冲压式多级离心泵内流场数值模拟及水力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲压式多级离心泵由于采用冲压焊接工艺制造,外型美观、重量轻,比传统的铸造多级离心泵节能、节材、高效和环保;还有效地解决了低比转速及超低比转速离心泵在铸造工艺中无法实现的难题;极易实现生产的机械化和自动化;除此之外,在水力性能方面冲压式多级离心泵也优于铸造多级离心泵。由于目前还没有对冲压式多级离心泵整级的研究,因此本文的研究对改善冲压式多级离心泵的性能具有重要的意义。
     本文采用数值模拟和实验验证相结合的方法,不仅通过现场实验得到了DL16冲压式多级离心泵的外特性参数,还利用数值模拟与实验结果的比较,确认了数值模拟的准确性。
     本文得到的结论如下所示:
     (1)综述了冲压式多级离心泵工作原理、结构、优点和国内外发展现状,介绍了商用CFD软件的发展,从控制方程、湍流模型、离散化方法和边界条件等多方面详细介绍了湍流流动数值模拟的理论基础。通过对各种模型的分析,确定适用于冲压式多级离心泵的数学模型,给出用于冲压式多级离心泵模拟的基础方程、算法及求解方式。
     (2)对冲压式多级离心泵的叶轮、导叶和泵壳的主要参数进行水力设计,并建立三维模型。使用ICEM软件对各部分流场进行网格划分。利用CFX软件对冲压式多级离心泵的内流场进行数值模拟。在稳态下对不同工况的冲压式多级离心泵内流场进行模拟,得到压力分布和速度分布;在瞬态下对工况下的冲压式多级离心泵内流场进行模拟,得到六个旋转周期内的压力和速度变化情况,并对第五个周期内的六个时刻进行分析,得出了叶轮进出口总压、速度随时间变化的规律。
     (3)通过实验仪器对冲压式多级离心泵的外特性参数进行测试,并和数值模拟的预测曲线进行比较,分析预测曲线随流量的变化趋势,误差形成的原因,为冲压式多级离心泵的性能改善提供依据。
     (4)对冲压式多级离心泵在不同湍流模型下的外特性参数进行了比较,分析得出了最适合的湍流模型。
Compared with the foundary pump, the stamping multistage centrifugal pump which is made with stamping and welding crafts is more energy-saving, material-saving, environmentally friendly and efficient. The nice appearance and light weight are the advantages of the stamping pump. Moreover, the stamping craft solves the problem that it is hard to produce the same pump of low or super low specific speed with foundary craft. Also, the mechanization and automation produce of stamping pump are more easily implemented than foundary pump. In addition, the stamping pump is better than the foundary pump in hydraulic performance. As no research of whole stamping….is accomplished so far, the research of stamping multistage centrifugal pump is very important for improving the performance of pump.
     The combination of numercial simulation and experimental study not only figures out the external characteristic parameter of DL16 stamping multistage centrifugal pump, but also confirms the veracity of numerical simulation by comparing the results of simulation and experiment.
     The conclusions of the dissertation are shown below:
     (1) The operation, structure, advantage and status quo of stamping multistage centrifugal pump at home and abroad is summarized. The development of commercial CFD software and the basic numerical simulation theory of turbulent fluid with control equation, turbulent model, discrete method and boundary condition are introduced. By comparing different models, the math…..is confirmed and the basic equation, calculation formula and numerical method is concluded.
     (2) The three-dimensional model of stamping multistage centrifugal pump is built by designing the main sizes of impeller, diffuser and pump casing. The grid division of different flow fields is done with ICEM software. The inside flow field of stamping multistage centrifugal pump simulated by CFX software is aimed at concluding the pressure and velocity distribution in steady state and analyzing the changes of pressure and velocity in six rotating periods and six points in the fifth period in tansient state. Then the results how the total pressure and velocity changes as time passes are obtained.
