混合表面活性剂反相微乳液导电性能及纳米电沉积层制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有不同于常规材料和单个分子的特殊性质,已成为当今科学研究的热点。制备纳米材料的方法有很多,其中以微乳液和胶束等表面活性剂聚集体为代表的软模板法正逐渐引起研究者的重视。微乳液是由油、水、表面活性剂以及助表面活性剂在适当的比例下自发形成的透明的热力学稳定体系。利用微乳液特别是反相微乳液中的“纳米域”作为化学反应的“微反应器”,采用化学法或电化学法可以制备出尺寸和结构可控的纳米材料。但是,反相微乳液一般被认为是不导电或导电性较差的体系,无法完全满足电化学研究的需要。
     本论文基于表面活性剂复配理论,采用聚乙二醇辛基苯基醚(Triton X-100)分别与阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)及阴离子表面活性剂二(2-乙基己基)琥珀酸磺酸钠(AOT)构成复配体系,将这两种复配体系与正己烷、正己醇和水构成反相微乳液,研究了表面活性剂复配比、助表面活性剂浓度、水油体积比及温度等因素对体系导电性能的影响,同时采用循环伏安法(CV)考察了Fe(CN)63-/Fe(CN)64-电化学对在该体系中的电化学行为。结果表明:所研究的两种混合表面活性剂反相微乳体系的导电性明显好于单一表面活性剂体系,在Triton X-100/CTAB反相微乳液中,体系的电导率随非离子型表面活性剂与离子型表面活性剂质量比w(w=mTritonX-100"mCTAB)的增大而提高,当w达到2.3时,体系电导率达到稳定值。在Triton X-100/AOT反相微乳液中,体系的电导率随离子型表面活性剂与非离子表面活性剂质量比w(w=mAOT:mTritonX-100)的增大而提高,当w达到0.6时电导率达到稳定值。同时,在两种混合表面活性剂反相微乳液中,电导率均随水油体积比的增大及温度的上升而提高;而增加助表面活性剂可显著降低体系的电导率。Fe(CN)63-/Fe(CN)64-电化学反应对在所研究体系中的氧化还原峰电位几乎不随扫描速度变化,峰电位差约为70 mV-75 mV,峰电流的比值约为1,氧化峰电流与扫速的平方根成正比,说明Fe(CN)63-/Fe(CN)64-电化学对在上述两种混合表面活性剂反相微乳体系中显示出良好的氧化还原可逆性,反应由扩散步骤控制。
     利用混合表面活性剂反相微乳液具有的良好导电性能,可以将其作为软模板直接应用于电化学研究。选取Triton X-100/CTAB复配体系,与正己烷、正己醇和硝酸银水溶液构成反相微乳液,采用电沉积法制备了纳米银镀层,研究了镀层的形貌以及纳米银对于苄基氯的电催化还原。结果表明,在Triton X-100/CTAB混合表面活性剂反相微乳液中可以得到纳米尺度的银镀层,该镀层对苄基氯的还原具有良好的电催化活性,而沉积电流密度、体系中Ag+的浓度以及沉积方法的改变都会影响所形成镀层的催化能力。
Nowadays, the nanomaterial has become a major research area due to its characteristic which is different from the conventional material and single molecule. In the preparation methods of nanomaterial, the soft templet such as microemulsion and reverse micelles have attracted more attentions recently. Microemulsion is a transparent, isotropic, thermodynamically stable dispersion which is stabilized by surfactant and cosurfactant molecules and its nanopools can be used in the preparation of controllable nanomaterials. However, due to the defect of electrical conductivity, conventional reverse microemulsion can not be used as electrolyte in electrochemistry research.
