基于宏细观力学的混凝土破损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究混凝土材料从细观到宏观层次的力学行为,并以试验与数值仿真相结合,研究其变形、损伤和非线性断裂的宏观规律,建立混凝土材料破损行为的细观损伤模型;建立从多相细观到宏观联系的多尺度研究方法,为研究混凝土类非均质准脆性材料破裂机制奠定基础。论文主要研究工作和创新成果有:
     1.发展了高效的骨料投放方法及提出骨料有限元坐标定位的状态矩阵法。基于连续介质力学,采用非线性损伤本构关系描述材料的力学行为,建立了混凝土多相细观力学模型,应用这一模型对混凝土I型、I-II混合型开裂进行全过程数值仿真。
     2.应用本文建立的混凝土多相细观力学模型对堆石混凝土材料的力学性能进行了数值仿真与相应的试验,取得了块石、自密实混凝土与界面三组分材料的强度本构关系,为数值仿真计算提供了力学参数;进行了堆石混凝土四点弯梁的抗折试验与数值仿真,初步验证了细观力学模型的可靠性。
     3.引入混凝土各相介质力学性能的Weibull随机概率分布,以表征混凝土力学参数的非均质特性与损伤局部化现象,分析了不同均质度对混凝土性能的影响;改进了Weibull分布表征的随机分布形式,引入空间相关尺度因子,对随机场内空间相关尺度因子对材料性能的影响进行了分析。
     4.基于多尺度均匀化理论,采用有限单元法建立了混凝土细观-宏观等效力学性能的多尺度模型,得到了表征混凝土宏观性能的单胞细观结构的最小相对尺度及等效弹性参数,并以三点弯梁为例证,对混凝土材料的宏观整体与细观局部化效应进行分析。
     5.对不同尺寸的自密实混凝土立方体试件进行单轴抗压试验,研究了混凝土强度的尺寸效应以及加载端部边界效应对混凝土强度与断裂性能的影响。采用混凝土等效概率模型对上述试验进行了数值仿真,通过对比数值仿真与试验结果,验证了该模型能较好地模拟混凝土尺寸效应现象。
     6.采用本文的混凝土等效概率模型分析了Koyna重力坝在1967年地震作用下的坝体开裂损伤行为,阐释了大坝开裂机理与破坏形态。
Based on numerical simulation incorporating with experimental tests, the mechanical behaviors of concrete are studied from meso-scale to macro-scale, considereing the deformation, damage and nonlinear fracture behavior. Thus, a meso-damage model for studying the fracture behavior of concrete is presented; meanwhile, a multiscale method for bridging the relationship between mesoscopic and macroscopic level are presented, laying a foundation for further study of damge and fracture mechanism of heterogeneous and quasi-brittle materials. The study includes:
     1. An efficient approach to dispose aggregates of concrete and a state matrix method to generate mesh coordinates for random aggregates are proposed. Based on the continuum mechanics, a multi-phase mesoscale model of concrete with nonlinear damaged stress-strain constitutive relations to describe mechanical behaviors of concrete is presented. With the numerical model, the complete process of concrete with mode I and mode I-II types of fracture are analyzed by numerical simulation.
     2. Based on the multi-phase meso-mechanics model, a simulation analysis of mechanical properties of rock-fill concrete is accomplished. Herein, experimental tests for determining basic mechanical parameters of three components, i.e. rocks, self-compacting concrete and interfaces are conducted, and four-point flexural beam tests for verification reliability of the model are designed. It is preliminarily shown that the numerical model is reliable.
     3. By introducing the Weibull probabilistic distribution for heterogeneities of mechanical properties of multi-phase concrete components and damage localization, influence of heterogeneity of the components on the concrete strength is analyzed. An improved model is also presented by introducing spatial correlation length factor into the Weibull distribution law. Effects of spatial correlation length on the concrete strength are studied.
     4. Based on the multiscale homogenization theory and finite element method, the meso-macro equivalent elastic constitutive relationship of concrete is established. Herein, the influence of unit cell size on the elastic properties in macro-scale is studied, and the minimum ratio of unit cell size to the maximum aggregate diameter has been obtained. Comparisons between the macroscopic and the corresponding mesoscopic simulations of a 3-Point concrete beam are accomplished.
     5. A series of uniaxial compression tests for different size cube self-compacting concrete specimen are carried out, and size effect of concrete strength, end effects on concrete strength and failure pattern are studied, comparing with corresponding numerical simulations based on the concrete equivalent probabilistic model. It is concluded that the numerical model can provide reasonable results in the analysis of size effect for concrete.
