纳米粒子的结构可控制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其优异的性能,在生物医学材料、催化材料、太阳能电池、传感器等领域具有广泛的应用前景。具有特殊形貌和尺寸的纳米材料可控制备以及其相应的性质是现代材料科学的一个研究热点。本文的主要工作是以液相化学合成法为基础,探索纳米材料的可控制备新途径。这些纳米材料分别是:MnO/NiO纳米颗粒、MnS纳米棒、CdSe量子点。通过调控体系中的关键性实验参数,成功实现这些材料的形貌和尺寸的可控制备,对所制备的材料进行结构表征和性质研究,并对其形成机理进行了探索性研究。
     (1)选用Mn(CH3COO)2·4H2O为前体,以油酸和油胺为表面活性剂,在十八烯溶剂中用“一锅法”制得类四角星形状的MnO纳米晶,讨论了表面活性剂浓度及反应时间对MnO形貌和粒径的影响。并且在实验中发现,体系中少量水的存在,对得到该特殊形貌的锰氧化物纳米粒子有重要影响。研究了具有特殊形貌的纳米晶经氧化后的形貌、物相以及对亚甲基蓝染料分子的吸附性能。基于对锰氧化物纳米粒子制备的研究基础,选用纳米镍氧化物作为延伸,将锰氧化物的制备方法应用于镍氧化物的制备,制备得到形貌、对制得的纳米NiO进行磁性能测试,该样品在常温下呈现软铁磁性。
     (2)以液相合成法为基础,选用Mn(CH3COO)2·4H2O和硫粉为原料,首次通过多次注入前驱体的方法,成功制备得到了硫化锰纳米棒,研究了不同的制备条件如注入前驱体的量及时间对MnS纳米棒形状及分布的影响。根据实验结果,对其生长机理进行了初步的探讨。
     (3)利用非金属有机前驱体法,制备了粒径均匀,分散性良好的CdSe纳米晶,通过紫外-可见吸收光谱、荧光发射光谱、透射电镜等表征手段研究了制备条件对量子点光学性质的影响,结果表明所合成的CdSe量子点的吸收峰范围在526~580nm,采用较大的初始Cd/Se比值有利于得到发光性质更好的CdSe纳米晶。实验中发现经油酸稳定的CdSe纳米晶较经硬脂酸稳定的CdSe纳米晶具有更好的光稳定性,对其可能的原因进行了分析。最后,初步尝试利用“绿色”合成法制备得到了长径比约为3:1的CdSe纳米棒。
     本文通过对纳米材料的形貌控制合成研究,探索可控合成晶粒尺寸均匀,分散良好的纳米材料的方法,探讨不同纳米材料的晶粒生长行为,进而揭示其形成机理,并研究其微结构与性能之间的关系,其结论将对类似纳米材料的制备提供实验依据和理论支持。
Nanomaterials have shown a large number of potential commercial applications in the fields of biomedical materials, catalytic material, solar cells and sensors et al. The controlled synthesis of nanomaterials with specific morphology and size besides of its properties study has been a research focus of materials science. The object of this dissertation is to explore new controllable synthetic methods to nanostrucured materials based on liquid-phase chemical synthesis method. Several nanostructured have been investigated including MnO/NiO nanocrystals, MnS nanorods and CdSe nanocrystals. Those materials with controllable morphology and size have been successfully synthesized by adjusting the crucial factors in the reaction system, and discuss the possible formation mechanism of these materials. The structures and properties of as-prepared materials have been characterized.
     1. Novel quadrangle MnO nanoparticles were one-pot synthesized by the thermal decomposition of Mn(CH3COO)2·4H2O as precursor in octadecene, using oleic acid and oleyl amine as surfactants. The influences of experimental parameters, including the concentration of the surfactants and the reaction time were investigated. The presence of small amounts water in the reaction system has been found get a major impact of the formation of the special morphology of the manganese oxide nanoparticals. The as-prepared MnO nanoparticles were further partially oxidized and the morphology, structure and the dye adsorption properties to methylene blue after oxidized were studied. Based on the work bases on manganese oxide, nickel oxide has been chose as the pattern system to be synthesized used the manganese oxide method. The magnetic properties of the as-prepared NiO nanoparticles were investigated. They showed soft ferromagnetism at room temperature.
