微结构可控的聚乙撑二氧噻吩的化学合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过酸掺杂方法,成功地在水体系中合成出了聚乙撑二氧噻吩,并用傅立叶变换红外光谱证明了产物的分子结构。扫描电子显微镜和透射电子显微镜照片表明,合成的聚乙撑二氧噻吩是由长度约为55nm的短棒聚集而形成的颗粒。研究了掺杂剂,反应温度和氧化剂对乙撑二氧噻吩在水体系下聚合的反应速率的影响。提出了有利于在水体系中合成聚乙撑二氧噻吩的条件。分别以冰乙酸和盐酸为掺杂剂,通过控制掺杂剂的初始浓度,合成了聚乙撑二氧噻吩的薄膜。利用傅立叶变换红外光谱,差示扫描量热法和紫外-可见光吸收光谱分析了薄膜形成的机理。研究发现氢离子的浓度在薄膜形成的过程中起关键作用。提出了以乙撑二氧噻吩单体和氢离子之间的氢键为推动力的自组装成膜机理,以及乙撑二氧噻吩聚合过程中共价键和氢键生长竞争的机理。在自组装成膜的过程中,引入气泡作为模板,成功地合成了聚乙撑二氧噻吩的空心球并用扫描电子显微镜证明了其微观结构。研究了聚乙撑二氧噻吩薄膜与聚乙撑二氧噻吩颗粒的光学性能,电学性能和溶解性能的差异。研究发现氢键自组装法合成的聚乙撑二氧噻吩薄膜的电学性能比聚乙撑二氧噻吩颗粒的更加优秀。其光学吸收具有可调控性能。冰乙酸掺杂制得的聚乙撑二氧噻吩的溶解性有所提高;盐酸掺杂制得的聚乙撑二氧噻吩薄膜的溶解性能虽然有所降低,但生成的膜有很大的比表面积,且无须溶解便可直接使用,有很广泛的应用前景。
Poly(3,4-ethylenedioxythiophene) (PEDOT) was successfully synthesized in aqueous system by an acid doping method. The molecular structures of the products were approved by Fourier Transform Infrared (FTIR) Spectrums. Photographers taken by scanning electron microscope (SEM) and transmission electron microscope revealed that particles of the PEDOT were aggregations of nanorod with length of 55nm. The influences on the PEDOT reaction rates in aqueous system of dopants, temperature and oxidants were discussed. Membranes of PEDOT were synthesized by an acid doping method in which the initial concentration of acetic acid or hydrochloric acid was controlled. The mechanism of the formation of membrane was researched by FTIR, differential scanning calorimeter and ultra-visible spectrum. It was found that the concentration of hydrogen ion plays an important role. A hydrogen bond driven self-assembly process was proposed and a growing competition mechanism between hydrogen bond and covalent bond was found. Hollow spheres of PEDOT were synthesized by inducing bubbles into the self-assemble system and the structures of the spheres were characterized by SEM. The influence on the properties of morphologies of PEDOT was characterized and it was found that self-assemble method can improve the properties of PEDOT. PEDOT membranes have better electric properties and controllable absorption spectrums. The solubility of PEDOT can be improved by doping with acetic acid. When doped with hydrochloric acid, the solubility was reduced, however, PEDOT membranes doped with hydrochloric possess large specific surface area and have promising applications in many fields.
