离心泵流动特征的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,随着计算机硬件水平的不断提高,国际上CFD技术在流体机械的优化设计中得到了广泛的应用,在国内却还处于初级阶段,如何将CFD技术更有效地应用到产品分析和设计中去,还有待于进一步的分析研究。在前人工作的基础上,本文对CFD技术在离心泵的性能预测、能量损失和流场结构的分析等方面的应用进行了一些有益的尝试和探索,以数值模拟的方式详细地揭示了不同工况下离心泵的流动特征。
     本文首先对一些CFD基本理论进行了简要介绍,推导了旋转坐标系下用于离心泵内部流场计算的控制方程。其次在确定数值模拟方案时,对计算域的组成结构、网格的划分方案提出了自己的观点,即计算域应该由叶轮通道、蜗室、前腔、后腔和密封环间隙组成,而不是仅仅包含叶轮通道和蜗室;对计算域进行网格划分时,对于前后腔和密封环间隙采用结构化网格,蜗室以及叶轮通道采用非结构化网格;分别通过对不同的网格数量和湍流模型的计算结果与试验结果进行比较,确定了适合于所采用的离心泵模型的网格数量和湍流模型;本文同时对叶片与蜗舌不同相对位置时的流场进行了数值模拟,发现叶片与蜗舌相对位置的不同对计算结果也有一定的影响,并对计算结果与相对位置之间的关系进行了总结分析。在数值模拟方案确定了之后,通过对两种不同计算域的计算结果与试验值进行对比,证明本文关于计算域的组成结构的观点是正确的,并且在0~1.35Q_(opt)流量范围内,扬程、轴功率和效率等性能参数的预测曲线与试验曲线吻合情况良好。由于计算域已经比较完整,对离心泵中存在的圆盘摩擦损失、容积损失和水力损失也能够应用数值模拟的方法做出全面的预测。通过对传统的能量损失计算公式中存在的不足之处进行修正,对各过流部件中的能量损失进行了预测,表明叶轮和蜗壳中的水力损失是能量损失的主要方式,并揭示了各种能量损失随流量的变化规律。受蜗壳变截面面积的影响,各个叶轮通道中的流量和能量损失情况也不一样,其中在即将掠过蜗舌的几个叶轮通道中的水力损失最大,并且从最靠近蜗舌的叶轮通道中流出的液体是产生圆盘摩擦损失和泄漏损失的主体。通过数值模拟捕捉到了离心泵不同部位中存在的一些不利的流动现象,如二次流、冲击现象,以及某些工况下在叶轮和蜗室中存在的死水区,等等,并分析了总压、静压和速度等物理量在各个过流部件中的分布规律,为离心泵的进一步优化设计提供了重要的参考信息。
In recent years, CFD technology has been widely used for theoptimum design of fluid machinery in developed country. In our country,the research and applications of CFD technology are still preliminary, andit needs a further development on the application of CFD technology todesign fluid machinery more efficiently. Based on the CFD technology, anumerical method is developed to predict performance, analyse energylosses and flow characteristics in a centrifugal pump, and the detailedflow field at different operating conditions is also revealed by thismethod.