     6. As an engineering application, the fracture and damage behavior of Koyna gravity dam during the 1967 earthquake is analyzed by the equivalent probabilistic model of the concrete, the cracking pattern and failure modes of the dam prototype during the event are justified.
引文
[1]张楚汉.论岩石、混凝土离散-接触-断裂分析.岩石力学与工程学报, 2008, 27(2): 217-235.
    [2] Glimm J, Sharp D H. Multiscale science: a chanllenge for the twenty-first century. Siam News, 1997, 30(8): 1-7.
    [3] Li Y Y, Cui J Z. The multi-scale computational method for the mechanics parameters of the materials with random distribution of multi-scale grains. Composites Science and Technology, 2005, 65(9 SPEC ISS): 1447-1458.
    [4] Mindess S. Frature process zone detection. In: Shah P, Carpinteri A, Chapman H, Eds. Fracture Mechanics Test Methods for Concrete. London: 1991.
    [5]杨延毅,周维垣.岩石与混凝土类材料断裂过程研究.水利学报, 1992, 11: 69-74.
    [6]黄克智,徐秉业.固体力学发展趋势.北京:北京理工大学出版社, 1995.
    [7]夏梦芬,韩闻生,柯孚龙,白以龙.统计细观损伤力学和损伤演化诱致突变(I).力学进展, 1995, 25(1): 1-40.
    [8]于骁中,居襄.混凝土的强度和破坏.水利学报, 1983, 2: 22-35.
    [9] Neville A M. Properties of Concrete(Third Edition). London: Pitman Publishing Limited, 1981.
    [10] Kaplan M F. Crack propagation and the fracture of concrete. ACI Journal, 1961, 58(11): 591-610.
    [11]潘家铮.断裂力学在水工结构设计中的应用.水利学报, 1980, 1: 45-59.
    [12]于骁中,谯常忻,周群力.岩石和混凝土断裂力学.长沙:中南工业大学出版社, 1988.
    [13] Kesler C, Naus D J, Lott, James L. Behavior of materials. In: Proceedings of the International Conference on Mechanical Behavior of Materials, Tyoto, 1971
    [14] Ngo D, Scordelis A C. Finit element analysis of reinforced concrete beams. Joutnal of American Concrete Institute, 1967, 67: 152-163.
    [15] Berenblatthe G I. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially symmetric cracks. Applied Mathematics and Mechanics, 1959, 23: 434-444.
    [16] Dugdale D S. Yielding in steel sheets containing slits. Journal of Mechanics and Physics of Solids, 1960, 8: 100-104.
    [17] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773-782.
    [18] Needleman A. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 1987, 54(3): 525-531.
    [19] Carpinteri A, Valents S V, Ferrara G. Experimental and numerical fracture modeling of a gravity dam. In: Bazant Z P, Ed. Fracture Mechanics of Concrete Structures. Elsevier Applied Science, 1992.
    [20] Feltrin G, Wepf D, Bachmann H. Seismic cracking of concrete gravity dams. Dam Engineering, 1990, 4(1): 279-289.
    [21] Jirasek M, Zimmermann T. Embedded crack model: Part I Basic formulation. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1269-1290.
    [22] Rashid Y R. Analysis of reinforced concrete pressure vessels. Nuclear Engineering and Design, 1968, 7: 171-225.
    [23] de Borst R, Nauta P. Non-orthogonal cracks in smeared finite element model. Engineering Computations, 1985, 2(1): 35-46.
    [24] Cope R J, Rao P V, Clark L A, Norris P. Modeling of reinforced concrete behavior for finite element analysis of bridge slabs. In: Taylor C, Hinton E, Owen D R J, Eds. Numerical Methods for Nonlinear Problems. Swansea: Pineridge Press, 1980.
    [25] Bazant Z P, Oh B H. Crack band theory for frature of concrete. Material and Constructions, 1983, 16(93): 155-177.
    [26] Wang G L, Pekau O A, Zhang C H, Wang S M. Seisimc fracture analysis of concrete gravity dams based on nonlinear fracture mechanics. Engineering Fracture Mechanics, 2000, 65(1): 67-87.
    [27] Vahid L, Radin E. Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique. Engineering Structures, 2004, 26(1): 27-37.
    [28] Mirzabozorg H, Ghaeniam M. Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach. Earthquake Engineering and Structural Dynamics, 2005, 34(3): 247-269.
    [29]周元德.混凝土非线性断裂力学模型与高拱坝开裂分析研究[博士学位论文].北京:清华大学, 2004.
    [30] Bazant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials. Boca Raton: CRC Press, 1998.