引文
[1]Hideki S., Edwin J.L., Alan G.M., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc., Chem. Commun., 1977, 16: 578~580
    [2]Parker L.D., Carrier tunneling and device characteristics in polymer light-emitting diodes, J. Appl. Phys., 1994, 75(3):1656~1666
    [3]Fumitomo H., María A., Díaz G., Semiconducting polymers: a new class of solid-state laser materials, Science, 1996, 273:1833~1836
    [4]Sariciftci N.S., Smilowitz L., Heeger A.J., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 1992:1474~1476
    [5]Yu G., Gao J., Hummelen J.C., Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 1995, 270:1789~1791
    [6]宫兆合,梁国正,卢婷利,等,导电聚合物的研究进展,玻璃钢/复合材料,2003,(1):45~47
    [7]李永舫,导电聚合物,化学进展,2002,14(3):207~211
    [8]Salaneck W.R., Lundstr?m I., Huang W.S., A two-dimensional-surfae‘state diagram’for polyaniline, Synth. Met., 1986, 13(4):291~297
    [9]Yohannes T., Neugebauer H., Luzzati S., et al, Multiple electrochemical doping-induced insulator-to-conductor transitions observed in the conjugated ladder polymer polybenzimidazobenzophenanthroline (BBL), J. Phys. Chem. B, 2000, 104(40):9430~9437
    [10]Sch??n J.H., Dodabalapur A., Bao Z., Gate-induced superconductivity in a solution-processed organic polymer film, Nature, 2001, 410:189~192
    [11]王科,张旺玺,导电聚苯胺的研究进展,合成技术及应用,2004,19(1):23~27
    [12]Compos T.L.A., Kersting D.F., Ferreira C.A., Chemical synthesis of polyaniline using sulphanilic acid as dopant agent into the reactional medium, Surf. Coat. Tech., 1999, 122(1):3~5
    [13]Chen C.H., Application of factorial experimental design to study the influence of polymerization conditions on the yield of polyaniline powder, J. Appl. Polym. Sci., 2002, 85(7):1571~1580
    [14]Zhang Q.H., Wang X.H., Chen D.J., et al, Preparation and properties of conductive polyaniline/poly-ω-aminoundecanoyle fibers, J. Appl. Polym. Sci., 2002, 85(7):1458~1464
    [15]钟汉权,刘维锦,聚苯胺导电纤维的研究动态,纺织科学研究,2000,11(2):18~21
    [16]夏林,宁平,可溶导电聚苯胺材料的合成研究,合成材料老化与应用,2002,31(4):15~17
    [17]Coltevieille D., Challioui C., Mirebeau P., Industrial applications of polyaniline, Synt. Met., 1999, 101:703~704
    [18]宋月贤,王红理,郑元锁,等,高导电聚苯胺薄膜的制备及其电磁屏蔽性能的研究,高分子学报,2002,(1):92~95
    [19]李星玮,居明,李晓宣,用于腐蚀与防护的导电聚苯胺研究新进展,材料导报,2001,15(3):42~43
    [20]Spinks G.M., Mottaghitalab V., Bahrami S.M., Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles, Adv. Mater., 2006, 18(5):637~640
    [21]Jude O.I., Cornelious W., Formation of thermally stable polypyrrole-naphthalene/benz -ene sulfonate-carbon fiber composites by an electrochemical process, Synth. Met., 1999, 99(1):1~8
    [22]丁智,张俊峰,聚吡咯在生物医学领域中的应用,国外医学生物医学工程分册,2002,25(3):135~139
    [23]陈雨萍,漆宗能,聚合物分子复合材料研究进展,化学通报,1990,(5):1~8
    [24]Vidal J.C., Garcia E., Castillo J.R., In situ preparation of a cholesterol biosensor, Anal. Chim. Acta., 1999, 385(1-3):213~222
    [25]Genies E.M., Lapkowiski M., Santier C., et al, Polyaniline spectroelectrochemistry display and battery, Synth. Met., 1987, 18(1-3):631~636
    [26]Roth S., Graupner W., Industrial applications of conducting polymers, Synth. Met., 1993, 122:229~236
    [27]汪菊英,张兴华,曹有名,导电高分子聚吡咯纳米复合材料的研究进展,塑料,2005,34(6):84~91
    [28]Jen K.Y., Miller G.G., Elsenbaumer R.L., Highly conducting, soluble, and environment- tally-stable poly(3-alkylthiophenes), J. Chem. Soc., Chem. Commun., 1986, 17:1346~1347