     In the paper, some CFD theories are introduced firstly, and thecontrol equations in rotating reference frame used to the simulation of theflow field of a centrifugal pump are deduced. A new kind ofcomputational domain structure, that is, the front and back chambers andthe seal clearance should be involved in the computational domainbesides the impeller passages and volute casing, is developed innumerical simulation. The following grid-generation method is selected,the structured grid is used in front chamber, back chamber and sealclearance, the unstructured grid is used in the volute casing and thecomplicated impeller passages. Through the comprehensive comparisonsbetween simulating datum, in different grid number and turbulencemodels, and experimental datum, the suitable gird number and turbulencemodel are confirmed for the centrifugal pump model. The flow are also simulated at different relative positions between blade and volute tongue,it is found that the different relative positions between blade and volutetongue can influence the numerical simulation results, and the regularitiesbetween them are analyzed. Based on the method of numerical simulation,the simulating results show that the computational domain structure usedby the authors is better, through the comparison between the simulatingresults derived from two different kinds of computational domains and theexperimental results. Within the flow range from 0 to 1.35Q_(opt), thecomputational performance curves such as head, shaft power andefficiency agree well with the tested curves. Due to the completecomputational domain, a full prediction can be made too, such as the diskfriction loss, volume loss and hydraulic loss existing in a centrifugalpump. The losses existing in each through-flow part are predicted bycorrecting the disadvantage of traditional method, the computationalresults shows that the losses in the impeller passage and volute casing arethe majority of the whole losses, and the energy losses regularitiesaccording with flow rate are revealed, too. Influenced by the varyingcross-section area of volute casing, the flowrates and energy losses ineach impeller passage are quite different, the losses in the passages nearthe volute tongue are much more than the others, and the liquids comingfrom the passages most near the volute tongue are the major componentsthat produce the disk friction loss and volume loss. By numericalsimulation, some adverse phenomena are found, such as jet-wakestructure, secondary flow, impact phenomenon, dead water zones, and soon. The distribution regularities of total pressure, static pressure andvelocity are also analyzed in each through-flow part. It provides importantguidance for the optimum design of a centrifugal pump.
引文
[1] 陈楚成.泵业市场动态.化工设备与管道,2005,42(3):60-61
    [2] 施卫东,李伟,刘厚林,等等.国内泵业技术现状与发展趋势.农机化研究,2005,(5):24-26
    [3] 陈楚成.泵类产品技术发展状况.化工设备与管道,2005,42(4):59-60
    [4] 任智惠.泵行业技术现状及发展趋势.机电产品市场,2004,(9):86-87
    [5] 李龙,陈黎明.泵优化设计国内现状及发展趋势.水泵技术,2003,(2):8-12
    [6] 关醒凡.我国泵技术的发展与展望.通用机械,2005,(9):38-41
    [7] Craig Homsby. CFD—Driving pump design forward. World Pumps, 2002, (431): 18-22
    [8] 李海锋,穆忠波,吴玉林.半开式离心泵叶轮内三维紊流的数值模拟.水泵技术,2001,(1):9-15
    [9] 彭晓强,张永学,曹树良.低比转数离心泵叶轮出口紊流流动结构分析.农业机械学报,2004,35(1):69-72
    [10] Weidong Zhou, Zhimei Zhao, T.S. Lee. Investigation of flow through centrifugal pump impellers using computational fluid dynamics. International Journal of Rotating Machinery, 2003, 9(1): 49-61
    [11] 唐学林,陈稚聪,吴玉林.离心泵叶轮内部清水湍流的动态大涡模拟.清华大学学报(自然科学版),2004,44(9):1231-1234