     2. Based on liquid-phase chemical synthesis method, used Mn(CH3COO)2·4H2O and sulfur as precursors, we first successfully synthesized MnS nanorods by injected the precursors interval. The influences of experimental parameters, including the injection volume of the precursors and the injection interval on the shape and the distribution of the MnS nanorod were investigated. The primary formation mechanism has also been studied.
     3. Monodispersed CdSe nanocrystals were prepared through organometallic precursor method. Influences of preparation condition on the optical properties of the quantum dots were investigated by Uv-vis absorption spectroscopy, fluorescence spectroscopy and transmission electron microcopy (TEM) et al. The results show that the adsorption of as-prepared quantum dots was in 526~580 nm. A larger initial Cd: Se ratio of the precursors method represents a series of excellent emitters in term of their PL, QY, the fwhm of the emission. The photo- stability of the CdSe nanocrystals which used oleic acid as stabilizer was much better than those used stearic acid as stabilizer and the possible causes were analyzed. Finally, we made a primary study of prepared CdSe nanorods with 3:1 aspect ratio though greener approach.
     The aim of this thesis is based on the study of morphology controllable synthesis of nanomaterials, explore new chemical routes for the synthesis of Monodispersed nanocrystals, investigate the growth behavior of different nanomaterials and reveal their formation mechanisms. Finally, study their relationship between their microstructure and properties. The study results will provide experimental foundation and theoretical support to the preparation of nanomaterials with similar structure.
引文
[1]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.
    [2]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science,1996, 271(5251):933-937.
    [3]朱静等.纳米材料与器件[M].北京:清华大学出版社,2003.
    [4]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites[J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [5]Alivisators A P. Perspective on the physical chemistry of semiconductor nanocrystals[J]. Journal of Physical Chemistry,1996,100(31):13226-13232.
    [6]Health J R. Nanoscale materials[J].Accounts of Chemical Research,1999,32(5):388-388.
    [7]Rabani E, Reichman D R, Geissler P L, et al. Dying-mediated self-assembly of nanoparticles[J]. Nature,2003,426(6964):271-274.
    [8]Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth[J]. Journal of the American Chemical Society,2002,124(9):2049-2055.
    [9]Jin R C, Cao Y C, Hao E C, et al. Controlling anisotropic nanoparticle growth through plasmon excitation [J]. Nature,2003,425(6957):487-490.
    [10]Peng Z A, Peng X G. Nearly monodisperse and shape- controlled CdSe nanocrystals via alternative routes:Nucleation and growth[J]. Journal of the American Chemical Society, 2002,124(13):3343-3353.
    [11]Deivaraj T C, Park J H. Novel bimetallic thiocarboxylate compounds as single-source 'precursor to binary and ternary metal sulfide materials[J]. Chemistry of Materials,2003, 15(12):2383-2391.
    [12]Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals[J]. Nature,2000, 404(6773):59-61.
    [13]白春礼.纳米科学与技术[M].昆明:云南科技出版社,1995.
    [14]Wang J F, Gudkxn M S, Duan X F, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science,2001,293(5534): 1455-1457.
    [15]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells[J]. Science, 2002,295(5564):2425-2427.
    [16]Hansen P L, Wagner J B, Helveg S, et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals[J]. Science,2002,295(5562):2053-2055.
    [17]Tessler N, Medvedev V, Kazes M, et al. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes[J]. Science,2002,295(5559):1506-1508.
    [18]Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J]. Science,2001,294(5548):1901-1903.
