of the bonded interface. Dental Materials, 2008, 24: 90-101
    [15] Tang S.M., Cheang P., Bakar M.S., et al. Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. International Journal of Fatigue, 2004, 26: 49-57
    [16] Guild F., Jak A.J.. Predictive Modelling of the Mechanical Properties of Rubber-toughened Epoxy. Journal of Materials Science Letters, 1994, 13: 629-632
    [17] Guild R, Jak A.J.. Modelling the Properties of Rubber-Modified Epoxy Polymers. Journal of Materials Science Letters, 1995, 30: 1689-1697
    [18] Wu W., Sadeghipour K., Boberick K., et al. Predictive modeling of elastic properties of particulate-reinforced composites. Materials Science and Engineering A, 2002,332: .362-370
    [19] Huang Y., Kinloch A.J.. Modelling of the Toughening Mechanisms in Rubber-Modified Epoxy Polymers Part I: Finite Element Analysis Studies. Journal of Materials Science, 1992, 27: 2753-2762
    [20] lung T., Grange M.. Mechanical behaviour of two-phase materials investigated by the finite element method: Necessity of three-dimensional modeling. Materials Science and Engineering A, 1995, 201: L8-L11
    [21] Jirun S.N., Sheng L.G.. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage. Dental Materials, 2009, 25:314-320
    [22] Tvergaard V.. On localization in ductile materials containing spherical voids. International Journal of Fracture, 1982, 18: 237-252
    [23] Zahl D.B., Meeking R.M.. The influence of the residual stress on the yielding of metal matrix composites. Acta Metallurgica, 1991,39: 1117-1122
    [24] Lorca J, Martin A., Ruizb J., et al. Paniculate fracture during deformation of a spray formed metal-matrix composites. Metallurgical transactions A, 1993, 24: 1575-1588
    [25] Bao G, Meeking R., Mcore R.M., et al. Particle reinforcement of ductile matrices against plastic flow and creep. Acta Metallurgica et Materialia, 1991, 39: 1871-1882
    [26] Kim H.S., Hong S.I.. On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles. Journal of Materials Processing Technology, 2001, 112: 109-113
    [27] Bush M.B.. An investigation of two-and three-dimensional models for predicting the elastic properties of particulate- and whisker-reinforced composite materials. Materials Science and Engineering A, 1992, 154: 139-148
    [28] Saraev D., Samro S.. Finite element modelling of Al/SiCp metal matrix composites with particles aligned in stripea-a 2D-3D comparison. International Journal of Plasticity, 2003, 19: 733-747
    [29] Wu Y., Da Z.F.. Three-dimensional finite element analysis of composite with coated spherical inclusion. Materials Science and Engineering, 1995, 203: 314-323
    [30] Guild F.J., Bonfield W.. Predictive modelling of the mechanical properties and failure processes in hydroxyapatite-polyethylene (Hapex~(TM)) composite. Journal of Materials Science: Materials in Medician, 1998, 9: 497-502
    [31] Uskokovic B.I., Ignjatovic N.. Stress analysis in hydroxyapatite/poly-L-lactide composite biomaterials. Computational Materials Science, 2001, 20: 275-283
    [32] Meijer G, Xia Z., Ellyin F.,Biaxial cyclic analysis of A12O3p-6061 Al composite.Acta Materialia, 1997, 45: 3237-3249
    [33] Wang M.P., Bonfield W.. Processing characterisation and evaluation of Hydroxyapatite reinforced polyethylene composites. British Ceram Trans, 1994, 93:91-95
    [34] Suwanprateeb J., Tanner K.E., Turner S., et al. Influence of sterilization by gamma irradiation and of thermal annealing on creep of hydroxyapatite-reinforced polyethylene composites. Journal of Biomedical Materials Research, 1997, 39: 16-22