    [31]赵吉东.岩土工程稳定破坏的应变梯度损伤局部化分岔模型及应用[博士学位论文].北京:清华大学, 2002.
    [32] Kachanov L M. Time of rupture process under creeep conditions. Izv. Akad. Nauk. SSR, 1958, 8: 26-31.
    [33] Rabotnov Y N. Creep problems in structural members. Amsterdam: North-Holland Publishing Company, 1969.
    [34] Dougill J W. Joutnal of Engineering Mechanics, ASCE, 1976, 102: 333.
    [35] Marzars J. Mechanical damage and fracture of concrete structure. In: Proceeding of International Concrete Fracture, France, 1981
    [36] Supartono F, Sidoroff F. Anisotropic damage modeling for brittle elastic materilas. Symposium of France-Poland, 1984.
    [37] Loland K E. Contiuuous damage models for load-response estimation of concrete. Cement and Concrete Research, 1980, 10: 392-492.
    [38] Krajcinovic D, Fonseka G U. Continuous damage theory of briitle materials. Journal of Applied Mechanics, 1981, 48: 809-824.
    [39]余寿文.断裂损伤与细观力学.力学与实践, 1988, 6: 12-18.
    [40] Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures. Materials Science and Engineering, 1985, 68(2): 239-248.
    [41] Sadouki H S, Wittmann F H. On the analysis of the failure process in composite materials by numerical simulation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1988, A104: 9-20.
    [42]唐春安,朱万成.混凝土损伤与断裂——数值试验.北京:科学出版社, 2003.
    [43] Wittmann F H. Structure of concrete with respect to crack formation. In: Wittmann F H, Ed. Fracture Mechanics of Concrete. Elsevier Science Publishers, 1989.
    [44] Zaitsev J W, Wittmann F H. Crack propagation in a two-phase material such as concrete. Solid Wastes Management Refuse Removal Journal, 1978, 3B: 1197-1203.
    [45]董聪,杨庆雄.细观损伤力学新进展.强度与环境, 1993, 92(4): 1-10.
    [46]杨卫.细观力学和细观损伤力学.力学进展, 1992, 22(1): 1-9.
    [47]余寿文,冯西桥.损伤力学.北京:清华大学出版社, 1997.
    [48]尚岩,杜成斌.基于细观损伤的混凝土力学性能模拟研究进展.水利与建筑工程学报, 2004, 2(1): 23-28.
    [49]冯西桥,余寿文.准脆性材料细观损伤力学.北京:高等教育出版社, 2002.
    [50]吴科如,周建华.增强硬化水泥浆体-粗骨料界面结合对混凝土断裂能的影响.上海:同济大学, 1987.
    [51]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报(自然科学版), 1996, 36(1): 84-89.
    [52] VanMier J G M. Fracture process of concrete: assessment of material parameters forfracture models. Florida: CPC Press, 1997.
    [53] Horsch T, Wittmann F H. Three-dimensional numerical concrete applied to investigate effective properties of composite materials. In: Proceeding of the fourth international conference on fracture mechanics of concrete and concretestructures, Cachan, France, 2001
    [54] Schlangen E, Van Mier J G M. Lattice model for numerical simulation of concrete fracture. In: International conference on dam fracture, Denver, Colorado, USA, 1991
    [55] Schlangen E, Garbocai E J. Fracture simulations of concrete using lattice models: computational aspects. Engineering Fracture Mechanics, 1997, 57(2P3): 319-322.
    [56] Cervenka J, Kishen J M C, Saouma V E. Mixed mode fracture of cementitious bimaterial interfaces; Part II: Numerical simulation. Engineering Fracture Mechanics, 1998, 60(1): 95-107.
    [57] Chandra Kishen J M, Saouma V E. Fracture of rock-concrete interfaces: Laboratory tests and applications. ACI Structural Journal, 2004, 101(3): 325-331.
    [58] Slowik V, Kishen J M C, Saouma V E. Mixed mode fracture of cementitious bimaterial interfaces; Part I: Experimental results. Engineering Fracture Mechanics, 1998, 60(1): 83-94.
    [59] Bazant Z P, Tabbara M R. Random particle models for fracture of aggregate or fiber composites. Journal of Engineering Mechanics, ASCE, 1990, 116(8): 1686-1705.
    [60] Schorn H, Rode U. Numerical simulation of crack propagation from microcracking to fracture. Cement Concrete Composite, 1991, 13: 87-94.
    [61] Schlangen E, Van Mier J G. Simple lattice model for numerical simulation of fracture of concrete materials and scructures. Material and Constructions, 1992, 25(1): 534-542.