    [19]Black C T, Murray C B, Sandstrom R L, et al. Spin-Dependent Tunneling in Self-Assembled Cobalt-Nanocrystal Superlattices[J]. Science,2000,290(5494):1131-1134.
    [20]Zhang Z, Lee S H, Vittal J J, et al. A simple way to prepare PbS nanocrystals with morphology tuning at room temperature[J].Journal of Physical Chemistry B,2006,110(13): 6649-6654.
    [21]Puntes V F, Krishnan K M, Alivisatos A P. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt[J]. Science,2001,291(5511):2115-2117.
    [22]Shim M, Sionnest P. N-Type Colloidal Semiconductor Nanocrystals[J]. Nature,2000, 407(6807):981-983.
    [23]Holmes J D, Johnston K P, Doty R C, et al. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires[J]. Science,2000,287(5457):1471-1473.
    [24]Liu Y S, Mo C M, Cai W L. J. Negative temperature coefficient of resistivity in bulk nanostructured Ag[J]. Materials Science and Technology,2000,16(5):521-524.
    [25]巩雄,郭永,杨宏秀,等.纳米材料及其光学特性[J].化学通报,1998(3):19-21.
    [26]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003.
    [27]都有为,罗河烈.磁记录材料[M].北京:电子工业出版社,1992.
    [28]Chokshi A H, Rosen A, Karch J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials[J]. Scipta Metal Materials.1989,23(10):1679-1684.
    [29]Hagfeldt A, Gratzal M. Light-induced redox reaetions in nanoerystalline systems[J]. Chemical Reviews,1995,95(1):49-65.
    [30]张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景[J].材料工程,2000,(3):42-48.
    [31]刘珍,梁伟,许并社,等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):103-108.
    [32]张阳德.纳米生物技术在医学上的研究现状及应用前景[J].临床外科杂志,2005,13(1):40-41.
    [33]王浩,赵文宽,方佑龄,等.二氧化钛光催化杀死肿瘤细胞的研究[J].催化学报,1999,20(30):373-374.
    [34]Ruan J M. Biocompatility evaluation in bitro part I:Morphology expression and proliferation of human and rat osteblasts[J]. Journal of Central South University of Technology,2001,8(1):1-8.
    [35]Huang M H, Mao S, Feick H N, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292(5523):1897-1899.
    [36]Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J]. Nature,2001,409(6816):66-69.
    [37]Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science,2001,293(5533):1289-1292.
    [38]Yao Z, Postman W C, Balents L. Carbon nanotube intramolecular junctions[J]. Nature,1999, 402(6759):273-276.
    [39]Derycke V, Martyel R, Appenzeller J. Carbon nanotube inter-and intramolecular logic gates[J]. Nano Letters,2001,1(9):453-456.
    [40]Maiti A, Rodriguez J A. SnO2 nanoribbons as NO2 sensors:Insights from first principles calculations[J]. Nano Letters,2003,3(8):1025-1028.
    [41]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报.2005,28(1):5-11.
    [42]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [43]樊双莉.低温等离子体增强CVD技术及制备氮化硅薄膜的研究[硕士学位论文].广州:华南师范大学,2005.
    [44]Gleiter H. Nanocrystalline materials[J]. Europhysics news.1989,20(4):223-315.
    [45]Siegles R W, Hahn H, Yussouff M, et al. Current trends in the physics of materials[M]. Singapore: Word Scientific,1987.
    [46]Xu B S, Tanaka S I. Phase transformation and bonding of ceramic nanoparticles in a TEM[J]. Nanostructured Materials,1995,6(5):727-730.
    [47]Xu B S, Tanaka S I. Effect of crystallization and phase transformation in nanocrystalline TiO2[J]. Nanostructured Materials,1993,3(3):61-67.
    [48]苏品书.超微粒子材料技术[M].中国台湾:复汉出版社,1989.
    [49]刘新征.硫化物纳米和微晶材料的溶剂热合成及其机理研究[博士学位论文].合肥:中国科技大学,2006.
