基于CFD技术改善低比速疏水泵汽蚀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济快速发展,对电力供应的需求越来越大。我国电力结构是以火电为主,而且今后相当长的时间内这种现状不会改变。火电是最大的耗煤用户,近年来,能源日益紧张,煤炭价格也在不断上涨,因此,如何提高热效率以达到节煤的目的,成为众多电厂最关心的问题。采用疏水泵连接的给水回热系统是提高电厂效率的有效措施,但由于低压加热器疏水具有吸入压力和吸入温度比较高的特点,从而造成疏水泵的工作条件较差。现有疏水泵品种单一、造型困难,并且很容易发生汽蚀现象,使维护工作量增加,只有少量火电机组采用疏水泵的连接方式。因此,开发品种齐全、汽蚀性能好的疏水泵是十分必要的。
     本文将近年来快速发展的CFD技术应用在低比速疏水泵抗汽蚀性能的研究中,应用CFD软件FLUENT中的标准κ-ε湍流模型对低比速疏水泵内部三维湍流数值模拟,得到同一设计工况下四种不同长短叶片形式叶轮内流场的速度和压力分布。结合试验数据,初步分析流场分布与汽蚀关系,为疏水泵优化设计提供基础参考。
     本文的主要工作如下:
     1.系统概述了前人在汽蚀基本理论和改善离心泵汽蚀性能方面的研究成果,归纳总结国内外在离心泵抗汽蚀性能设计领域的进展。
     2.利用Pro/E三维实体造型软件进行叶轮实体造型工作,在造型过程中,根据后续计算的实际要求,将叶轮构造成具有周期性边界条件的单流道形式。
     3.结合CFD软件FLUENT对所设计的4种叶轮在相同的设计工况下进行三维不可压湍流场的数值模拟。在数值模拟的前处理工作中,将Pro/E造型的叶轮实体导入GAMBIT生成流动区域,在利用非结构网格对流动区域进行网格划分,并指定边界类型。
     4.通过计算结果与试验数据综合对比分析表明,将CFD技术应用于离心泵的设计中,对于改善电厂疏水汽蚀性能具有良好的效果。
As natinal economy is developing rapidly, electric power will be in need more and more heavily. Our power structure is mainly heat power, which will be not changed in very long time. Heat power is the biggest coal consuming user, energy has been become more and more short recently, and price of the coal has shown a continuas up-trend, therefore ,how to increase heat efficency to save coal is focused by many power plant. The effective means for increasing the efficiency of power plant is to connect the extraction feedwater system with drainage pump. But the running conditions of drainage pump is bad, because the working substance in drainage pump is generally low pressure heater drainage which is of features such as high back pressure and suction temperature. Species of the drainage pump are single and mold making difficult, and cavitation is apt to occur which makes the amount of maintenance work inereased, so only few heat power units take drainage pump as attended modle. Therefore, it is very necessary to develop more exellent drainage pump with more specics and more cavitation.
    In this paper, the CFD technique which grows fast recently is applied in the study of anti-cavitations performance. The 3D turbulent numerical simulation for the low specific speed centrifugal pump where clear water flow in by N-S equation \RNG k- ε turbulent model and CFD software, and the velocity and pressure distribution of three kinds of blades with different shape. Combining with experimental findings, the relation between distribution of flow field and cavitations is analyzed and foundational reference is brought up for the perfection of the theory on low specific speed centrifugal pump and optimum design. The main work is outlined as following:
    1. Summarizing the research result on cavitations fundamental theory and the improvement in cavitations performance of the centrifugal pump, generalizing the advancement in anti-cavitations design.
    2. RO/E software is used to make the impeller entity. In the process of modeling, impeller has been constructed to different shapes such as whole flow passage and single flow passage.