    [35] Suwanprateeb J., Tanner K.E., Turner S., et al. Influence on Ringer's solution on creep resistance of hydroxyapatite reinforced polyethylene composites, Journal of Materials Science. Materials In Medicine, 1997, 18: 469-472
    [36] Sousa R.A., Reis R.L., Cunha A.M., et al. Coupling of HDPE/hydroxyapatite composites by silane based methodologies. Journal of Materials Science: Materials in Medicine, 2003, 14: 475-487
    [37] Laughlin E.J., Kaufman G.M., Krenkel D.. Polymerization shrinkage of experimental composites as determined by mercury dilatometry. Journal of Dental Research, 2000, 79: 369-375
    [38] Geedealf F.A., Davidson C.L.. True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dental Materials, 1993, 9(1): 11-14
    [39] Patelmp B.M., Davy K.W.. Polymerization shrinkage of methacrylate esters.Biomaterials, 1987, 8(1): 53-56
    [40] Watts C.A.. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dental Materials, 1991,7(1): 281-287
    [41] Laughlin G.A., Krenkel D.C., Eick J.D.. Variables affecting the Watts Method of measuring polymerization shrinkage. Journal of Dental Research, 1999, 78: 315
    [42] Rees J.P.. The polymerization shrinkage of composite resins. Dental Materials, 1989,5(1): 41-44
    [43] Hashimoto M.O.H., Sano H., Kaga M., et al. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials, 2003, 24: 3795-3803
    [44] Camps J. D., Remusat M., Abwat I.. Factors influencing pulpal response to cavity restorations. Dental Materials, 2001, 16: 332-340
    [45] Kalender W.A.. X-ray computed tomography. Physics in Medicine and Biology, 2006,51:29-43
    [46] Ausiello P., Davidson C.L., Rengo S.. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. Journal of Biomechanics, 2001, 34: 1269-1277
    [47] Sakaguchi R.V., Douglas W.H.. Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dental Materials, 1997, 13(4): 233-239
    [48] Fellzer G.A., Davidson C.L.. Quantitative determination of stress reduction by flow in composite restorations. Dental Materials, 1990, 6(3): 167-171
    [49] Sakaguchi R.V., Bunczak M.A., Douglas W.H.. Strain gauge method for measuring polymerization contraction of composite restoratives. Journal of Dental Research,1991, 19(5): 312-316
    [50] Fellzer G.A., Davidson C.L.. Setting stress in composite resin in relation to configuration of the restoration. Journal of Dental Research. 1987, 66(11): 1636-1639
    [51] Hubsch P.F., MJKnox J.. A finite element analysis of the stress at the restoration-tooth interface, comparing inlays and bulk fillings. Biomaterials, 2000, 21(10): 1015-1019
    [52] Price R.D., Andreou P., Murphy D.. The effect of two configuration factors, time, and thermal cycling on resin to dentin bond strengths. Biomaterials, 2003, 24(6):1013-1021
    [53] Hao F.S., Glenn M.F.. Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate. Dental Materials, 2005, 21:520-529
    [54] Sakaguchi R.L., Wiltbank B.D., Shah N.C.. Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dental Materials, 2004, 20: 388-396
    [55] Sarrett D.C., Ray S.. The effect of water on polymer matrix and composite wear. Dental Materials, 1994, 10: 6-10
    [56] Lee M.C., Peppas N.A.. Models of moisture transport and moisture-induced stresses in epoxy composites. Journal of Composite Materials, 1993, 27: 1146-1171
    [57] Braden M., Davy W.M.. Water absorption characteristics of some unfilled resins. Biomaterials, 1986, 7: 474-479
    [58] Condon J.R., Ferracane J.L.. Reduction of composite contraction stress through non-bonded microfiller particles. Dental Materials, 1998, 14: 256-260
    [59] Nick D.J., Prem P., Albert J., et al. Finite element analysis model to simulate the behavior of luting cements during setting. Dental Materials, 2005, 21: 1025-1032