    [50]孙志刚,胡黎明.气相法合成纳米颗粒的制备技术进展[J].化工进展,1997,(2):21-24.
    [51]李凤生,杨毅.纳米/微米复合技术及应用(第一版)[M].北京:国防工业出版社,2002.
    [52]李小兵,刘竞超.纳米粒子与纳米材料[J].塑料,1999,28(1):19-22.
    [53]周洁,马明,张宇,等.不同尺寸Fe3O4磁性微粒的制备和表证[J].东南大学学报(白然科学版),2005,35(4):615.
    [54]刘静波,王智民,郑春萍,等.镧掺杂钛酸钡纳米晶陶瓷元件的湿敏特性[J].功能材料与器件学报,2000,6(2):106-110.
    [55]余家国,赵修建.TiO2纳米粉体的溶胶—凝胶工艺制备和光催化活性表征[J].中国粉体技术,2000,6(2):7-10.
    [56]余家国,赵修建,林立,等.超亲水TiO2/SiO2:复合薄膜的制备与表征[J].无机材料学报,2003,16(3):529-534.
    [57]李蓉萍,辛颖.纳米TiO2敏感特性的研究[J].传感技术,2002,21(11):57-60.
    [58]Yang S. F, Liu Y. H, Guo Y.P, et al. Preparation of rutile Titania nanocrystals by liquid method at room temperature[J]. Materials Chemistry and Physics,2002,7(2):501-506.
    [59]徐华蕊,李凤生.沉淀法制备纳米级粒子的研究[J].化工进展,1996,(5):29-33.
    [60]Mazadiyaski K S, Dolloff R T, Smith S. Preparation of small-grained and large-grained ceramics from Nb-Doped BaTiO3[J]. Journal of the American Chemical Society,1971,54(9): 452-454.
    [61]黄军华,高镰,陈锦元,等.纳米TiO2粉体制备过程中结晶度的控制[J].无机材料学报,1996,11(2):51-57.
    [62]施尔畏,夏长泰,王步国,等.水热法的应用前景[J].无机材料学报,1996,11(5):193-206.
    [63]Rabenau A. The role of hydrothermal synthesis in preparative chemistry[J]. Angewandte Chemie International Edition,1985,24(12):1026-1040.
    [64]Qian Y T. Solvothermal synthesis of nanocrystalline Ⅲ-Ⅴ semiconductor[J]. Advanced Materials,1999,11(13):1101-1102.
    [65]唐华.无机颗粒材料的液相合成与形貌控制[博士学位论文].武汉:武汉理工大学,2008.
    [66]Zhu L P, Xiao H M, Fu S Y. Template-Free Synthesis of Cantaloupe-like Fe2O3 Superstructures[J]. Crystal Growth and Design,2007,7(2):177-182.
    [67]Liu H, Cui H, Wang J, et al. Growth of NaFe4P12 Skutterudite single crystalline nanosprings synthesized through a hydrothermal reduction alloying method [J]. Journal of Physical Chemistry B,2004,108(35):13254-13257.
    [68]Xie Y, Qian Y T, Wang W Z. A benzene-thermal synthetic route to nanocrystalline GaN[J]. Science,1996,272(5270):1926-1927.
    [69]Xia Y, Yang P, Sun Y G, et al. One -dimensional nanostructures: synthesis, characterization, and applications[J]. Advanced. Materials,2003,15:351-352.
    [70]Goldbach A, Iotn L, Grimsditch M, et al. The formation of Se: A new resonance raman feature in the photochemistry of Zeolite- encapsulated selenium[J]. Journal of the American Chemical Society,1996,118(8):2004-2007.
    [71]Stein A, Ozin G A. From the molecule to an expanded Ⅰ-Ⅶ semiconductor quantum
    superlattice: silver, sodium halo-sodalites[J]. Journal of the American Chemical Society, 1990,112(9):904-905.
