LDHs-MK复合防御体系改性混凝土及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增强混凝土材料的耐久性是延长结构服役寿命、提高结构可靠度的重要途径,也是混凝土材料性能设计的主要内容之一。混凝土材料的腐蚀反应多与外部环境提供的阴离子侵入过程有关,涉及侵蚀性离子在材料内部的传输、渗透、迁移、吸附等多种作用。增强混凝土耐久性的关键在于降低外部阴离子向材料内部渗入的速率,降低混凝土孔溶液中阴离子的浓度。因此,如果提高混凝土密实度,并且在阴离子侵入过程中对其加以固化,则可以控制其渗透速率,并且降低孔溶液中侵蚀性离子的浓度,从而实现增强混凝土耐久性的目的。
     层状双氢氧化物(Layered Double Hydroxide,简称LDHs)是一种新型功能材料,它具有层间阴离子可交换性与结构记忆的特点,在混凝土中可功能化吸附外界侵入的阴离子,从而控制其在混凝土内部的传输。偏高岭土(Metakaolin,简称MK)是一种新型、优质的混凝土矿物掺合料,其火山灰活性和填充效应可优化混凝土的孔结构,改善混凝土的抗渗透性能。将LDHs材料与MK材料复合,可以建立一种叠加效应体系,在提高混凝土密实度的同时控制阴离子侵入混凝土的过程,全面增强混凝土的耐久性。
     本文主要针对LDHs与MK材料在混凝土中应用的复合叠加效应开展研究,表征分析了LDHs材料的化学组成、分子结构和颗粒形貌等材料特性,测试论证了其固化各类阴离子的能力,并研究探讨了LDHs改性混凝土的耐久性能。在以上研究基础上,复合偏高岭土(MK)发展了一种LDHs-MK基混凝土复合改性剂,构建了LDHs-MK复合防御体系,对其性能和应用技术进行了系统研究。
     论文的主要研究成果包括:
     (1)针对不同层间阴离子的LDHs材料进行了煅烧和再水化处理,并对其结构与形貌进行了分析。层间阴离子不同的LDHs材料特征衍射峰有明显差别,在经过煅烧后LDHs材料的层板结构被破坏,但在OH-存在的环境下外部C032-和OH-可重新插入层间重建层状结构。
     (2)分析了LDHs材料及其煅烧和再水化产物固化C032-的能力,并针对其固化机理进行了研究。未煅烧和再水化结构重建的LDHs材料固化C032-为阴离子交换固化的过程,而经过煅烧后的LDHs材料(LDOs)固化C032-为结构重建固化的过程。试验研究了掺不同LDHs材料混凝土的碳化反应过程,表明LDHs材料可延缓CO2在混凝土内部的渗透,改善混凝土的抗碳化性能。
     (3)试验研究了镁铝硝酸根LDHs与LDOs在氯盐环境下固化氯离子的反应机理,表明氯离子可通过置换LDHs材料中的N03-或直接进入层间以形成Mg-Al-C1类LDHs层状结构。掺入混凝土中的LDHs材料可固化侵入混凝土内部的氯离子,显著改善了混凝土的抗氯离子渗透能力。
     (4)试验针对掺加不同LDHs材料混凝土的抗硫酸盐侵蚀性能进行了研究,表明LDOs可固化外部侵入的S042-而增强混凝土的抗硫酸盐侵蚀能力,但未煅烧镁铝碳酸根LDHs与再水化重建结构LDHs吸附S042-能力显著较弱。
     (5)以偏高岭土为主体制备了MK基改性剂,并对其在混凝土中的作用机理进行了研究。偏高岭土与粉煤灰、石灰石粉的复合可有效补偿因偏高岭土需水量高而造成的工作性损失,减小混凝土内部孔隙率,增强混凝土的强度和抗氯离子渗透性能,并改善其体积稳定性。
     (6)在MK基改性剂的基础上建立了LDHs-MK复合防御体系,研究了在LDHs-MK复合作用下阴离子在混凝土内部的传输机理。LDHs材料与MK基改性剂的叠加效应可在优化混凝土内部孔结构的基础上,延缓阴离子在混凝土内部的渗透,进一步改善混凝土的抗渗性能。
     (7)研究了LDHs-MK复合体系作用下混凝土的体积稳定性,分析了偏高岭土与LDHs材料在水泥水化过程中储水效应对混凝土收缩的影响。LDHs-MK复合体系可减少水化过程中产生的体积变形,优化混凝土内部的颗粒级配,显著改善了混凝土的体积稳定性。
     论文的研究工作表明,LDHs-MK复合防御体系作为一种综合、高效的混凝土耐久性增强技术,可以一方而改善混凝土密实度,提高强度,另一方面控制侵蚀性离子在混凝土材料内部的传输过程,提高混凝土抵御外部多种阴离子侵入的能力,从而实现全面增强混凝土材料的耐久性和服役寿命。
The durability of concrete is of importance for service life extension and reliability of concrete structure, which is a major part of concrete performance design. Most of the corrosion reactions of concrete are relevant to the invasion of anions from external environment. The invasion process in concrete includes the transmission, penetration, movement, absorption, etc. Reducing the penetration rate of anions from external to internal environment and the anion concentrations of pore solution in concrete is an intergral component of strategies to enhance the durability of concrete. Specifically, improving the density of concrete and absorbing the anions in the invasion process are effective means to control the penetration rate and reduce the aggressive anion concentrations in the pore solution, and finally, to enhance the durability of concrete.