    [60] Ausiello A.P, Davidson C.L.. Effect of adhesive layer properties on stress distribution in composite restorations-a 3D finite element analysis. Dental Materials, 2002, 18: 295-303
    [61] Lee S.C., Huang H.M., Shih Y.H., et al. Thermodebonding mechanisms in dentin bonding systems using finite element analysis. Biomaterials, 2001, 22(2): 113-123
    [62] Antheunis V.D.T., Maria R., Pintado K., et al. Residual shrinkage stress distributions in molars after composite restoration. Dental Materials, 2004, 20: 554-564
    [63] Hubsch P.F., Knox M.J.. A finite element analysis of the stress at the restoration-tooth interface, comparing inlays and bulk fillings. Biomaterials, 2000, 21: 1015-1019
    [64] Hubsch P.F., Knox M.J., Feilzer A.J.. Identification of the Constitutive Behavior of Dental Composite Cements During Curing. Computer Methods in Biomechanics and Biomedical Engineering, 1999, 2: 245-256
    [65] Barink M., Vander M.P.C., Fennis W.M.M., et al. A three-dimensional finite element model of the polymerization process in dental restorations. Biomaterials, 2003, 24: 1427-1435
    [66] 杨大为.箍结构及桩核材料对前牙残根应力分布影响的三维有限元分析.长沙:中南大学,2008.
    [67] 吕纯洁.牙齿充填修复后抗折裂强度的数值分析.武汉:华中科技大学,2005.
    [68] 怡力.洞形和修复方式对牙齿应力影响的三维有限元分析.西安:中国人民解放军第四军医大学,2007.
    [69] Kahler A.K., Krzysztof B.. Effect of material properties on stresses at the restoration-dentin interface of composite restorations during polymerization. Dental Materials, 2006, 22:942-947
    [70] 曾国平.塑性力学有限元--理论与应用.北京:兵器工业出版社,1989.
    [71] 孔翠芳,戴华.用不完全模态试验数据修正粘性阻尼矩阵.振动工程学报,2005, 3(1): 23-28
    [72] Craig R.D.. Restorative dental materials. St. Louis: Mosby Company, 1997.
    [73] 王洪祚.聚合物的粘结作用.北京:化学工业出版社,2004.
    [74] Sarrett D.C., Ray S.. The effect of water on polymer matrix and composite wear. Dental Materials, 1994, 10: 6-10
    [75] Momoi Y., McCabe J.F.. Hygroscopic expansion of resin based composites during 6 months of water storage. British Dental Journal, 1994, 176: 91-96
    [76] Torstenson G.L, BaB M.. Contraction gap under composite resin restorations, Effect of hygroscopic expansion and thermal stress. Operative Dentistry, 1988, 13: 24-31
    [77] Martin N., Jedynakiewicz N.. Measurement of water sorption in dental composites. Biomaterials, 1998, 19: 77-83
    [78] Reddy J.N.. An Introduction to the Finite Element Method. New York: McGraw-Hill Press, 1993.
    [79] Norbert M.U.K., Angermann J., Rheinberger V.. A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites. Dental Materials, 2008, 24: 684-699
    [80] Hienderauer G., McGee T., Kudej R.. Evaluation of a bioactive ceramic composite as a dental implant. American ceramic society bulletin, 1991, 70: 1010-1015
    [81] 陈非.羟基磷灰石生物医用陶瓷材料的研究与发展.中国陶瓷,2006,42(4):8-9
    [82] Lu L., Mikos A.. The importance of new processing techniques in tissue engineering. MRS Bull, 1996, 21: 28-32
    [83] Ruys A., Wei M., Sorrell C., et al. Sintering effects on the strength of hydroxyapatite. Biomaterials, 1995, 16: 409-415
    [84] Li. J. F, Hermanson B.L.. Hydroxyapatite-alumina composites and bone-bonding. Biomaterials, 1995, 16: 417-422
    [85] Labella R., Braden M., Deb S.. Novel hydroxyapatite-based dental composites. Biomaterials, 1994, 15: 1197-1200
    [86] Hench L.. Bioceramics: from concept to clinic. Journal of the American Ceramic Society, 1991, 74: 1487-1510
    [87] Wang M., Deb S., Tanner K., et al. Hydroxyapatite-polyethylene composites for bone substitution: effects of silanation and polymer grafting. In Proc 7th European Conf on Composite Materials. London, 1996:455-460.