    [72]Herron N, Wang Y, Ecker H. Synthesis and characterization of surface-capped, size-quantized cadmium sulfide cluters. Chemical control of cluster size[J]. Journal of the American Chemical Society,1990,112(4):1322-1326.
    [73]Heorrn N J. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties [J]. Journal of Physical Chemistry,1991,95(2): 525-532.
    [74]Foss A J, Hornyak G L. Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape[J]. Journal of Physical Chemistry,1994,98(11): 2963-2971.
    [75]Brumlik C J, Mevon V P, Martin C R. Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques[J]. Journal of Materials Research,1994,9(5):1174-1183.
    [76]Nishizawa M, Mevon V P, Martin C R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity[J]. Science,1995,268(5211):700-702.
    [77]Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates[J]. Journal of Physical Chemistry,1996, 100(33):14037-14047.
    [78]Zhang Z, Gekhtman D, Dresselhaus M S, et al. Processing and characterization of single-crystalline ultrafine bismuth nanowires[J]. Chemistry of Materials,1999,11(7): 1659-1665.
    [79]Prieto A L, Sander M S, Martin-Gonzalez, et al. Electrodeposition of ordered Bi2Te3 nanowire arrays[J]. Journal of the American Chemical Society,2001,123(29):7160-7161.
    [80]Han W, Fan Z, Li Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J]. Science,1997,277(5330):1287-1289.
    [81]Dai W, Wong E. W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods[J]. Nature,1995,375(6534):769-772.
    [82]Fendler J H. Atomic and molecular clusters in membrane mimetic chemistry[J]. Chemical Reviews,1987,87(5):877-899.
    [83]方臻.金属和金属氧化物纳米材料的控制合成及形成机理研究[博士学位论文].合肥:中国科技大学,2006.
    [84]Rao C N, Govindaraj A, Deepark F L, et al. Surfactant-assisted synthesis of semiconductor nanotubes and nanowires[J].Applied Physics Letters,2001,78(13):1853-1855.
    [85]Yang S H, Wang S H, Fung K K. One-dimensional growth of rock-salt PbS nanocrystal
    mediated by surfactant/polymer templates[J]. Pure and Applied Chemistry,2000,72(1-2): 119-126.
    [86]Jana A N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. Journal of Physical Chemical B,2001,105(19):4065-4067.
    [87]Chen C C, Chao C Y, Lang Z H. Simple solution-phase synthesis of soluble CdS and CdSe nanorods[J]. Chemistry of Materials,2000,12(6):1516-1518.
    [88]Tanev P T, Pinnavain T J. Biomimetic teplating of porous lamellar silicas by vesicular surfactant assmblies[J]. Science,1996,271(5253):1267-1269.
    [89]Kimizuka N, Kunitake J. Organic two-dimensional templates for the fabrication of inorganic nanostructures:Organic/inorganic superlattices[J]. Advanced Materials,1996,8:89-91.
    [90]Feng Z, Bein T. Growth of oriented molecular sieve crystals on organophospho[J]. Nature, 1994,368(6474):834-836.
    [91]周根陶,刘双怀,郑永永.一种新的制备超微粉末的方法-沉淀转化法[J].科学通报,1996,41(4):321-323.
    [92]Krishna C M, Kondo T, Riesz P. Sonochemistry of alcohol-water mixtures. Spin-trapping evidence for thermal decomposition and isotope-exchange reactions[J]. Journal of Physical Chemical,1989,93:593-596.
    [93]Zheng X W, Xie Y, Zhu L Y, et al. Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution[J]. Ultrasonic Sonochemistry,2002,9(6): 311-316.
    [94]赵铁民,郝云彦,常新春.超声气体雾化Nd-Fe-B粉末的形貌及微观结构[J].材料研究学报,1997,11(5):483-486.