     Layered Double Hydroxide (LDHs) is a new type of functional material of the interlayer anion exchanging ability and structure memory effect. The aggressive anion in concrete could be absorbed by LDHs, which leads to the control of anion transmission in concrete. Metakaolin (MK) is a new type of high quality concrete mineral admixture of pozzolanic activity and filling effect, which optimize the pore structure remarkably to improve the permeability performance. An additive effect system could be built based on the combination of LDHs and MK, which can both improve the pore structure and control the transmission of anion, in order to enhance the durability of concrete comprehensively.
     The compound additive effect of LDHs and MK in concrete is investigated in this thesis. The chemical composition, molecular structure and granule morphology of LDHs is characterized. The anion binding capacity of different LDHs is analyzed and the durability of concrete containing LDHs is studied. Based on above researches, the LDHs-MK based compound modifier is developed and a LDHs-MK compound defense system is established, in which the performance and application technology is studied systematically.
     The main research outputs of the thesis are concluded as:
     (1) The structure and morphology of LDHs with different interlayer anion is analyzed after calcined and rehydration. The characteristic diffraction peaks show obvious difference when different interlayer anion. The layered structure of LDHs is destroyed after calcined and rebuilt while CO32-and OH-inserting into the interlayer in the alkaline condition.
     (2) The CO32-binding capacity of LDHs (including calcined product and rehydrated product) and the mechanism is studied. The CO32-binding process of uncalcined and rehydrated product is mainly a reaction of interlayer anion exchanging, while of calcined product (LDOs) is a reaction of structure reconstruction. The carbonation reaction of concrete containing different LDHs is studied in the experiment, which shows that the addition of LDHs has delayed the transmission of CO2and enhanced the carbonation resistance of concrete.
     (3) The chloride ion binding capacity of Mg-Al-NO3LDHs and LDOs in the chloride environment and the mechanism is studied, which shows that the Mg-Al-Cl layered structure is built by NO3-exchanging or inserting into the interlayer. The chloride ion from external environment is absorbed by LDHs in concrete, which leads to an obvious improvement of the chloride ion resistance.
     (4) The sulfate resistance of concrete containing different LDHs is studied. The addition of LDOs shows remarkable improvement to the sulfate resistance, while the SO42-binding capacity of uncalcined and rehydrated LDHs is much weaker.
     (5) MK based modifier is prepared while the reaction mechanism in concrete is studied. The combination of MK, fly ash and limestone powder has compensated the workability loss caused by the high water requirement of MK. MK based modifier leads to the reduction of concrete porosity, the enhancement of strength, chloride ion resistance and volume stability.
     (6) On the basis of the MK based modifier, the LDHs-MK compound defense system is established and the anion transmission mechanism in concrete under the LDHs-MK combined condition. The compound additive effect both optimizes the pore structure and delays the anion transmission, which improves the impermeability furthermore.
     (7) The volume stability of concrete under the action of LDHs-MK compound system. The influence of water-storage effect of MK and LDHs on the concrete shrinkage in the cement hydration process is analyzed. The addition of LDHs-MK compound system reduces the volume deformation and optimizes the grain composition in concrete, thus improves the volume stability obviously.