    [88] Rodrigues-Lorenzo L, Salinas A., Vallet-Regi M., et al. Composite biomaterials based on ceramic polymers. I. Reinforced system based on Al2O3/PMMA/PLLA. Journal of Biomedical Materials Research, 1996, 30:515-522
    [89] 崔小明.特种工程塑料聚醚醚酮的开发与应用.塑胶工业,2006,9(6):17-20
    [90] 陶国源.聚醚醚酮的成型加工(上).广东塑料,2006,1:29-32
    [91] 王宝成,李鲲,周海鸥.高性能工程塑料聚醚醚酮的开发研究.化工科技2006,14(5):46-48
    [92] Hui L.J., Jun N., Kathryn A., et al. Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems. Biomaterials, 2005, 26: 1329-1336
    [93] Bakar M.S.A., Cheang P., Khor K.A.. Tensile properties and microstructural analysis of spheroidized hydroxyapatite-poly(etheretherketone) biocomposites. Materials Science and Engineering A, 2003, 345: 55-63
    [94] Guild F.J., Bonfield W.. Predictive modeling of hydroxyapatite-polyethylene composite. Biomaterials, 1993, 14: 985-993
    [95] Bakar M.S.A., Cheang P., Khor K.A.. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone Biocomposites. Composites Science and Technology, 2003, 63: 421-425
    [96] Bakar M.S.A., Cheang P., Khor K.A.. Thermal processing of hydroxyapatite reinforced polyetheretherketone composites. Journal of Materials Processing Technology, 1999, 89: 462-466
    [97] Fan J.P.. Damage Analysis of Particulate Biocomposites Using Finite Element Technique. Hongkong: THE HONG KONG POLYTECHNIC UNIVERSITY, 2005.
    [98] Li G.C., Ling X., Shen W.H.. On the mechanism of void growth and the effect of straining mode in ductile materials. International Journal of Plasticity, 2000, 16: 39-57
    [99] Bakar M.S.A., Cheang P., Khor K.A.. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials, 2003, 24: 2245-2250
    [100] Feilzer A.J., De Gee A.J., Davidson C.L.. Setting stress in composite resin in relation to configuration of restoration. Journal of Dental Research, 1987, 66: 1636-1639
    [101] Davidson C.L., De Gee A.J., Feilzer A.J.. The competition between the composite-dentin bond strength and the polymerisation contraction stress. Journal of Dental Research, 1984, 63: 1396-1399
    [102] Sankarapandian M, Shobba H.K., Kalachandra S., et al. Characterization of some aromatic dimethacrylates for dental composite applications. Journal of Materials Science: Materials In Medicine, 1997, 8: 465-468
    [103] Erik A., Anne P.. Class Ⅰ and Class Ⅱ restorations of resin composite: An FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading. Dental Materials, 2008, 24: 600-605
    [104] Willems G, Lambrechts P., Braem M., et al. Classification of dental composites according to their morphological and mechanical characteristics. Dental Materials, 1992,8:310-319
    [105] Gladys S., Meerbeek V., Braem M., et al. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. Journal of Dental Research,1997, 76: 883-894
    [106] Dickens-Venz S.H., Takagi S., Chow L.C., et al. Physical and chemical properties of resin-reinforced calcium phosphate cements. Dental Materials, 1994, 10: 100-106
    [107] Domingo C, Arcis R.W., Osorio E., et al. Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials. Dental Materials, 2003, 19:478-486
    [108] Lee S.Y., Chiang H.C., Lin C.T., et al. Finite element analysis of thermo-debonding mechanism in dental composites. Biomaterials, 2000, 21: 1315-1326
    [109] 余寿文,冯西桥.损伤力学.北京:清华大学出版社,1995.