     P-octyl polyethylene glycol phenyl ether (Triton X-100) was used with cetyltrimethylammonium bromide (CTAB) and bis(2-ethylhexyl) sulfosuccinate sodiumsalt (AOT) respectively to form mixed surfactants. Then microemulsions were prepared with the mixed surfactants, n-hexane, n-hexanol and water. We studied the effects of surfactant weight ratio, temperature, concentrations of water and cosurfactant on the conductivity of mixed surfactants reverse microemulsion. And the electrochemical behavior of potassium ferricyanide [K3Fe(CN)6]/potassium ferrocyanide [K4Fe(CN)6] in the two systems was investigated by cyclic voltammetry(CV). The results indicate that the conductivity of the mixed surfactants reverse microemulsion is greatly higher than that of the single surfactant system. In the Triton X-100/CTAB system, the conductivity increases with the increase of surfactant weight ratio w(w=mTriton X-100:mCTAB) and stabilized when w reaches 2.3. Also in the Triton X-100/AOT system, the conductivity increases with the increase of surfactant weight ratio w(w=mAOT:mTrito X-100) and stabilizes when w reaches 0.6. Simultaneously, the increase of water concentration and temperature enhances the conductivity while the increase of cosurfactant concentration decreases the conductivity obviously. The CV result shows the redox peak potentials of Fe(CN)63-/Fe(CN)64- are almost constant with the change of scan rate, and the redox potential gaps are about 70 mV-75 mV in the mixed surfactants reverse microemulsion. Furthermore, the ratios of redox peak currents at all scan rates are close to 1.The oxidation peak current increases linearly with the square root of scan rate. The electrochemical reaction of Fe(CN)63-/Fe(CN)64-is reversible and is controlled by diffusion in the system.
     Based on the ideal conductivity of the mixed surfactants reverse microemulsion, it can be used as soft templet directly in the electrochemistry research. The Triton X-100 and CTAB were mixed with n-hexane, n-hexanol and AgNO3 solution to prepare reverse microemulsion. The obtained system was used in the electrodeposition of Ag nanoparticles. The morphology and electrocatalytic capability of the Ag nanoparticles were investigated. The results indicate that the Ag nanoparticles prepared in the mixed surfactants reverse microemulsion exhibit remarkable catalytic properties for the reduction of benzyl chloride. And the current density, the concentration of Ag+ and the electrodeposition method have effects on electrocatalytic properties of Ag nanoparticles.
引文
[1]周理.碳基材料吸附储氢原理及规模化应用前景.材料导报,2000,14(3):3-5
    [2]蔡卫权,陈进富.纳米材料在催化领域中的应用.现代化工,2002,22(S1):36-37
    [3]姚健敏,王华.纳米材料的发展及其在工业催化中的应用.2007,20(5):29-39
    [4]吴凡,李明时,朱建军等.结构化纳米碳纤维载体的制备与应用.精细化工,2009,26(6):561-579
    [5]陈红艳,王继辉.纳米碳纤维及其在聚合物中的应用.玻璃钢/复合材料,2005,(3):41-43
    [6]赵稼祥.纳米碳纤维及其应用.纤维复合材料,2003,(4):48-50
    [7]杜晶,付云芝,李津如等.反胶束体系制备高度单分散、小粒径量子点的研究进展.化工文摘,2009,(3):59-62