     The study in this thesis shows that LDHs-MK compound defense system is a comprehensive and efficient concrete durability enhancement technology. The system has improved the density and strength of concrete, controlled the aggressive anion transmission in concrete and enhanced the ability to defend different anions. Therefore, LDHs-MK compound defense system is one of the approaches to enhance the durability and service life of concrete comprehensively.
引文
[1]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社.1999.
    [2]赵铁军.混凝土渗透性[M].北京:科学出版社.2006.
    [3]洪定海.混凝土中钢筋的腐蚀与防护[M].北京:中国铁道出版社.1998.
    [4]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社.1997.
    [5]P K Mehta, P J M Meteiro. Concrete Microstructure, Properties and Materials[M]. The McGraw-Hill companies,2006.
    [6]申爱琴.水泥与水泥混凝土[M].人民交通出版社.2004.
    [7]M G Alexander, B J Magee. Durability performance of concrete containing condensed silica fume[J]. Cement and Concrete Research,1999(29):917-922.
    [8]M H F Medeiros, P Helene. Surface treatment of reinforced concrete in marine environment:influence on chloride diffusion coefficient and capillary water absorption[J]. Construction and Building Materials,2009(23):1477-1484.
    [9]万小梅,张芳如.混凝土的传质理论及其过程[J].海岸工程,2001(20):73-78.
    [10]L Q Tu, Z H Shui, et al. Effect of carbonation on the microstructure of concrete containing fly ash and expansive admixture[J]. Advanced Materials Research, 2012(347-353):4074-4080.
    [11]C.D.Atis. Accelerated carbonation and testing of concrete made with fly ash[J]. Construction and Building Materials,17(2003):147-152.
    [12]M.D.A.Thomas, J.D.Matthews. The permeability of fly ash concrete[J]. Materials and Structures,1992(25):388-396.
    [13]P.Sulapha, S.F.Wong, T.H.Wee and S.Swaddiwudhipong. Carbonation of Concrete Containing Mineral Admixtures [J]. Journal of materials in civil engineering,1994 (3):32-35.
    [14]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报,2000(12):570-574.
    [15]C Arya, N R Buenfeld, J B Newman. Factors influencing chloride-binding in concrete[J]. Cement and Concrete Research,1990(20):291-300.
    [16]M Geiker, N Thaulow, P J Ankersen. Assessment of rapid permeability test of concrete with and without mineral admixture[A]. In:Bake J M ed.5th International Conference of Durability of Building Materials and Components, Brighton, U K,1990:493-502.
    [17]S E Hussain, Rasheeduzzafar. Corrosion resistance performance of fly ash blended cement concrete[J]. ACI Materials Journal,1994(91):264-272.
    [18]杨长辉,晏宇,欧忠文.偏高岭土水泥净浆结合氯离子性能的研究[J].混凝土,2010(10):1-7.
    [19]水中和,王康,陈伟,孔贇.改性偏高岭土复合粉煤灰对混凝土抗渗性能的影响[J].硅酸盐通报,2012(3):658-663.
    [20]巩鑫.混凝土抗硫酸盐侵蚀试验研究[D].大连:大连理工大学,2008.
    [21]方祥位,申春妮,杨德斌等.混凝土硫酸盐侵蚀速度影响因素研究[J].建筑材料学报,2007(10):89-96.
    [22]金雁南,周双喜.混凝土硫酸盐侵蚀的类型及作用机理[J].华东交通大学学报,2006(23):4-8.
    [23]李丽.高性能混凝土收缩与开裂规律的研究及机理分析[D].南京:东南大学,2004.
    [24]S.Tsivilis. A study on the parameters affecting the properties of Portland limestone cements[J]. Cement and Concrete Composites,1999,21(2):107-116.
    [25]S.Nagataki, H.Gomi. Expansive admixtures (mainly ettringite) [J]. Cement and Concrete Composites,1998,20(2-3):163-170.
    [26]V.Lilkov, et al. Properties and hydration products of lightweight and expansive cements Part I:Physical and mechanical properties[J]. Cement and Concrete Research,1999,29(10):1635-1640.
    [27]V.Lilkov, et al. Properties and hydration products of lightweight and expansive cements Part II:Hydration products[J]. Cement and Concrete Research,1999, 29(10):1641-1646.
    [28]王伟.偏高岭土改善混凝土体积稳定性的研究[D].武汉:武汉理工大学,2010.
    [29]刘娟红,宋少民.粉煤灰与磨细矿渣对高强轻骨料混凝土抗渗及抗冻性能的影响.硅酸盐学报,2005(4):528-532.