     (3) The external characteristic parameter of stamping multistage centrifugal pump is first tested with experimental equipment, and then compared with the predictive curves of numerical simulation to analyze how the predictive curves change with the flux, and to find out why the error between the experiment and simulation exists, which are very essential in improving the performance of the centrifugal pump.
     (4) The optimal turbulent model has been worked out by comparing the external characteristic parameters of stamping multistage centrifugal pump in different turbulent models.
引文
[1]蔡保元,霍春源,钱锐,等.冲压焊接成型离心泵水力设计及成型方法[J].水泵技术, 2002, (1): 17-19
    [2]石家庄水泵研究所.泵产品样本(上册)[M].北京:机械工业出版社, 1998
    [3]关醒凡.现代泵技术手册[M].北京:宇航出版社, 1995
    [4]沈阳水泵研究所.叶片泵设计手册[M].北京:机械工业出版社, 1983
    [5]湖南省机械工业学会.冲压工艺[M].长沙:湖南科学技术出版社, 1983
    [6]关醒凡.泵的理论与设计[M].北京:机械工业出版社, 1987
    [7]袁寿其.低比转数离心泵原理与设计[M].北京:机械工业出版社, 1997
    [8]严敬.低比转数离心泵[M].成都:四川科技出版社, 1998
    [9]吴达人.离心泵流体力学[M].北京:中国电力出版社, 1998
    [10]钱家祥,童志成,陈文正.冲压泵的特点及其应用[J].流体机械, 1999, 27(8): 30-33
    [11]霍春源,梁跃,姚宁海,等.不锈钢冲压焊接离心泵的设计特点[J].水泵技术, 1999, (5): 1-13
    [12]梁跃,王旭,郭晋伟.冲压焊接多级离心泵的设计特点及选型应用[J].机电产品开发与创新, 2007, 20(6): 72-73
    [13]刘元义.低比转数冲压焊接离心泵粘性设计方法及其应用[J].农业机械学报, 2005, 36(4): 64-68
    [14]刘元义,蔡保元,霍春源,等.冲压焊接多级离心泵的理论研究及工程实现[J].机械工程学报, 2005, 41(2): 228-233
    [15]严敬,何敏,王桃,等.离心泵基本方程的建立与分析[J].农业机械学报, 2007, 38(10): 192-194
    [16]谈明高,刘厚林,袁寿其.离心泵水力损失的计算[J].江苏大学学报(自然科学版), 2007, 28(5): 405-408
    [17] Mario S., Hrvoje, K., Igor, S. Improve centrifugal pump efficiency by impeller trimming[J]. desalination, 2009, Vol. 249, No. 2: 654-659
    [18] Guo P.C., Liao W.L., Luo X.Q., et al. Numerical investigation on impeller-volute interaction in the centrifugal pump with radial gap and tongue profile variation[J]. 2008 Proceedings of the ASME Fluids Engineering Division Summer Conference, 2009, Vol. 2: 217-224
    [19] Li X.H., Zhang S.J., Zhu B.L., et al. The study of the k-Εturbulence model for numericalsimulation of centrifugal pump[J]. 7th International Conference on Computer-Aided Industrial Design and Conceptual Design, 2006
    [20] Yang J.H., Zhang R.H. Calculation method of the increasing coefficients for low specific-speed centrifugal pump[J]. Jixie Gongcheng Xuebao, 2005, Vol. 41, No. 4: 203-205