    [12] 赵斌娟,袁寿其,李红.双吸式叶轮内流三维数值模拟及性能预测.农业工程学报,2006,22(1):93-96
    [13] 袁寿其,何有世,袁建平.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟.机械工程学报,2006,42(5):60-63
    [14] 张剑慈,崔宝玲,李昳.开式离心叶轮内部流道的数值模拟.机械工程学报,2006,42(4):37-41
    [15] 钱健,刘超,汤方平.离心泵叶轮内部三维紊流数值模拟与验证.农业机械学报,2005,36(1):32-34
    [16] F.C. Visser, J.J.H. Brouwers, J.B. Jonker. Fluid flow in a rotating low-specific-speed centrifugal impeller passage. Fluid Dynamics Research, 1999, 24(5): 275-292
    [17] 李文广.离心泵蜗壳内部非定常流动测量.水泵技术,2005,(5):19-23
    [18] 张兄文,李国君,李军.离心泵蜗壳内部非定常流动的数值模拟.农业机械学报,2006,37(6):63-68
    [19] F. Longatte, J.-L. Kueny. Analysis of rotor-stator-circuit interactions in a centrifugal pump. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conferencez, 1999, San Francisco, California
    [20] 李安虎,李红,刘炜巍.离心泵蜗壳内流场的数值模拟.通用机械,2004,(11):50-53
    [21] 王企鲲,戴韧,陈康民.蜗壳进口周向非均匀流动的数值研究.工程热物理学报,2003,24(2):241-243
    [22] E.Cezmi Nursen, Erkan Ayder. Numerical calculation of the three-dimensional swirling flow inside the centrifugal pump volutes. International Journal of Rotating Machinery, 2003, (9): 247-253
    [23] 耿少娟,聂超群,黄伟光.不同叶轮形式下离心泵整机非定常流场的数值研究.机械工程学报,2006,42(5):27-31
    [24] 杨华,谷传纲,王彤.时间推进法求解离心泵内部不可压流场.工程热物理学报,2005,26(1):61-65
    [25] 郭鹏程,罗兴镝,刘胜柱.离心泵内叶轮与蜗壳间耦合流动的三维紊流数值模拟.农业机械学报,2005,21(8):1-5
    [26] 黄思,吴玉林.离心泵内三维流场非对称性及泵受力的数值分析.流体机械,2006,34(2):30-33
    [27] 唐辉,何枫.离心泵内流场的数值模拟.水泵技术,2002,(3):3-9
    [28] K. Majidi, H.E. Siekmann. Numerical calculation of secondary flow in pump volute and circular casings using 3d viscous flow techniques. International Journal of Rotating Machinery, 2000, 6(4): 245-252
    [29] Miguel Asuaje, Farid Bakir, Smaine Kouidri. Numerical modelization of the flow in centrifugal pump: volute influence in velocity and pressure fields. International Journal of Rotating Machinery, 2005, (3): 244-255
    [30] J.D.H. Kelder, R.J.H. Dijkers, N.P. Kruyt. Experimental and theoretical study of the flow in the volute of a low specific-speed pump. Fluid Dynamics Research, 2001, 28(4): 267-280
    [31] B.P.M. van Esch, N.P. Kruyt, J.B. Jonker. An inviscid-viscous coupling method for computing unsteady flows in entire pump configurations. The 1997 ASME Fluids Engineering Division Summer Meeting, 1997, Vancouver, Canada
    [32] Daniel Baun. Hydrodynamic forces in centrifugal pump and compressor impellers in volute casings: measurements using magnetic bearings and CFD simulations. Ph.D. Dissertation, University of Virginia, 2002
    [33] 张新敏,夏延秋,赵清.离心泵稳态密封间隙力的计算分析.润滑与密封,2004,(4):63-65
    [34] 陈鱼,费振桃,蔡永雄.输送清水时口环间隙对离心油泵性能的影响.流体机械,2006,34(1):1-5
    [35] C.E. Brennen, R.V.Uy. Fluid flow equations for rotordynamic flows in seals and leakage paths. Journal of Fluids Engineering, 2002, 124(1): 176-181
    [36] D. Rame Gowda, B.S. Prabhu. High-pressure annular seal leakage and rotordynamics with application to turbomachinery. International Journal of Rotating Machinery, 2002, 8(6): 403-411
    [37] Larry A. Villasmil, Dara W. Childs, Hamn-Ching Chen. Understanding friction factor behavior in liquid anular sealswith deliberately roughened surfaces. Journal ofTribology, 2005, 127(1): 213-222
    [38] 李云开,杨培岭,任树梅.圆柱型灌水器迷宫式流道内部流体流动分析与数值模拟.水动力学研究与进展,2005,20(6):736-743
    [39] M.M. Athavale, R.C. Hendricks, B.M. Steinetz. Numerical simulation of flow in a whirling annular seal and comparison with experiments. San Diego: The 31st Joint Portpulsion Conference and Exhibit, 1995. NASA Technical Memorandum 107117
    [40] 蒋鸿,张克危.多级离心泵的全面性能预测.水泵技术,2005,(1):20-23.