    [8]孙建平,翁家宝,程云涛等.反胶束软模板法合成PANI/TiO2纳米棒复合材料及其性能研究.光谱学与光谱分析,2009,29(9):2509-2513
    [9]张勇,季家友,刘羽.反胶束微乳法制备Fe3O4纳米微粒.磁性材料及器件,2008,39(3):52-53
    [10]任祥忠,李溪,刘剑洪等.反胶束体系中聚吡咯/氯化银纳米复合粒子的合成与表征.材料科学与工程学报,2008,26(2):181-184
    [11]金宇.反胶束中酶催化反应研究进展.化学工程师,2008,135(6):34-35
    [12]郭晓鸽,赵俊廷.反胶束萃取氨基酸的研究进展.食品工程,2007,(4):12-14
    [13]张天胜,王万森,姚宝书等.表面活性剂应用技术.第一版.北京:化学工业出版社,2001,1-7
    [14]张洪涛,李友明.表面活性剂的润湿、渗透、分散特性在造纸行业中的应用.上海造纸,2002,33(1):39-41
    [15]张晓光,董金凤.一种新型有机硅表面活性剂提高药液润湿性能的研究.化学研究与应用,2008,20(6):663-666
    [16]李作锋,谭惠民.表面活性剂混合体系的起泡性和泡沫稳定性.油气田地面工程,2003,22(4):13-14
    [17]张广峰,王劲松,李云贵.用表面活性剂提高聚磺钻井液的抗高温和抗污染能力.钻井液与完井液,2009,26(3):35-37
    [18]程亮,罗淘涛,杨林等.NaCMC与非离子表面活性剂复合泡沫驱油体系的研究.石油与天然气化工,2006,35(5):403-406
    [19]李玲.表面活性剂与纳米技术.第一版.北京:化学工业出版社,2004,6-9
    [20]刘程,米裕民,林涵等.表面活性剂性质理论与应用.第一版.北京:北京工业大学出版社,2003,123-141
    [21]岳会.表面活性剂复配体系的相行为与结构特性研究:[扬州大学硕士学位论文].扬州:扬州大学,2007,5-7
    [22]Carvalho C M L, Cabral J M S. Reverse micelles as reaction media for lipases. Biochimie,2000,82(11):1063-1064
    [23]Schulman J H, Stoeckenius W, Price L M. Mechanium of formation and sructure of microemulsion by electron microscopy. Journal of Physical Chemistry,1959, 63(10):1677-1680
    [24]Hou M J, Manohar C, Sach D O, et al. Macro- and microemulsion:theory and application. In:American Chemical Society Symposium Series, Washington: American Chemical Society,1985:272-273
    [25]周利亚,李海成,龚福忠.微乳液及其应用.广西大学学报,1999,24(增刊):75-77
    [26]白永庆,龚福忠,李丹等.微乳液的结构性质及其应用.化工技术与开发,2007,36(11):24-27
    [27]张庆轩,张龙力,杨普江.微乳液法制备纳米TiO2及其负载和催化活性研究.石油天然气学报,2005,27(6):970-973
    [28]李黎榕,黄美华,郭勇榔.微乳液中制备的Pt3Sn/C催化氧化乙醇的性能.电池,2009,39(4):188-190
    [29]刘杰凤,瞿金清,杨卓如等.微乳液聚合技术及其应用.涂料工业,2002,(7):34-36
    [30]于娜,任殿福,刘春利等.阴阳离子表面活性剂复配自发形成囊泡的研究.吉林大学学报,2007,45(4):652-656
    [31]魏西莲,尹宝霖,孙得志等.CnNCl和SDS在水溶液中的相互作用.应用化学,2005,22(4):427-230
    [32]周从山,杨涛,张建策.阴阳离子表面活性剂体系的聚集行为.精细化工,2007,24(3):225-227
    [33]杨振,吴明华.阴/阳离子二元表面活性剂复配体系的发泡性能研究.浙江理工大学学报,2007,24(2):143-146
    [34]杨锦宗,张淑芬.表面活性剂的复配及其工业应用.日用化学工业,1999,(2):26-32
    [35]李芳田,王德山,黄敏.阴离子/非离子表面活性剂复配体系的稠油降粘性能研究.精细石油化工进展,2005,6(6):18-20
    [36]陈伟章,徐国才,章建忠.复合表面活性剂溶液体系的超起泡性能研究.精细与专用化学品,2007,15(3/4):21-25
    [37]钱国坻,桂玉梅,王祥荣.复配表面活性剂的表面特性与分散染料在细旦涤纶织物上的匀染性.印染助剂,1997,14(6):8-13
    [38]张逢玉,卢艳,韩建彬.表面活性剂及其复配体系在三次采油中的应用.石油与天然气化工,1999,28(2):130-132
    [39]杨建,腾凤恩.纳米材料综述.材料导报,1997,11(2):6-10
    [40]刘强.电沉积制备有序结构的纳/微米功能材料:[浙江大学硕士学位论文].杭州:浙江大学理学院,2007,6-7
    [41]吴春华,赵黔蓉,张加研.纳米材料在催化领域中的研究进展.云南化工,2002,29(4):29-32
    [42]陈宗湛,戴光.胶体化学.第一版.北京:高教出版社,1984:342-343
    [43]Yu H, Jiang J, Lee S S, et al. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir,2008,24(11):5842-5848.
    [44]Milano-Brusco J S, Schwarze M, Djennad M. Catalytic hydrogenation of dimethyl itaconate in a water-cyclohexane-TritonX-100 microemulsion in comparison to a biphasic system. Ind. Eng. Chem. Res.,2008,47(20):7586-7592
    [45]Nardello-Rataj V, Caron L, Borde C. Oxidation in three-liquid-phase microemulsion systems using "balanced catalytic surfactants". J. Am. Chem. Soc.,2008,130(45):14914-14915.