    [62]王宗敏.不均质材料(混凝土)裂隙扩展及宏观计算强度与变形[博士学位论文].北京:清华大学, 1995.
    [63] Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures. Materials Science and Engineering, 1984, 68(2): 39-48.
    [64]高政国.不均质材料(混凝土)数值模型与计算强度问题研究[博士后研究报告].北京:清华大学, 2003.
    [65]高政国,刘光廷.二维混凝土随机骨料模型研究.清华大学学报(自然科学版), 2003, 43(5): 710-714.
    [66]刘光廷,高政国.三维凸型混凝土随机投放算法.清华大学学报(自然科学版), 2003, 43(8): 1120-1123.
    [67]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及其应用.水利学报, 2006, 37(6): 662-673.
    [68] De Schutter G, Taerwe L. Random particle model for concrete based on Delaunaytriangulation. Material Structure, 1993, 26(2): 67-73.
    [69]王宝庭,宋玉普.混凝土随机骨料模型的网格自动剖分方法.大连理工大学学报, 1999, 39(3): 445-450.
    [70]李有云,崔俊芝.具有大量椭圆颗粒/孔洞随机分布区域的计算机模拟及其改进三角形自动网格生成算法.计算力学学报, 2004, 21(5): 540-545.
    [71] Feito F R, Torres J C. Inclusion test for general polyhedra. Computers & Graphics (Pergamon), 1997, 21(1): 23-30.
    [72] Feito F R, Torres J C. A Urena:Orientation, simplicity, and inclusion test for planar polygons. Computers & Graphics (Pergamon), 1995, 19(4): 595-600.
    [73] Chiaia B, Vervuurt A, Van Mier J G M. Lattice model evaluation of progressive failure in disordered particle composites. Engineering Fracture Mechanics, 1997, 57(2-3): 301-318.
    [74] Lilliu G, Van Mier J G M. 3D lattice type fracture model for concrete. Engineering Fracture Mechanics, 2003, 70(7-8): 927-941.
    [75] Schlangen E, Van Mier J G M. Lattice model for simulating fracture of concrete. In, Zurich, Switz, 1994
    [76] Schlangen E, Van Mier J G M. New lattice model for predicting localized fracture in concrete. In, Southampton, Engl, 1992
    [77] Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading: Part I: Model development and validation. ACI Materials Journal, 1999, 96(2): 196-203.
    [78] Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading: Part II - Model predictions for shear and compressive loading. ACI Materials Journal, 1999, 96(3): 354-358.
    [79] Mohamed A R, Hansen W. Micromechanical modeling of crack-aggregate interaction in concrete materials. Cement and Concrete Composites, 1999, 21(5-6): 349-359.
    [80]彭一江,黎保琨,刘斌.碾压混凝土细观结构力学性能的数值模拟.水利学报, 2001, 6: 19-22.
    [81]黎保琨,彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应.华北水利水电学院学报, 2001, 22(3): 50-53.
    [82] Teng J G, Zhu W C, Tang C A. Mesomechanical model for concrete. Part II: Applications. Magazine of Concrete Research, 2004, 56(6): 331-345.
    [83] Zhu W C, Tang C A, Wang S Y. Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete. Structural Engineering and Mechanics, 2005, 19(5): 519-533.
    [84] Zhu W C, Teng J G, Tang C A. Mesomechanical model for concrete. Part I: Modeldevelopment. Magazine of Concrete Research, 2004, 56(6): 313-330.
    [85] Zhu W C, Wang S H, Tang C A. Modelling the shear fracture process of concrete using a mesomechanical model. In, Dunhuang, China, 2003
    [86]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟.水利学报, 2004, 10: 27-35.
    [87]马怀发,陈厚群,黎保琨.细观结构不均匀性对混凝土动弯拉强度的影响.水利学报, 2005, 36(7): 846-852.
    [88] Walraven J C. Aggregate Interlock: A theoretical and experimental analysis. Delf University Press, 1980.
    [89]王宗敏.混凝土应变软化与局部化的数值模拟.应用基础与工程科学学报, 2000, 8(2): 187-194.
    [90] Cundall P A, Strack O D L. A discrete numerical model for granular assembles. Geotechnique, 1979, 29(1): 47-65.
    [91] PFC2D. Particle flow code in 2 dimensions, Version 3.0, User's manual. Itasca Consulting Group Inc, USA.
    [92] PFC3D. Particle flow code in 3 dimensions, Version 2.0, Use's manual. Itasca Consulting Group Inc, USA.