    [29]Jin S., Xue G., Interaction between thiophene and solvated lewis acids and the low-potential electrochemical deposition of a highly anisotropic conducting polythiophene film, Macromolecules, 1997, 30(19):5753~5757
    [30]Mattu J., Johansson T., Leach G.W., Third-order nonlinear optical response from polythiophene-based thin films, J. Phys. Chem. C, 2007, 111(18):6868~6874
    [31]Dhanabalan A., Van D., Janssen H.M., Synthesis, characterization, and electrooptical properties of a new alternating N-dodecylpyrrole- Benzothiadiaxole copolymer, Macromolecules, 2001, 34(8):2495~2501
    [32]Tan Z., Hou J.H., He Y.J., et al, Synthesis and photovoltaic properties of a donor-acceptor double-cable polythiophene with high content of C-60 pendant, Macromolecules, 2007, 40(6):1868~1873
    [33]宫兆合,梁国正,任鹏刚,等,导电高分子材料在隐身技术中的应用,高分子材料科学与工程,2004,20(5):29~30
    [34]Yutaka O., Chikayoshi M., Masao U., et al, Dynamic characteristics of electroluminescent diodes utilizing conducting polymers, Synth. Met., 1993, 57(1):4180~4185
    [35]Wan M.X., Wei Z.X., Zhang Z.M., Studies on nanostructures of conducting polymers via self-assembly method, Synth. Met., 2003, 135-136:175~176
    [36]Martin C.R., Nanomaterials: a membrane-based synthetic approach, Science, 1994, 266:1961~1966
    [37]Menon V.P., Lei J., Martin C.R., Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils, Chem. Mater., 1996, 8(9):2382~2390
    [38]Wan M.X., Liu J., Qiu H.J., et al, Template-free synthesized microtubules of conducting polymers, Synth. Met., 2001, 119:71~72
    [39]Shi G.Q., Li C., Liang Y.Q., High-strength conducting polymers prepared by electrochemical polymerization in boron trifluoride diethyl etherate solution, Adv. Mater., 1999, 11:1145~1146
    [40]Velev O.D., Tessier P.M., Lenhoff A.M., Materials a class of porous metallic nanostructures, Nature, 1999, 401:548~548
    [41]Long Y.Z., Chen Z.J., Zhang Z.M., et al, Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids, ACTA Physica Sinica, 2003, 52(1):175~179
    [42]Long Y.Z., Chen Z.J., Wang N.L., et al, Resistivity study of polyaniline doped with protonic acids, Physica B, 2003, 325:208~213
    [43]Long Y.Z., Zheng P.,Zhang Z.M., et al, Low temperature resistivity of conducting nanotubular polyaniline doped with naphthalenesulfonic acid, ACTA Physica Sinica, 2002, 51(9):2090~2095
    [44]Marc D., Jannick D., Roger L., Chemical and electrochemical synthesis of polyaniline micro- and nano-tubules, Synth. Met., 2000, 113:275~280
    [45]Yamato H., Ohwa M., Wernet W., et al, Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application, J. Electroanal. Chem., 1995, 397(1-2):163~170
    [46]Winter I., Reese C., Hormes J., et al, The thermal ageing of poly(3,4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy, Chem. Phys., 1995, 194:207~213
    [47]Aleshin A.N., Kiebooms R., Heeger A.J., Metallic conductivity of highly doped poly(3,4-ethylenedioxythiophene), Synth. Met., 1999, 101:369~370
    [48]Oibing P., Guido Z., Markus A., et al, Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue, Polymer, 1994, 35:1347~1351
    [49]Gerhard H., Friedrich J., Poly(alkylenedioxythiophene)s- new, very stable conducting polymers, Adv. Mater., 1992, 4:116~118
    [50]Krafft W., Jonas F., Muys B., et al, Antistatic plastic parts, EP: 564911, 1993-03-24
    [51]Groenendaal L., Jonas F., Freitag D., et al, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater., 2000, 12:481~494