    [46]沈兴海,王文清,顾国兴.W/O型微乳液活化能和导电机理研究.高等学校化学学报,1993,14(5):717-719
    [47]裘俊红,董树杰,谢海英.AOT/异辛烷反胶束体系含水量研究.高校化学工程学报,2008,22(3):515-518
    [48]Zhou H H, Peng C Y, Jiao S Q, et al. Electrodeposition of nanoscaled nickel in a reverse microemulsion. Electrochem. Commun.,2006,8(7):1142-1146
    [49]曾伟,周海晖,英晓芳等.电极/反相微乳液体系电沉积制备纳米金镀层.物理化学学报,2007,23(5):769-773
    [50]彭春玉,周海晖,曾伟等.影响反相微乳液导电性能的因素.物理化学学报,2006,22(4):409-413
    [51]Lang J, Mascolo G, Zana R. Structure and dynamics of cetyltrimethylammonium bromide water-in-oil Microemulsions. J. Phys. Chem.,1990,94 (7):3069-3074
    [52]薛美玲,张积树,于永良等.微乳液变型及W/O型导电机理的研究.青岛化工学院学报,1998,19(1):21-25
    [53]滕弘霓,周秀婷.非离子型表面活性剂微乳液性质的研究.青岛科技大学学 报,2003,24(3):196-199
    [54]王霞,张志东,彭健锋.表面活性剂在稠油降粘中的应用研究.胶体与聚合物,2008,26(2):45-45
    [55]王留成,陈杰,赵建宏等.表面活性剂复配物用于中性脱墨.纸和造纸,2008,27(1):35-37
    [56]李嘉诚,邱学青,冯玉红等.单一及复合表面活性剂对联苯菊酯微乳液的影响.应用化学,2008,25(8):890-894
    [57]张玉霞,赵继华,杜中玉等.AOT/Triton X-100混合反胶束体系中假丝酵母脂肪酶催化蓖麻油水解的活性.物理化学学报,2007,23(9):1483-1486
    [58]Tejas J, Jitendra M, Pratap B. Micellization and interaction of anionic and nonionic mixed surfactant systems in water. Colloids Surf., A,2005,260(1-3): 209-215
    [59]Liu D J, Ma J M, Cheng H M, et al. Conducting properties of mixed reverse micelles. Colloids Surf., A,1999,148(3):291-297
    [60]Liu D J, Ma J M, Cheng H M, et al. Solubilization behavior of mixed reverse micelles:effect of surfactant component, electrolyte concentration and solvent. Colloids Surf., A,1998,143(1):59-68
    [61]Liu D J, Ma J M, Cheng H M, et al. Fluorescence probing of mixed reverse micelles formed with AOT and nonionic surfactants in n-heptane. Colloids Surf., A,1998,139(1):21-26
    [62]Liu D J, Ma J M, Cheng H M, et al. Investigation on the conductivity and microstructure of AOT/non-ionic surfactants/water/n-heptane mixed reverse micelles. Colloids Surf., A,1998,135(1-3):157-164
    [63]肖凤娟,杨慧芳,顾业强.Triton X-100/正己烷/环己烷反相微乳液体系合成纳米羟基磷灰石.硅酸盐通报,2005,(6):109-111
    [64]潘海敏,杨伯伦,李萌萌等.Analysis of the Thermodynamic Stability for the W/O Microemulsion Based on the Phase Diagram Method.高校化学工程学报, 2006,20(5):679-681
    [65]邹华生,陈江凡,陈文标.油包水微乳液体系的稳定性分析.华南理工大学学报,2008,36(3):32-35
    [66]Mitra R K, Paul B K. Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol. J. Colloid Interface Sci.,2005,283(2):565-577
    [67]Eicke H F, Borkovec M, Das-Gupta B. Conductivity of water-in-oil microemulsions:a quantitative charge fluctuation model. J. Phys. Chem.,1989, 93(1):314-316
    [68]罗静卿,赵新华,周固.CTAB/正丁醇-正辛烷-水和盐水的拟三元体系相图及微乳液微观结构的电导研究.高等学校化学学报,2004,25(6):1085-1086
    [69]潘庆谊,陆晴,程知萱等.W/O微乳液体系稳定条件的研究.化学研究与应用,2001,13(3):284-286
    [70]阿伦.J.巴德,拉里.R.福克纳.电化学原理和方法.第二版,北京:化学工业出版社,2005,102-105
    [71]程小丽,陈复生,李里特.超声波技术在AOT反胶束萃取中的应用研究.食品科技,2009,34(10):95-98
    [72]翁连进,王士斌,李夏兰.气溶胶OT反胶束对L-半胱氨酸的萃取行为研究.化学工程,2001,29(6):12-14