    [93] Nakashima H, Oida A. Algorithm and implementation of soil-tire contact analysis code based dynamic FE-DE method. Journal of Terrmechanics, 2004, 41(2-3): 127-137.
    [94] Liu S H, Sun D A. Simulating of collapse of unsaturated soil by DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(6): 633-646.
    [95] Feng Y T, Owen D R J. Discrete element simulation of the dynamics of high energy planetary ball milling processes. Materials Science and Engineering, 2004, 375-377(1-2): 815-819.
    [96]李艳洁,徐泳.用离散元模拟颗粒堆积问题.农机化研究, 2005, 2: 57-59.
    [97] Potyondy D O, Cundall P A. A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329-1364.
    [98] Tang T N. Triaxial Test simulations with discrete element method and hydrostatic boundaries. Journal of Engineering Mechanics, 2004, 130(10): 1188-1194.
    [99] Camborde F, Mariotti C, Donze F V. Numerical study of rock and concrete behaviour by discrete element modeling. Computers and Geotechnics, 2000, 27(4): 225-247.
    [100] Prochazka P P. Application of discrete element methods of fracture mechanics of rock bursts. Engineering Fracture Mechanics, 2004, 71(4-6): 601-618.
    [101] Langston P A, Mohammad A A, Feras Y F, Badel N A. Distinct element modeling of non-spherical frictionless particle flow. Chemical Engineering Science, 2004, 59(2):425-435.
    [102] Matthew R K. Smooth convex three-dimensional particle for the discrete element method. Journal of Engineering Mechanics, 2003, 129(5): 539-547.
    [103] Roland W L, Gethin D T, Xinshe S Y, Ray C R. A combined finite discrete element method for simulating pharmaceutical powder tableting. International Journal for Numerical Methods in Engineering, 2005, 62(7): 853-869.
    [104] Gethin D T, Ransing R S, Lewis R W, Dutko M, et al. Numerical comparison of a deformable discrete element model and an equivalent continuum analysis for the compaction of ductile porous material. Computers and Structures, 2001, 79(13): 1287-1294.
    [105] Zhong X X, Chang C S. Micromechanical modeling for behavior of cementitious granular materials. Journal of Engineering Mechanics, ASCE, 1999, 125(11): 1280-1285.
    [106]剡公瑞,周维垣,杨若琼.岩石混凝土类材料细观损伤流变断裂模型及其工程应用.水利学报, 1997, 10: 33-38.
    [107]周维垣,剡公瑞,杨若琼.岩体弹脆性损伤本构模型及工程应用.岩土工程学报, 1998, 20(5): 54-57.
    [108]李广平.混凝土的细观损伤理论及其数值模拟.五邑大学学报, 1994, 8(4): 26-37.
    [109]刑纪波,余良群,王泳嘉.三维梁-颗粒模型与岩石材料细观力学行为研究.岩石力学与工程学报, 1999, 16(6): 627-630.
    [110]刑纪波.梁-颗粒模型导论.北京:地震出版社, 1999.
    [111]张德海,刑纪波,朱浮声,杨顺存.混凝土破坏过程的数值模拟.东北大学学报(自然科学版), 2004, 25(2): 175-178.
    [112]刑纪波,俞良群,张瑞丰.用于模拟颗粒增强复合材料破坏过程的梁-颗粒细观模型的试验验证.实验力学, 1998, 13(3): 377-382.
    [113]宋玉普.多种混凝土材料的本构关系和破坏准则.北京:中国水利水电出版社, 2002.
    [114] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. I: Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, Transactions of the ASME, 1977, 99 Ser H(1): 2-15.
    [115] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 1984, 32(1): 157-169.
    [116]李笃权,张克实.细观尺度的混凝土材料损伤.西北水资源与水工程, 2002, 13(1): 7-9.
    [117] Curtin W A, Millerr R E. Atomistic continuum coupling in computational materials science. Modeling Simulate Material Science Engineer, 2003, 11(3): 33-68.
    [118] Bensoussan A, Lions J L, Papanicolaou G. Asymptotic analysis for periodic structures. Amsterdam: North Holland, 1978.
    [119] Sanchez-Palencia E. Non-homogeneous media and vibration theory. Berlin: Springer Verlag, 1980.
    [120] Toledano A, Murakami H. A high order mixture model for periodic particulate composites. International Journal of Soilds and Structures, 1987, 23(7): 989-1002.
    [121] Guedes J M, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198.
    [122] Hassani B, Hinton E. Review of homogenization and topology optimization I - homogenization theory for media with periodic structure. Computers and Structures, 1998, 69(6): 707-717.