    [21] Zhang S.J., Li X.H., Zhu B.L., et al. Applicability of k-Εeddy viscosity turbulence models on numerical simulation of centrifugal pump[J]. Jixie Gongcheng Xuebao, 2009, Vol. 45, No. 4: 238-242
    [22] Wu D.Z., Wang L.Q., Hao Z.R., et al. Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation[J]. Journal of Mechanical Science and Technology, 2010, Vol. 24, No. 2: 575-582
    [23] Zhang J.F., Yuan S.Q., Fu Y.D., et al. Numerical forecast of the influence of splitter blades on the flow field and characteristics of a centrifugal pump[J]. Jixie Gongcheng Xuebao, 2009, Vol. 45, No. 7: 131-137
    [24]霍春源,梁跃,梁元敏,等. CYB系列不锈钢冲压焊接离心泵的设计特点[J].膜科学与技术, 1999, 19(4): 59-60
    [25]蔡保元,钱锐.低比速冲压焊接离心泵叶轮设计特点[J].水泵技术, 2001, (3): 12-14
    [26]蔡保元,霍春源,钱锐,等.冲压焊接成型离心泵水力设计及成型方法[J].水泵技术, 2002, (1): 17-19
    [27]张济洲.冲压不锈钢焊接成型离心泵使用过程中的主要缺陷与对策[J].开封大学学报, 2004, 18(3): 87-88
    [28]刘元义,蔡保元,霍春源.冲压焊接多级泵粘性设计方法[J].山东理工大学学报(自然科学版), 2004, 18(4): 12-15
    [29]王广业.不锈钢冲压焊接多级离心泵叶轮优化设计及CFD分析[D].淄博:山东理工大学, 2006
    [30]黎义斌.冲压焊接离心泵叶轮及蜗壳耦合特性准非定常数值模拟[D].镇江:江苏大学, 2006
    [31]雷利利.冲压焊接离心泵叶轮设计方法和成型工艺的研究[D].镇江:江苏大学, 2006
    [32]梁跃,王旭,郭晋伟.冲压焊接多级离心泵的设计特点及选型应用[J].机电产品开发与创新, 2007, 20(6): 72-73
    [33]黎义斌,邬国秀.低比转数冲压焊接离心泵三维湍流数值模拟[J].农业机械学报,2008, 39(7): 72-75
    [34]刘元义,蔡保元,霍春源,等.不锈钢冲压焊接多级泵研究发展现状和应用前景[J].淄博学院学报(自然科学与工程版), 2002, 4(4): 66-69
    [35]何有世,袁寿其,郭晓梅,等.分流叶片离心泵叶轮内变工况三维数值分析[J].江苏大学学报(自然科学版), 2005, 26(3): 193-197
    [36] Oh H.W., Yoon E.S., Chung M.K. An optimum set of loss models for perform ance prediction of centrifugal pressors[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 1997, Vol. 211, No. 4: 331-338
    [37] Medvitz R.B. Perform ance analysis of cavitating flow in centrifugal pumps using multiphase CFD[J]. Proceedings of the ASME Fluids Engineering Division Summer Meeting, 2003, No. 1: 445-453
    [38] Sun J. Off-design perform ance prediction for diffuser pumps[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2001, Vol. 215, No. 2: 191-202
    [39] Wang L.Q., Li Z.F., Dai W.P., et al. 2-D numerical simulation on transient flow in centrifugal pump during starting period[J]. Journal of Engineering Thermophysics, 2008, Vol. 29, No. 8: 1319-1322