    [73]陈文君,翟利民,李干佐等.囊泡的自发形成-两类表面活性剂复配.科学通报,2003,48(6):562-566
    [74]刘道军,马季铭,程虎民等.混合反胶束的电导与微结构研究.高等学校化学学报,1997,18(5):800-802
    [75]周国伟,李干佐,陈文君等.AOT W/O型微乳液中AOT分子的构想和极性头有效面积的FT-IR研究.中国科学B辑,2001,31(6):508-512
    [76]黄宏度,何归,张群等.非离子、阳离子表面活性剂与驱油表面活性剂的协同效应.石油天然气学报,2007,29(4):101-104
    [77]马洁,虞慰曾.Fe(CN)63-/Fe(CN)64-体系扩散系数测定方法.首都师范大学学报,1994,15(3):67-73
    [78]刘霞.纳米金属与合金材料的制备、特性与应用.广东有色金属学报,2004,14(1):76-79
    [79]刘筱薇,仵海东.纳米金属材料研究进展.热加工工艺,2001,(3):55-58
    [80]姜灵彦,刘传银,蒋丽萍.纳米材料修饰电极及其在电分析化学中的应用.化学研究与应用,2004,16(5):615-618
    [81]姜丽英,蔡新霞,刘洪敏等.纳米铂颗粒修饰薄膜金电极的新型葡萄糖传感器研究.分析化学,2008,36(11):1563-1566
    [82]曹萌,丁克强,王庆飞等.甲醇在纳米铂修饰的铂电极上的电化学氧化.河北师范大学学报,2007,31(5):642-643
    [83]董宗木,苏桂琴,褚道宝等.铂微粒修饰纳米二氧化钛电极对甲醇催化氧化的研究.安徽师范大学学报,2003,26(4):364-365
    [84]林良宽,乐海斌,虞伟绘等.Pt在燃料电池中的催化性能研究.能源环境保护,2007,21(4):33-34
    [85]高迎春,李茂国,王广凤等.银纳米修饰电极的制备及其对灿烂甲酚蓝的催 化研究.分析实验室,2004,23(12):78-81
    [86]孟庆朝,董玉环,周长山.PVP-PdCl2-CrCl/GLM-PEG400催化芳香卤化物的脱卤研究.化学世界,2008,49(2):75-78
    [87]Isse A A, Gottardello S, Maccato C. Silver nanoparticles deposited on glassy carbon:electrocatalytic activity for reduction of benzyl chloride. Electrochem. Commun.,2006,8(11):1707-1712
    [88]Rondinini S, Mussini P R, Muttini, P. Silver as a powerful electrocatalyst for organic halide reaction:the critical role of molecular structure. Electrochimica Acta,2001,46(20-21):3245-3258
    [89]Kiya Y, Hatozaki O, Oyama N, et al. Kinetic studies for the electrocatalytic reduction of bis(2-mercapto-1,3,4-thiadiazoyl)-5,5'-disulide at a poly(3,4-ethylenedioxythiophene) film-modified electrode via rotating-disk electrode voltammetry. J. Phys. Chem. C,2007,111(35):13129-13136
    [90]Boon E M, Barton J K. Reduction of ferricyanide by methylene blue at a DNA-modified roatating-disk elevtrode. Langmuir,2003,19(22):9255-9259
    [91]Markovic N M, Gasteiger H A, Ross P N. Copper electrodeposition on Pt(111) in the presence of chloride and (Bi) sulfate:roraring ring-Pt(111) disk electrode studies. Langmuir,1995,11(10):4098-4108
    [92]Isse A A, Giusti A D, Gennaro A. Electrochemical redution of benzyl halides at a silver electrode. Electrochimica Acta,2006,51(23):4956-4964
    [93]Simonet J. The one-electron of primary alkyl iodides at polladium and palladiated surfaces:a facile source of alkyl radicals. Electrochem. Commun., 2005,7(1):74-80
    [94]Poizot P, Laffont-Dantras L, Simonet Jacques. The one-electron cleavage and reductive nomo-coupling of alkyl bromides at silver-palladium cathodes. Journal of Electroanalytical Chemistry,2008,624(1-2):52-58
    [95]Isse A A, Giusti A D, Gennaro A. One-vesus two-electron reaction pathways in the electrocatalytic reduction of benzyl bromide at silxer cathodes. Tetrahedron Letters,2006,47(44):7735-7739
    [96]张学会,刘静.脉冲电沉积法制备纳米材料的研究进展.材料保护,2009,42(6):53-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700