    [110] Plueddemann E.P.. Silane coupling agents. New York: Plenum Press, 1982.
    [111] Lee C.T., Lee S.Y., Keh E.S., et al. Influence of silanization and filler fraction on aged dental composites. Journal of Oral Rehabilitation, 2000, 27: 919-926
    [112] Dai K.. Finite Element Modeling of Dental Restoration through Multi-Material Laser Desificaiton. Connecticut: University of Connecticut, 2005.
    [113] Darendelier S.Y., Alacam T., Yaman Y. Analysis of stress distribution in a maxillary central incisor subjected to various post and core application. Journal of End User Computing, 1998,24: 107-111
    [114] Spears I.R.. The effect of stiffness on the localisation of tensile stress at the surface of bonded posterior restorations. Dental Materials, 1998, 14: 269-276
    [115] Ensaff H., O'Doherty D.M., Jacobsen P.H.. The influence of the restoration-tooth interface in light cured composite restorations: a finite element analysis.Biomaterials, 2001, 22: 3097-3103
    [116] Rees J.S., Jacobsen P.H.. The effect of cuspal flexure on a buccal class V resroration: a finite element study. Journal of Dentistry, 1998, 26:361-367
    [117] Feilzer A.J., DeGee A.J., Davidson C.L.. Increased wall-to-wall curing contraction in thin bonded resin layers. Journal of Dental Research, 1988, 68:48-50
    [118] Peters M.C.. Comparison of two measurement techniques for clinical wear. Journal of Dentistry, 1999, 27:479-485
    [119] Sturdevant C.M., Roberson T.M., Heyman H.O., et al. The art and science of operative dentistry. St Louis: Mosby, 1995.
    [120] Ghassemieh E.. Evaluation of sources of uncertainties in microtensile bond strength of dental adhesive system for different specimen geometries. Dental Materials, 2008, 24: 536-547
    [121] Manhart J.C.H., Hamm G., Hickel R.. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Operative Dentistry, 2004: 481-508
    [122] Li S.L.F., Alison Q.. A two-stage shape optimization process for cavity preparation. Dental Materials, 2008, 24: 1444-1453
    [123] Christof K.R.J., Petra H.. A material model for internal stress of dental composites caused by the curing process. Dental Materials, 2009, 25:331-338
    [124] 潘卫红,吕纯洁,田志梁.不同充填材料对牙体应力分布的影响.口腔医学,2007,27(9):471-473
    [125] Junkyu J.C., Ferracane J., Lee I.B.. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling? Dental Materials, 2008, 24:1501-1505
    [126] 田志梁,潘吕.不同洞径I类洞修复后牙体的应力分析.生物医学工程学杂志,2008.25:105-107
    [127] Chen H.Y., Jimn K.H., Kunzelmann R.H.. Polymerization contraction stress in light-cured compomer restorative materials. Dental Materials, 2003, 19:597-602
    [128] 于同隐,何曼君,卜海山.高聚物的粘弹性.上海:上海科学技术出版社,1986.
    [129] 杨挺青.粘弹性力学.武汉:华中理工大学出版社,1990.
    [130] Osnat F.S.M., Hagay S.. Antibacterial properties of self-etching dental adhesive systems. Journal of the American Dental Association, 2007, 138: 349-354
    [131] Fan J.P., Tang C.Y.. The influence of shrinkage and moisture diffusion on idealized tooth structure involving debonding damage. Acta Mechanica Solida Sinica, 2005, 18: 110-120
    [132] 沈纪桂,陈廉清.IGES--实现CAD/CAM系统间数据交换的规范.中国机械工程,2001,2:15-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700