    [30]Vejmelkova E, Pavlikova M, Keppert M, et al. High performance concrete with Czech metakaolin:Experimental analysis of strength, toughness and durability characteri stics [J]. Construction and Building Materials,2010(24):1404-1411.
    [31]H S Kim, S H Lee, H Y Moon. Strength properties and durability aspects of high strength concrete using Korean metakaolin[J]. Construction and Building Materials,2007(21):1229-1237.
    [32]T Ishida, P O Iqbal, H T L Anh. Modeling of chloride diffusivity coupled with non-linear binding capacity of sound and cracked concrete[J]. Cement and Concrete Research,2009(39):913-923.
    [33]T Ishida, S Miyahara, T Maruya. Chloride binding capacity of mortars made with various Portland cements and mineral admixtures[J]. Journal of Advanced Concrete Technology,2008(6):287-301.
    [34]K Nakarai, T Ishida, K Maekawa. Multi-scale physicochemical modeling of soil-cementitious material interaction [J]. Soils and Foundations, 2006(46):653-664.
    [35]P P Win, M Watanabe, A Machida. Penetration profile of chloride ion in cracked reinforced concrete[J]. Cement and Concrete Research,2004(34):1073-1079.
    [36]Neville A M混凝土的性能[M].北京:中国建筑工业出版社,1983.
    [37]Mehta P K. Study on blended Portland cement containing santirin earth[J]. Cement and concrete Research,1981(1):575-579.
    [38]Rasheeduzzafar, Al_saadoun S S, Al_gahtani A S, et al. Effect of tricalcium aluminate content of cement on corrosion of reinforcing steel in concrete[J]. Cement and Concrete Research,1990(20):723-738.
    [39]胡红梅.矿物功能材料对混凝土氯离子渗透性影响的研究[D].武汉:武汉理工大学,2002.
    [40]李淑进,施惠生,赵铁军等.粉煤灰混凝土耐久性的若干研究[J].粉煤灰综合利用,2001(31):40-42.
    [41]J T Ma, Z H Shui, W Chen, X X Chen. Carbonation Behavior of Concrete in Cyclic Wetting-drying Environment[J]. Advanced Materials Research, 2012(450-451):126-130.
    [42]W F H ittmann, Honhyan Zhan and Tiejun Zhao. Chloride penetration into water repellent concrete exposed to sea water in tidal zone[J]. Hydrophobe IV, Water Repellent Treatment of Building Materials,2005:35-45.
    [43]金伟良,延永东,王海龙.氯离子在受荷混凝土内的传输研究进展[J].硅酸盐学报,2010,38(11):2217-2224.
    [44]D Whiting. Rapid determination of the chloride permeability of concrete[M]. Federal Highway Administration, Washington, D.C.1981.
    [45]张玉清,彭淑鸽.插层复合材料[M].北京:科学出版社,2008.
    [46]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007.
    [47]W Chen, Z H Shui, H J H Brouwers. A Computer-based Model for the Alkali Concentrations in Pore Solution of Hydrating Portland Cement Paste[C]. In Proceedings of International Conference Excellence in Concrete—through innovation,2008, Kingston University, London:207-214.
    [48]F R M McDonnell, R C Pink, and A R Ubbelohde. Some physical properties associated with "aromatic" electrons, Part III. The pseudo-metallic properties of potassium-graphite and graphite-bromine[C]. Journal of the Chemical Society, 1951:191-197.
    [49]J J Burton, R L Garten. Advanced materials in catalysis[M]. Materials science and technology,1977, New York:Academic Press, xii,329.
    [50]汪莉华MgAl类水滑石的有机化改性及其应用研究[D].海口:海南大学,2008.
    [51]曹光群,陈健,方云,赵权.水滑石及其纳米插层材料的制备和应用[J].日用化学工业,2008(38):50-53.
    [52]谢晖,矫庆泽,段雪.镁铝型水滑石水热合成[J].应用化学,2001(18):70-72.
    [53]莫丹.水滑石类层状化合物插层选择性及机理的研究[D].北京:北京化工大学,2004.
    [54]W T Reichle, S Y Kang, D S Everhardt. The nature of the thermal decomposition of a catalytically active anionic clay mineral [J]. Journal of Catalysis, 1986(101):352-359.