    [52]Yamato H., Ohwa M., Wernet W., et al, Mechanical, electrochemical and optical properties of poly(3,4-ethylenedioxythiophene)/sulfated poly(β-hydroxyethers) composite films, Electrochim. Acta., 1997, 42(16):2517~2523
    [53]Kingsborough R.P., Swager T.M., Polythiophene hybrids of transition-metal bis(salicylidenimiine)s: correlation between structure and electronicproperties, J. Am. Chem. Soc., 1999, 121(38):8825~8834
    [54]Arias A.C., Granstrom M., Petritsch K., et al, Organic photodiodes using polymeric anodes, Synth. Met., 1999, 102(1-3):953~954
    [55]Larmat F., Reynolds J.R., Qiu Y.J., Polypyrrole as a solid electrolyte for tantalum capacitors, Synth. Met., 1996, 79(3):229~233
    [56]陈湘宁,导电聚合物BAYTRON及其在固体电解电容器上的应用,电子元件与材料,2000,19(3):35~36
    [57]Choi J.W., Han M.G., Kim S.Y., Poly(3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions, Synth. Met., 2004, 141:293~299
    [58]Han M.G., Steven P.A., Synthesis of poly(3,4-ethylenedioxythiophene)/silica colloidal nanocomposites, Langmuir, 2003, 19(11):4523~4526
    [59]Joo J., Kim B.H., Park D.H., et al, Fabrication and applications of conducting polymer nanotube, nanowire, nanohole, and double wall nanotube
    [60]Zhang X.Y., Lee J.S., Lee G.S., et al, Chemical synthesis of PEDOT nanotubes, Macromolecules, 2006, 39:470~472
    [61]Brunsveld L., Folmer B., Meijer E.W., Supramolecular polymers, Chem. Rev., 2001, 101:4071~4097
    [62]Chun L., Toyoko I., Electrochemical and optical properties of the poly(3,4-ethylenedioxythiophene) film electropolymerized in an aqueous sodium dodecyl sulfate and lithium tetrafluoroborate medium, Macromolecules, 2004, 37:2411~2416
    [63]Kvrtnstr?m C., Neugebauer H., Blomquist S., et al, In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene), Electrochim. Acta, 1999, 44:2739~2750
    [64]Garreau S., Louarn G., Buisson J.P., et al, In situ spectroelectrochemical raman studies of poly(3,4-ethylenedioxythiophene) (PEDT), Macromolecules, 1999, 32:6807~6812
    [65]汪斌华,邓永红,戈钧,等,不同溶剂中导电聚合物PEDOT的化学氧化聚合及光谱研究,功能材料,2005,36(10):1610~1612
    [66]Neugebauer H., Infrared signatures of positive and negative charge carriers in conjugated polymers with low band gaps, Journal of Electroanalytical Chemistry, 2004, 563:153~159
    [67]Huh P.H., Kim S.C., Kim Y.H., et al, Recovery and characterization of pure poly(3,4-ethylenedioxythiophene) via Biomimetic template polymerization, Polym. Eng. Sci., 2007, 47(1):71~75
    [68]Damlin P., Kvarnstr?m C., Ivaska A., Electrochemical synthesis and in situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) in room temperature ionic liquids, J. Electroanal. Chem., 2004, 570:113~122
    [69]周名成,俞汝勤,北京:化学工业出版社,1986.16~18
    [70]Tae Y.K., Chang M.P., Jong E.K., et al, Electronic, chemical and structure change induced by organic solvents in tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-OTs), Synth. Met., 2005, 149:169~174
    [71]Yong L., Hideki O., Shintaro S., et al, Highly electrically conductive poly(3,4-ethylenedioxythiophene) prepared via high-concentration emulsion polymerization, Synth. Met., 2005, 149:211~217
    [72]Aasmundtveit K.E., Samuelsen E.J., Pettersson L.A.A., Structure of thin films of poly(3,4-ethylenedioxythiophene), Synth. Met., 1999, 101:561~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700