    [123] Hassani B, Hinton E. Review of homogenization and topology optimization II - analytical and numerical solution of homogenization equations. Computers and Structures, 1998, 69(6): 719-738.
    [124] Hassani B, Hinton E. Review of homogenization and topology optimization III - topology optimization using optimality criteria. Computers and Structures, 1998, 69(6): 739-756.
    [125] Hassani B. Direct method to derive the boundary conditions of the homogenization equation for symmetric cells. Communications in Numerical Methods in Engineering, 1996, 12(3): 185.
    [126] Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. International Journal of Solids and Structures, 1995, 32(1): 27-62.
    [127] Ghosh S, Lee K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Computer Methods in Applied Mechanics and Engineering, 1996, 132(1-2): 63-116.
    [128] Lee K, Ghosh S. Small deformation multi-scale analysis of heterogeneous materials with the Voronoi cell finite element model and homogenization theory. Computational Materials Science, 1996, 7(1-2): 131-146.
    [129] Cao L Q, Cui J Z, Zhu D C, Luo J L. Multiscale finite element method for subdivided periodic elastic structures of composite materials. Journal of Computational Mathematics, 2001, 19(2): 205-212.
    [130] Chen J R, Cui J Z. Two-scale FEM for elliptic mixed boundary value problems with small periodic coefficients. Journal of Computational Mathematics, 2001, 19(5): 549-560.
    [131] Cui J Z, Shih T M, Wang Y L. Two-scale analysis method for bodies with small periodic configurations. Structural Engineering and Mechanics, 1999, 7(6): 601-614.
    [132] Cui J Z, Yu X G. A two-scale method for identifying mechanical parameters of composite materials with periodic configuration. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22(6): 581-594.
    [133] Liu S T, Cheng G D. Prediction of themo-elastic properties and optmal design of gradient material. In: 7th AIAA/USAF/NASA/ISSNO Symposium on Multidisciplinary Analysis and Optimization: A collection of technical paper.1998,3
    [134] Fish J, Yu Q, Shek K. Computational damage mechanics for composite materials based on mathematical homogenization. International Journal for Numerical Methods in Engineering, 1999, 45(11): 1657-1679.
    [135] Fish J, Shek K, Pandheeradi M, Shephard M S. Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Computer Methods in Applied Mechanics and Engineering, 1997, 148(1-2): 53-73.
    [136] Gonnerman H F. Effect of size and shape of test specimen on compressive strength of concrete. American Society for Testing Materials -- Preprints, 1925, 39: 14-25.
    [137] Sabins G M, Mirza S M. Size effeets in model concretes? Journal of the Structural Division, ASCE, 1979, 105(ST6): 1007-1020.
    [138] Neville A M. Influence of size of concrete test cubes on mean strength and standard deviation. Magazine of Concrete Research, 1956, 8(23): 101-110.
    [139] Malhotra V M. Are 4 multiplied by 8 inch concrete cylinders as good as 6 multiplied by 12 inch cylinders for quality control of concrete? Journal of The American Concrete Institute, 1976, 73(1): 33-36.
    [140]姜福田.混凝土力学性能与测定(第一版).北京:中国铁道出版社, 1989.
    [141]杨成球,吴政.全级配混凝土强度尺寸效应及变形特性研究.大连理工大学学报, 1997, 37: 129-134.
    [142] Xu J S, He X X. Size effect on the strength of a concrete member. Engineering Fracture Mechanics, 1990, 35(4-5): 687-695.
    [143] Malhotra V M. Effect of specimen size on tensile strength of concrete. ACI Journal, 1970, 67(6): 467-469.
    [144] Carpinteri A. Decrease of apparent tensile and bending strength with specimen size:two different explanations based on fracture mechanics. International Journal of Solids and Stuctures, 1989, 25(4): 407-429.
    [145] Carpinteri A, Chiaia B, Ferro G. Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder. Materials and Structures/Materiaux et Constructions, 1995, 28(180):311-317.
    [146] Carpinteri A, Ferro G. Scaling behaviour and dual renormalization of experimental tensile softening responses. Materials and Structures/Materiaux et Constructions, 1998, 31(209): 303-309.
    [147] Carpinteri A, Ferro G. Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure. Materials and Structures/Materiaux et Constructions, 1994, 27(174): 563-571.
    [148] Sabnis G M, Aroni S. Size effects in material systems-The state of the art. In: Structure, Solid Mechanics and Engineering Design Southampton, 1970
    [149]徐定华,徐敏.混凝土材料学概论.北京:中国标准出版社, 2002.