    [40] Li Y.B., Wu G.X. Numeric simulation of three-dimensional turbulent flow in low specific-speed centrifugal pump[J]. Nongye Jixie Xuebao, 2008, Vol. 39, No. 7: 72-75
    [41] Cheah K.W., Lee T.S., Winoto S.H., et al. Numerical flow simulation in a centrifugal pump at design and off-design conditions[J]. International Journal of Rotating Machinery, 2007, Vol. 2007
    [42]刘元义,王广业.冲压焊接多级离心泵叶轮内部流场的计算机辅助分析[J].机械工程学报, 2007, 43(8): 207-211
    [43]雷利利,王洋.泵叶轮冲压焊接工艺[J].农业机械学报, 2006, 37(9): 190-192
    [44]王洋.泵叶轮与导叶冲压焊接成形工艺的研究[J].农业机械学报, 1998, 29(1): 117-119
    [45]方志民,姚建华,林世军.冲压焊接成型离心泵叶轮激光焊接应用研究[J].水泵技术, 2003, (3): 40-42
    [46]杨华,谷传纲,汤方平,等.基于CFD紊流计算的离心泵叶型优化设计[J].扬州大学学报(自然科学版), 2007, 10(3): 41-44
    [47]黎义斌,敏政,王洋,等.离心泵不锈钢叶轮冲压焊接的成型工艺[J].排灌机械,2007, 25(5): 20-23
    [48]高江永,郭振苗.离心泵叶轮与蜗壳设计几何参数的优化研究[J].水泵技术, 2007, (4): 6-9
    [49]张人会.低比速离心泵设计理论的研究[D].兰州:兰州理工大学, 2003
    [50]牟介刚.离心泵现代设计方法研究及工程实现[D].杭州:浙江大学, 2005
    [51]蒋鸿.多级离心泵的全面性能预测[D].武汉:华中科技大学, 2005
    [52]崔宝玲.高速诱导轮离心泵的理论分析与数值模拟[D].杭州:浙江大学, 2006
    [53]张启华.新型井泵的水力设计及内部流动数值模拟[D].镇江:江苏大学, 2006
    [54]王福军.计算流体动力学分析[M].北京:清华大学出版社, 2004
    [55]张炜.潜水式轴流泵内部流场计算、分析与性能预测[D].兰州:兰州理工大学, 2006
    [56]陈炜.低比转数离心泵内流模拟和结构优化[D].杭州:浙江大学, 2007
    [57]陈义良.湍流计算模型[M].合肥:中国科技大学出版社, 1991
    [58]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社, 1993
    [59]陶文锉.计算传热学的近代进展[M].北京:科学出版社, 2000
    [60]熊鳌魁.湍流模式理论综述[J].武汉理工大学学报(交通科学与工程版), 2001, (4): 451-454
    [61]王秀勇.离心泵流动特征的数值分析[D].杭州:浙江大学, 2007
    [62]朱自强,张正科,李津.网格生成和数值模拟的讨论[J].空气动力学学报, 1998, (1): 64-67
    [63]周天孝,白文. CFD多块网格生成新进展[J].力学进展, 1999, (8): 344-368
    [64]李栋,孙刚,乔志德.网格嵌套法在复杂流场计算中的应用[J].空气动力学学报, 1998, (6): 216-219
    [65]李忠.轴流泵内部流场数值模拟及实验研究[D].镇江:江苏大学, 2007
    [66]张文军.离心泵全流道空化流场的数值模拟及预测[D].兰州:兰州理工大学, 2008
    [67]吴科扬.微型高速离心泵内部流动数值模拟和优化研究[D].杭州:浙江大学, 2008
    [68]唐莲花.旋转喷射泵内部流场计算、分析与性能预测[D].兰州:兰州理工大学, 2008
    [69]桑迪科,杨卫国,黄思.基于Pro/E的多级离心泵三维造型[J].广州化工, 2008, 36(5): 81-83
    [70]邹涛.离心泵内部三维复杂流场的数值研究[D].西安:西安理工大学, 2007
    [71]张振山.离心泵内部湍流流动数值模拟的研究[D].邯郸:河北工程大学, 2007
    [72]张学静.多级导叶式离心泵的内部流动及能量性能预测[D].兰州:兰州理工大学, 2004
    [73]李贤华.双吸式离心泵内部流场数值模拟研究[D].杭州:浙江工业大学, 2007
    [74]刘琦.基于CFD的离心泵整机流场数值模拟[D].长春:吉林大学, 2008
    [75]黄思,桑迪科,彭少华,等.基于CFD的冲压式多级离心泵性能预测[J].水泵技术, 2009, (2): 11-14
    [76]黄思,桑迪科,彭少华,等.冲压式多级离心泵水力性能的数值模拟及实验验证[J].节水灌溉, 2009, (12): 48-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700