    3. Combining with FLUENT, numerical simulation of the 3D incompressible flow field for four kinds of impeller which have been designed at the same design work condition according to actual qualification in later calculation, at pre-treatment of the numerical simulation, impeller entity which is made by PRO/E software is led to
引文
[1] 中国电力大百科全书[M].综合卷.北京:中国电力出版社,1995
    [2] 程明一.热力发电厂[M].北京:水力电力出版社,1998
    [3] 郑体宽.热力发电厂[M].北京:中国电力出版社,2005
    [4] 中国电力大百科全书[M].火力发电卷.北京:中国电力出版社,1995
    [5] 叶涛.热力发电厂[M].北京:中国电力出版社,2005
    [6] 靳智平.电厂汽轮机原理及系统[M].北京:中国电力出版社,2005
    [7] 林万超.火电厂热系统定量分析[M].西安:西安交通大学出版社,1985
    [8] 沈振飞.汽轮机辅助设备[M].北京:水利电力出版社,1987
    [9] I.J.卡拉西克.泵手册[M].北京:机械工业出版社,1984
    [10] 机械工业信息研究院产业与市场研究所.泵产品供应目录[M].北京:机械工业出版社,2000
    [11] 弗·亚·卡列林.离心泵和轴流泵的汽蚀现象[M].北京:机械工业出版社,1985
    [12] 袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,2001
    [13] 刘甲凡,王能秀.改善低比速离心泵不稳定特性方法的分析[J].水泵技术,1991(1):1~4
    [14] 李呋,袁寿其.低比速离心泵水力设计进展[J].排灌机械,2000(1):9~13.
    [15] Lange D, De F, De Bruin GJ. Sheet cavitation and cloud cabitation re entrant jet and three-dimensionality [J]. Applied Scientific Research, 1998, 58: 91-114.
    [16] 张佩芳.无堵塞泵内部三维稠密相固液湍流场数值模拟.江苏大学硕士论文,2003
    [17] 王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [18] 傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002
    [19] Freitas C J. ASME J of Fluids Eng, 1993, 117(3): 208
    [20] 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [21] 李文广.离心泵叶轮内部三维紊流数值计算[J].水泵技术,1997,(5):20~29
    [22] 唐辉,何枫.离心泵内流场的流数值模拟[J].水泵技术,2002,(3):3~14
    [23] 沈天耀.离心叶轮的内流理论基础[M].杭州:浙江大学出版社,1986
    [24] 徐宇,吴玉林,刘文俊,陈乃祥.用两相流模型模拟混流式水轮机内空化流动[J].水力学报,2002(8):57~62.
    [25] Pellone C, Pesllat J M. Norrlinear analysis of three-dimensional partially cavitating hydrofoil [J]. Proc. of the Inter-national Symposium on Cavitation, Deauville, France, 1995.
    [26] Hirschi R et al. Leading edge cavitation in a centrifugal pump: Numerical prediction compared with model tests, Hydraulic Machinery and cavitation [C]. Proce. Of 18th IAHR Symposium on Hydraulic Machinery, Kluwere Academic Publishers, 1996.
    [27] Lange D, De F, De Bruin GJ. Sheet cavitation and cloud cabitation re entrant jet and three-dimensionality [J]. Applied Scientific Research, 1998, 58: 91-114.
    [28] FLUENT Inc., FLUENT User's Guide. Fluent INC., 2003.
    [29] A K Singhal, H Y Li, M M Athavale, Y Jiang. Mathematical Basis and Validation of the Full Cavitation Model. ASME FED SM'01, New Orleans, Louisiana, 2001.
    [30] Philippe Dupont, Tomoyoshi Okamura. Cavitating Flow Calculations in Industry [J]. International Journal of Rotating Machinery, 9(3): 163-170, 2003.
    [31] 关醒凡.现代泵设计手册[M].北京:宇航出版社,1995
    [32] 张克危.流体机械原理(上)[M].北京:机械工业出版社,2000
    [33] 严敬,杨小林.国外水泵研究现状概述[J].排灌机械,2003(5):1~3.