    [150] Saibel E. Size effects in fracture. In: Structure, Solid Mechanics and Engineering Design Southampton, 1970
    [151] Householder A S. Monte Carlo method(Symposium). NBS math. Series, 1951.
    [152] Metropolis W, Ulam S. Monte Carlo method. Journal of The American Statistical Association, 1949, 44: 335-341.
    [153] Meyer M A. Symposium on Monte Carlo method. Wiley, 1956.
    [154] Shreider Y A. Method of statistical testing(Monte Carlo method). Oxford: Pergamon Press, 1964.
    [155] Shreider Y A. The Monte Carlo method(The method of statistical trials). Oxford: Pergamon Press, 1966.
    [156] Taussky O, Todd J. Generation and testing of pseudorandom numbers. In: Meyer H A, Ed. Symposium on Mento Carlo methods. New York: Wiley, 1956.
    [157] Lehmer D H. Mathmatical methods in largescale computing units. In: Proceeding of second Sym. on large-scale digital Caculating machinery, Cambrige, Mass, 1949
    [158] Coveyou R R. Serial correlation in the generation of pseudo-random numbers. Journal of the ACM, 1960, 7(1): 72-74.
    [159] Greenberger M. An apriori determination of serial correlation in randon numbers. Mathematics of Computation, 1961, 15: 383-389.
    [160] Raghavan P, Ghosh S. Concurrent multi-scale analysis of elastic composites by a multi-level computational model. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6-8): 497-538.
    [161]王津龙,刘天云,张楚汉.堆石体柱状试件成型过程的材料点法仿真.清华大学学报(自然科学版), 2005, 45(12): 1604-1607.
    [162] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    [163] Vonk R. A micromechanical investigation of softening of concrete loaded in compression. HERON, 1993, 38(3): 1-94.
    [164] Petersson P E. Crack growth and development of fracture zones in plain concrete and similar materials. Report TVBM-1006, Division of Building Materials.Lund Institute of Technology, 1981.
    [165] Winkler B J. Traglstuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines obiecktiven Werkstoffgesetzes für Beton[PHD Thesis]. Austria: Innsbruck University, 2001.
    [166] Monteiro Azevedo N, Lemos J V. A generalized rigid particle contact model for fracture analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(3): 269.
    [167] Mihashi H, Izumi M. A stochastic theory for concrete fracture. Cement and Concrete Research, 1977, 7(4): 411-422.
    [168] Burt N J, Dougill J W. Progressive failure in a model heterogeneous medium. ASCE, Journal of Engineering Mechanics Division, 1977, 103(3): 365-376.
    [169] Nicholson D W, Ni P. Extreme value probabilistic theory for mixed-mode brittle fracture. Engineering Fracture Mechanics, 1997, 58(1-2): 121-132.
    [170] Mazars J. Application de le mecnique de lendonnagement an comprotement non lineaire de structure[These de doctorate]. Mai: Univ. Pris. ENSET, 1984.
    [171] Van Mier J G M, Van V, Wang T K. Fracture mechanisms in particle composites: statistical aspects in lattice type analysis Mechanics of Materials, 2002, 34(11): 705-724.
    [172] Cho N, Martin C D, Sego D C. A clumped particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(2): 997-1010.
    [173] Griffiths D V, Gordon F A. Probabilistic slope stability analysis by finite elements. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518.
    [174] Van Mier J G M, Shi C. Stability issues in uniaxial tensile tests on brittle disordered materials. International Journal of Solids and Structures, 2002, 39(2): 3359-3372.
    [175] The Association for the development & Propagation of super quality concrete structures. Concept of super quality concrete, its properties and structural performance: International Workshop on Self-compacting Concrete, 1998, 243-254.
    [176]大内雅博. Current conditions of self-compacting concrete in Japan. Proceeding of the Second International Symposium on Self-Compacting Concrete, 2001: 63-68.
    [177]日本土木学会.自密实高强度高耐久性混凝土结构设计施工导则(日文). 2001.
    [178]金峰,安雪晖.堆石混凝土大坝施工方法.中国专利, 30102674.5. 2003
    [179]金峰,安雪晖,石建军,张楚汉.堆石混凝土及堆石混凝土大坝.水利学报, 2005,36(11): 1347-1352.
    [180]安雪晖,金峰,石建军.自密实混凝土充填堆石体的试验研究.混凝土, 2005, (1): 3-6.
    [181]石建军,张志恒,金峰,安雪晖, et al.自密实混凝土充填堆石体的试验.南华大学学报, 2005, 19(1): 38-41.
    [182]周虎,安雪晖,金峰.低水泥用量自密实混凝土配合比设计试验研究.混凝土, 2005, 10(1): 20-23.