    [95]Wizel S, Prozorov R, et al. The preparation of metal-polymer composite materials using ultrasound radiation[J]. Journal of Materials Research,1998,13(1):211-216.
    [96]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,2001.
    [97]周益民,祁新泉.低热固相合成化学[J].无机化学学报,1999,15(3):5-24.
    [98]Young D K, Jin Y C, Jonryoul K, et al. Formation of nanocrystalline Fe-Co powders produced by mechanical alloying[J]. Materials Science and Engineering,2000, A291:17-21
    [99]Frase H N, Shull R D, Hong L B, et al. Soft Magnetic Preperties of Nanocrystalline Ni3Fe and Fe75Al2.5Gel2.5[J]. Nanostructured Materials,1999,11 (8):987-993.
    [100]Reed M A, Frensly W R, Matyi R J, et al. Realization of a three-terminal resonant tunning device: the bipolar quantum resonant tunning transistor[J]. Applied Physics Letters, 1989,54(11):1034-1036.
    [101]Lu K, Wei W D, Wang J T. The mechanism of crystalline Ni88P12[J]. Scipta Metal Materials,1990,24: 2319-2321.
    [102]林元华,翟俊宜,王海峰,等.机械化学法合成纳米ZnO粉体[J].无机材料学报,2003,18(3):673~676.
    [103]吴其胜,高树军,张少明.BaTi03纳米晶机械力化学合成[J].无机材料学报,2002,17(4):719~724.
    [104]辜子英,胡平贵,彭德院,等.单分散球形超细氧化铈的机械化学反应制备法[J].中国有色金属学报,2003,13(3):783-787.
    [105]胡大为,王燕民.合成四氧化三铁纳米粒子形貌的调控机理和方法[J].硅酸盐学报,2008,36(10):1488-1493.
    [106]Liu F K, Chang Y C, Ko F H, et al. Microwave rapid heating for the synthesis of gold nanorods[J]. Materials Letters,2004,58(3-4):373-377.
    [107]李酽,朱晨,蔡菊芳.纳米晶的结构形貌控制及生长机理研究[J].材料导报,2003,17(6):9-11.
    [108]郭奇花,陶炼,陈炳坤,等.温度起伏对ZnO纳米晶体形貌的影响[J].半导体技术,2009,34(2):135-138.
    [109]刘冬梅,李慕勤,马臣.合成温度和碱度对纳米羟基磷灰石形成的影响[J].材料科学与工艺,2005,13(3):284-286.
    [110]张艳峰,林玉龙,孙柏林,等.金红石型二氧化钛纳米晶的制备[J].河北师范大学学报(自然科学版),2002,26(4):384-386.
    [111]印万忠,南黎,韩跃新,等.纳米氢氧化镁的合成与结晶机理分析[J].金属矿山,2005,(3):284-286.
    [112]Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides[J]. Advanced Materials,2001,13(12):943-956.
    [113]Armstrong A R, Bruce P G. Synthesis of layed LiMnO2 as an electrode for rechargeable lithium batteries[J]. Nature,1996,381(6582):499-500.
    [114]Burda C, Chen X B, El-Sayed M A, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews,2005,105(4):1025-1102.
    [115]Huang M H, Mao S, Yang P, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292(5523):1897-1899.
    [116]Jiao F, Harrison A, Bruce P G. Ordered three-dimensional arrays of monodispersed Mn3O4 nanoparticles with a core-shell structure and spin-glass behavior[J]. Angewandte Chemie International Edition,2007,46(21):3946-3950.
    [117]Zitoun D, Pinna N, Frolet N, et al. Single crystal manganese oxide multipods by oriented attachment[J]. Journal of the American Chemical Society,2005,127(43): 15034-15035.
    [118]Park J, Kang E A, Bae C J, et al. Synthesis, characterization, and magnetic properties of
    uniform-sized MnO nanospheres and nanorods[J]. Jouranl of Physical Chemistry B,2004, 108(36):13594-13598.