    [55]李殿卿,冯桃,段雪.有机阴离子柱撑水滑石的插层组装及超分子结构[J].过程工程学报,2002(2):355-360.
    [56]W S Yang, Y M Kim, et al. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO32- layered double hydroxide[J].Chemical Engineering Science,2002(57):2945-2953.
    [57]蒋维,农兰平,赖闻玲等.用焙烧复原法插层组装有机层柱状双氢氧化物[J].化学研究与应用,2004(16):828-831.
    [58]F Prinetto, G Ghiotti, P Graffin, et al. Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples[J]. Microporous and Mesoporous Materials,2000(39):229-247.
    [59]矫庆泽,赵芸,谢晖,Evans D G,段雪.水滑石的插层及其选择性红外吸收性能[J].应用化学,2002,19(10):1011-2012.
    [60]Q He, S Yin, T Sato. Synthesis and photochemical properties of zinc-aluminum layered double hydroxide/organic UV ray adsorbing molecule/silica nanocomposites[J]. Journal of Physics and Chemistry of Solids,2004, 65(2-3):395-402.
    [61]A I Khan, L Lei, et al. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide[J]. Chemical Communications,2001 (22):2342-2343.
    [62]V Ambrogi, G Fardella, et al. Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents-Ⅰ. Intercalation and in vitro release of ibuprofen[J]. AAPS Pharmscitech,2001(220):1-6.
    [63]B X Li, J He, D G Evans, X Duan. Inorganic layered double hydroxides as a drug delivery system-intercalation and in vitro release of fenbufen[J]. Applied Clay Science,2004,27(3-4):199-207.
    [64]B X Li, J He, D G Evans, X Duan. Enteric-coated layered double hydroxides as a controlled release drug delivery system[J]. International Journal of Pharmaceutics, 2004(287):89-95.
    [65]Wang Y, Yang W S, et al. Synthesis and electrochemical characterization of Co-Al layered double hydroxides [J]. Journal of the Electrochemical Society, 2005(152):2130-2137.
    [66]Lei L, Vijayan R P, O'hare. Preferential anion exchange intercalation of pyridine-carboxylate and toluate isomers in the layered double hydroxide [LiAl2(OH)6]Cl·H2O[J]. Journal of Materials Chemistry,2001(11):3276-3280.
    [67]Fogg A M, Dunn J S, Shyu S G, et al. Formation of second-stage intermediates in anion-exchange intercalation reactions of the layered double hydroxide [LiAl2(OH)6]Cl·H2O as observed by time-resolved, in situ X-ray diffraction[J]. Chemical of Materials,1998(10):356-360.
    [68]Wang J, Wei M, Rao G Y, et al. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide[J]. Journal of Solid State Chemistry,2004(177):366-371.
    [69]Wei M, Shi S X, Wang J, et al. Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD[J]. Journal of Solid State Chemistry,2004(177):2534-2541.
    [70]Tichit D, Lutic D, Coq B, et al. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts[J]. Journal of catalysis, 2003(219):167-175.
    [71]Tichit D, Bennani M N, Figueras F. Aldol condensation of acetone over layered double hydroxides of the meixnerite type[J]. Applied Clay Science, 1998(13):401-415.
    [72]Tichit D, Bennani M N, Figueras F, et al. Aldol condensation of acetone over layered double hydroxides of the meixnerite type[J]. Applied Clay Science, 1998(13):401-415.
    [73]Roelofs J C A, Van Dillen A J, Jong K P. Base-catalyzed condensation of citral and acetone at low temperature using modified hydro talcite catalysts [J]. Catalysis Today,2000(60):297-303.
    [74]Unnikrishnan R, Narayanan S. Metal containing layered double hydroxides as efficient catalyst precursors for the selective conversion of acetone[J]. Journal of Molecular Catalysis A:Chemical,1999(144):173-179.
    [75]Zoltan F, Zoltan H. Mg-Al 3:1 hydrotalcite catalyst in the synthesis of cyclopropane carboxylic acid derivatives [J]. Journal of Molecular Catalysis A: Chemical,2000(161):149-155.
    [76]Roelofs J C, Lensveld D J, Van Dillen A J, et al. On the structure of activated hydrotalcites as solid base catalysts for liquid-phase Aldol condensation[J]. Journal of Catalysis,2001(203):184-191.
    [77]Prinetto F, Tichit D, Teissier R, et al. Mg- and Ni-containing layered double hydroxides as soda substitutes in the aldol condensation of acetone[J]. Catalysis Today,2000(55):103-115.