    [183]周绍青,石建军,杨晓峰,雷林.神经网络在自密实混凝土流动性能中的应用.水利与建筑工程学报, 2005, 3(4): 42-45.
    [184]宋殿海,刘剑.自密实堆石混凝土在宝泉抽水蓄能电站的应用.水力发电, 2007, 33(9): 26-28.
    [185]安雪晖,黄绵松,周虎,金峰.堆石混凝土施工技术综述. In:全国混凝土新技术及其工程应用技术交流会,中国:宁波, 2007
    [186]冯淼林,吴长春.基于三维均匀化方法的复合材料本构数值模拟.中国科学技术大学学报, 2000, 30(6): 693-699.
    [187] Budiansky. On the elastic moduli of some heterogeneous materials. Joural of Mechanics, Physics and Solids, 1965, 13: 223-227.
    [188] Hill R. A self-consistent mechanics of composite materials. Joural of Mechanics, Physics and Solids, 1965, 12: 213-222.
    [189] Mori T, Tanaka K. Average stress in matrix and average elastic energy of material with misfitting inclusions. Acta Metal, 1973, 21: 571-574.
    [190]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析.力学进展, 1998, 28: 173-188.
    [191] Lions L J. Some methods in the mathematical analysis of system and their control. Beijing: Seince Press, 1981.
    [192] Bendsor M P, Kikuchi N. Generating optimal topologies in structual design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71: 197-224.
    [193] Cook R D, Malkus D S, Plesha M E. Concepts and application of finite element analysis. New York: Wiley, 1989.
    [194] Sigmund O. Materials with prescribed constitutive parameters: an inverse homogenization problem. Technical Report 470.The Technical University of Denmark, 1993.
    [195] Hassani B. Finite element solution of the homogenization equation for symmetric cells of periodicity. Technical Report CR/887/95.Department of Civil Engineering, 1995.
    [196] Weibull W. A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademien, Handlingar, 1939, 151: 45.
    [197] Zech B, Wittmann F H. Probabilistic approach to describe the behaviour of materials. Nuclear enginerring and design, 1978, 48(2): 563-593.
    [198]沈崇刚,陈厚群,张楚汉等.新丰江水库地震及其对大坝的影响.中国科学, 1974, 17(2): 184-205.
    [199]陈宗梁译编.混凝土坝地震震害和加固的实例.上海:上海大坝科技咨询公司, 2003.
    [200] Wieland M, Brenner R P, Sommer P. Earthquake resiliency of large concrete dams: Damage, repair and strengtheing concepts. In: International Commission on Large Dams, Proceedings of 21th Congress of ICLD, Montreal, 2003
    [201] Ayari M L, Saouma V E. Fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks. Engineering Fracture Mechanics, 1990, 35(1-3): 587-598.
    [202] Cervera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering and Structural Dynamics, 1995, 24(9): 1225-1245.
    [203] Lee J, Fenves G L. Plastic-damage concrete model for earthquake analysis of dams. Earthquake Engineering and Structural Dynamics, 1998, 27(9): 937-956.
    [204] Cervera M, Oliver J, Manzoli O. Rate-dependent isotropic damage model for the seismic analysis of concrete dams. Earthquake Engineering & Structural Dynamics, 1996, 25(9): 987-1010.
    [205] Chorpa A K, Chakrabarti P. The earthquake experience at Koyna Dam and stress in concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1972, 1: 151-164.
    [206] Hall F J. The dynamic and earthquake behavior of concrete dams: review of experimental behavior and observational evidence. Soil Dynamics Earthquake Engineering, 1988, 7(2): 58-121.
    [207] Skrikerud P E, Bachmann H. Discrete crack modeling for dynamically loaded, unreinforced concrete structures. Earthquake Engineering and Structural Dynamics, 1986, 14(2): 297-315.
    [208] Bhattacharjee S S, Leger P. Seismic cracking and energy dissipation in concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1993, 22(11): 991-1007.
    [209] Yusuf C, Muhammet K. Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction. Computer and Structures, 2005, 83(19-20): 1595-1606.
    [210] Pekau O A, Feng L M, Zhang C H. Seismic fracture of Koyna dam: case study. Earthquake Engineering and Structural Dynamics, 1995, 24(1): 15-33.
    [211]张国新,金峰,王光纶.用基于流行元的子域奇异边界元法模拟重力坝的地震破坏.工程力学, 2001, 18(4): 17-27.
    [212]侯艳丽.砼坝-地基破坏的离散元方法与断裂力学的耦合模型研究[博士学位论文].北京:清华大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700