    [34] 查森.叶片泵原理及水力设计[M].北京:机械工业出版社.1998
    [35] 孙寿.水泵汽蚀研究的现状[J].水泵技术,1995(3):39~48
    [36] 储训.水泵抗汽蚀、磨损防护技术的研究进展[J].流体机械,2001(10):27~30
    [37] 朱红耕.泵汽蚀余量及其试验方法浅议[J].流体机械.1995(1):23~26
    [38] 何伟等.冷却水循环泵抗汽蚀性能改造[J].大氨肥.1995(3):166~167
    [39] 黄以良.提高泵汽蚀性能的设计方法探讨[J].排灌机械.1998(3):56~58
    [40] 刘文涛.如何提高离心泵的抗汽蚀性能[J].黑龙江八一农垦大学学报.1994(3):57~59
    [41] 李龙,陈黎明.泵优化设计国内现状及发展趋势[J].水泵技术.2003(2):8~12
    [42] 吴仁荣.叶轮的结构形状对离心泵汽蚀性能的影响[J].机电设备.1995(6):18~21
    [43] 张成冠.采用长短叶片改善水泵转轮汽蚀和磨损性能的实验研究[J].水泵技术.1997(6):11~16
    [44] 朱祖超等.低比转速复合离心叶轮设计探讨[J].水泵技术,1995(5):11~14
    [45] 宋海辉,匡和碧.CFD技术在水轮机转轮抗空蚀改造中的应用[J].中国农村水力水电.2004(10):100~102
    [46] 张维平,韦彩新,韩凤琴.用三元粘性数值模拟法探讨水轮机转轮空蚀问题[J].水力发电.2003(2):42~44
    [47] 李海权.长短叶片设计对改善离心泵其实性能的作用[J].泵与阀门.2004(5):44~46
    [48] 王福星,孙彦君,白广明等.采用复合叶片式叶轮提高风力离心泵水力性能[J].排灌机械.1996(2):10~11
    [49] 徐岩,宣征南.提高低比速离心泵扬程探讨[J].水泵技术.2004(3):11~14
    [50] 韩秀丽,张乐福,娄国彬等.采用三维粘性流进行长短叶片转轮水力性能分析[J].大电机技术.2003(6):37~39
    [51] 徐洁,谷传刚.长短叶片离心泵叶轮内部流动的数值计算[J].化工学报.2004(4):541~544
    [52] 郭晓梅.污水泵CAD,三维造型,流场分析一体化.江苏大学硕士论文,2003
    [53] 苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    [54] 李人宪.有限体积法基础[M].北京:国防工业出版社.2005
    [55] 帕坦卡·S·V.传热与流体流动的数值计算[M].北京:科学出版社,1998
    [56] 袁寿其,陈池,郑铭.无过载离心泵叶轮内三维不可压湍流场计算[J].机械工程学报.2000,(5):31~34
    [57] 刘胜柱,郭鹏程,罗兴锜.离心泵叶轮内的网格生成与计算流体动力学分析[J].农业工程学报.2004(9):78~81
    [58] 朱自强等编著.应用计算流体力学[M].北京:北京航空航天大学出版社,1999
    [59] Chen, Y. S., 1986, Application of a Near_Wall Function to Turbulence Flow Computations, AIAA Paper 86-0483
    [60] Johns, W. P. et al., The Calculation of Low_Reynolds Number Phenomena with a Two-equation Model of Turbulence, International J. Of Heat and Mass Transfer, Vol. 16, 1973, pp 1119~1130
    [61] Thomas P D, Middlecoeff J F. Direct control of the grid point distribution in meshes generated by elliptic equations. AIAAJ, 1980. 18: 652-656
    [62] 曹树良等.用代数应力紊流模型预估水轮机转轮内部三维流场[J].清华大学学报,1998,38(4),113~116
    [63] 李海锋,吴玉林,赵志妹.利用三维紊流数值模拟进行离心叶轮设计比较[J].流体机械,2001(9):18~21
    [64] 郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,1995
    [65] 黄继汤,空化与空蚀的原理及应用[M].北京:清华大学出版社,1991
    [66] 胡影影,朱克勤,席葆树.固壁空蚀数值研究[J].应用力学学报,2004(3):22~25
    [67] 汤跃,金立江.泵试验理论与方法[M].北京:兵器工业出版社,1995
    [68] A·T·特罗斯科兰斯基等著.叶片泵计算与结构[M].北京:机械工业出版社,1981
    [69] R·T·柯乃普,J·W·戴利,F·G·哈密脱.空化与空蚀[M],北京:水利出版社,1981
    [70] 郑梦海.开式试验台上泵的汽蚀试验[J].水泵技术,1998(6):39~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700