    [119]Yin M, O'Brien S. Synthesis of monodisperse nanocrystals of manganese oxides[J]. Journal of the American Chemical Society,2003,125(34):10180-10181.
    [120]Zhong X H, Xie R G, Sun L T, et al. Synthesis of dumbbell-shaped manganese oxide nanocrystals[J]. Jouranl of Physical Chemistry B,2006,110(1):2-4.
    [121]Young W, Cheon J. Architectural control of magnetic semiconductor nanocrystal[J]. Journal of the American Chemical Society,2002,124(4):615-619.
    [122]Li B X, Rong G X, Xie Y, et al. Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries[J]. Inorganci Chemistry,2006, 45(16):6404-6410.
    [123]Fei J B, Cui Y, Yan X H, et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment[J]. Advanced Materials,2008,20(3): 452-456.
    [124]Yang Z H, Zhang Y C, Yang S H, et al. Nanorods of manganese oxides: Synthesis, characterization and catalytic application[J]. Journal of Solid State Chemisty,2006,179(3): 679-684.
    [125]Chen H M, He J H. Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment[J]. Jouranl of Physical Chemistry C,2008,112(45): 17540-17545.
    [126]Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature,2005,437(7059):664-670.
    [127]Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystal[J]. Small,2008, 4(3):310-325.
    [128]蔡冬鸣,任南琪.不同晶型锰氧化物去除水中亚甲基蓝染料的研究[J].环境科学学报,2006,26(12):1971-1976.
    [129]何先亮.几种硫化物、氧化物纳米材料的合成、表征及生长机理研究[硕士学位论文].武汉:华中科技大学,2007.
    [130]邹强.金属氧化物一维纳米材料制备与性能研究[博士学位论文].天津:天津大学,2007.
    [131]Lu J, Qi P F, Qian Y T, et al. Metastable MnS crystallites through solvothermal synthesis[J]. Chemistry of Materials,2001,13:2169-2172.
    [132]Jun Y, Jung Y Y, Cheon J. Architectural control of magnetic semiconductor nanocrystals[J]. Journal of the American Chemical Society,2002,124(4):615-619.
    [133]An C H, Tang K B, Liu X M, et al. Hydrothermal preparation of α-MnS nanorods
    from elements[J]. Journal of Crystal Growth,2003,252(4):575-580.
    [134]Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000,404(6773):59-61.
    [135]Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals[J]. Journal of the American Chemical Society,2001,123 (7):1389-1395.
    [136]邓正涛.半导体纳米材料的可控制备和光学性质研究[博士学位论文].北京:中国科学院研究生院,2007.
    [137]Li J J, Wang A, Guo W Z, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. Journal of the American Chemical Society,2003,125(41): 12567-12575.
    [138]Munro A M, Plante J. Quantitative study of the effects surface ligand concentration on CdSe nanocrystal photoluminescence[J]. Jouranl of Physical Chemistry C,2007,111(17): 6220-6227.
    [139]Bullen C, Mulvaney P. The effects of chemistysorption on the luminescence of CdSe quantum dots[J]. Langmuir,2006,22(7):3007-3013.
    [140]Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe-ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphosphine mixture[J]. Nano Letters,2001,1(4):207-211.
    [141]Qu L H, Peng Z A, Peng X G Alternative routes toward high quality CdSe nanocrystals[J]. Nano Letters,2001,1(6):333-337.
    [142]Labella V P, Yang H, Bullock D W, et al. Atomic structure of the GaAs(001)-(2x4) surface resolved sacanning tunneling microscopy and first-principles theory[J]. Physical Review Lettets,1999,83(15):2989-2992.
    [143]Yu W W, Wang Y A, Peng X G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystal[J]. Chemistry of Materials,2003,15(22):4300-4308.
    [144]Manna L, Scher E C, Alivisatos A P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals[J]. Journal of the American Chemical Society,2000,122 (51):12700-12706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700