    [41] 王彤,陆逢升,李巍.叶轮轮面摩擦损失的实验研究.流体机械,1997,25(5):3-6
    [42] 李巍,徐忠,陆逢升.泵内圆盘摩擦损失实验研究.农业机械学报,1998,29(2):58-61
    [43] 李巍,陆逢升,王彤.减小圆盘摩擦损失新方法的实验研究.水动力学研究与进展(A辑),1998,13(1):65-70
    [44] J.F. Gulich. Disk friction losses of closed turbomachine impellers. Forschung im Ingenieursesen, 2003, 68(2): 87-95
    [45] 费振桃,蔡永雄,李文广.泄漏量对圆盘摩擦损失影响的数值计算.水泵技术,2004,(2):8-12
    [46] James Jeffrey Moore. Rotordynamic prediction of centrifugal impeller shroud passages using computational fluid dynamic techniques with a combined primary/secondary flow model. Ph.D. Dissertation, Texas A&M University, 1999
    [47] 朱荣生,付强,李维斌.低比转数离心泵叶轮内汽蚀两相流三维数值模拟。农业机械学报,2006,37(5):75-79
    [48] 李军,刘立军,丰镇平.附着空化流动下离心泵水力性能数值预测.西安交通大学学报,2006,40(3):257-260
    [49] Philippe Dupont, Tomoyoshi Okamura. Cavitating flow calculations in industry, International Journal of Rotating Machinery, 2003, 9(3): 163-170
    [50] Motohiko Nohmi, Akira Goto. Cavitation CFD in a centrifugal pump. Fifth International Symposium on Cavitation, 2003, Osaka, Japan
    [51] R.Hirschi, Ph.Dupont, F.Avellan. Centrifugal pump performance drop due to leading edge cavitation: Numerical predictions compared with model tests. Journal of Fluids Engineering, 1998, 120(4): 705-711
    [52] Franklyn J Kelecy. Numerical prediction of cavitation in a centrifugal pump. QNET-CFD Network Newsletter, 2003, 2(3): 14-16
    [53] Philippe Dupont. Numerical prediction of cavitation: Improving pump design. Sulzer Technical Review, 2001, (2): 24-27
    [54] JL. Reboud, O. Coutier-Delgosha, B. Pouffary. Numerical simulation of unsteady cavitation flows: Some applications and open problems. Fifth International Symposium on Cavitation, 2003, Osaka, Japan
    [55] 朱保林.离心泵内流三维数值模拟.硕士学位论文,浙江工业大学,2005.
    [56] ZHAO Binjuan, YUAN Shouqi, LIU Houlin. Three-dimensional coupled impeller-volute simulation of flow in centrifugal pump and performance prediction. Chinese Journal of Mechanical Engineering, 2006, 19(1): 59-62
    [57] Jose Gonzalez, Joaquin Fernandez, Eduardo Blanco. Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump. Journal of Fluids Engineering, 2002, 124(2): 348-355
    [58] Rikke K. Byskov, Christian B. Jacobsen, Nicholas Pedersen. Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part Ⅱ: Large Eddy Simulations. Journal of Fluids Engineering, 2003, 125(1): 73-83
    [59] 关醒凡.现代泵技术手册.北京:宇航出版社,1995
    [60] 边其中,乔钝,张丽馥.离心泵水力模型汇编.沈阳水泵研究所,1996
    [61] 王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2006
    [62] 陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2005
    [63] 林建忠.湍动力学.杭州:浙江大学出版社,2000
    [64] Fluent Inc.. Fluent6.1 user's guide. 2003
    [65] 沙毅,闻建龙.泵与风机.合肥:中国科学技术大学出版社,2005
    [66] 沈阳水泵研究所,中国农业机械化科学研究院.叶片泵设计手册[M].北京:机械工业出版社,1983.43-44
    [67] 章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998
    [68] 张克危.流体机械原理(上册).北京:机械工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700