    [78]Evans D G, Slade R C. Structural aspects of layered double hydroxides[J]. Structure & Bonding,2006(119):1-87.
    [79]F Li, X Duan. Applications of layered double hydroxides [J]. Structure & Bonding,2006(119):193-223.
    [80]L Jone. Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite. US Patent 4752397.1988.
    [81]N Das, J Konar, M K Mohanta, et al. Absorption of Cr(Ⅵ) and Se(Ⅳ) from their aqueous solutions onto Zr4+-substituted ZnAl/MgAl-layered double hydroxides: effect of Zr4+substitution in the layer[J]. Journal of Colloid and Interface Science,2004(270):1-8.
    [82]J Orthman, H Y Zhu, G Q Lu. Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions[J]. Separation and Purification Technology, 2003(31):53-59.
    [83]吕亮.层状双金属(氢)氧化物对卤离子的吸附和离子交换性能研究[D].北京:北京化工大学近代化学研究所,2005.
    [84]A Sood. Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite[P].US 4752397,1988-06-21.
    [85]M A Ulibarri, I Pavlovic, J Cornijo, et al. Hydrotalcite-like compounds as potential sorbents of phenols from water[J]. Application Clay Science, 1995(10):131-145.
    [86]J Orthman, H Y Zhu, G Q Lu. Use of anion clay hydrotalcite to remove coloured organics from aqueous solution[J]. Separation and Purification Technology, 2003(31):53-59.
    [87]王素娟,严云,胡志华.缓释型萘系减水剂的合成[J].硅酸盐学报,2009(07):1103-1109.
    [88]L Raki, J J Beaudoin, L Mitchell. Layered double hydroxide-like materials: nanocomposites for use in concrete[J]. Cement and Concrete Research,2004(34): 1717-1724.
    [89]J Plank, Z Dai, P R Andres. Preparation and characterization of new Ca-Al-polycarboxylate layered double hydroxides[J]. Materials Letters, 2006(60):3614-3617.
    [90]Sailong Xu, Zhanrui Chen, Bowen Zhang, Jianhui Yu, Fazhi Zhang, David G.Evans. Facile preparation of pure CaAl-Layered double hydroxides and their application as a hardening accelerator in concrete[J]. Chemical Engineering Journal,2009(155):881-885.
    [91]李冬梅,王海增等.焙烧水滑石吸附脱除水中硫酸根离r的研究[J].矿物学报,2007(27):109-114.
    [92]Tatematsu H, Nakamura T, Koshimuzu H, Morishita T, Kotaki H. Cement additive for inhibiting concrete deterioration [J]. Ziolites,1996(17):404.
    [93]Meyn M, Beneke K, Lagaly G. Anion-Exchange Reactions of Hydroxy Double Salts[J]. Inorganic Chemistry,1993(32):1209.
    [94]范扬凯,镁铝氧化物于水泥砂浆中之氯离子吸附能力[D].台湾:国立成功大学,2006.
    [95]唐聿明,牛乐,左禹.焙烧水滑石对含氯中性化混凝土孔隙液中钢筋腐蚀行为的影响[J].电化学,2010(16):368-372.
    [96]Z H Shui, J T Ma, et al. Chloride binding capacity of cement paste containing layered double hydroxide (LDH)[J]. Journal of Testing and Evaluation, 2012(40):796-800.
    [97]Z H Shui, J T Ma, et al. The effect of layered double hydroxides on the concrete resistance of chloride-ion penetration[J]. Key Engineering Materials, 2012(509):99-105.
    [98]方永浩,郑波,张亦涛.偏高岭土及其在高性能混凝土中的应用.硅酸盐学报,2003,31(8):801-805.
    [99]丁铸,张德成,吴科如.偏高岭土对水泥性能的影响.混凝土与水泥制品,1997(5):8-11.
    [100]L Q Tu, Z H Shui, et al. Effects of Restraint Condition on Carbonation of Concrete Containing Expansive Agent[J]. Advanced Materials Research, 2012(378-379):147-150.
    [101]L Q Tu, W B Xu, et al. Carbonation of fly ash concrete and micro-hardness analysis[J]. Advanced Materials Research,2012(378-379):56-59.
    [102]Cassagnabere F, Escadeillas G, Mouret M. Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete[J]. Construction and Building Materials,2009,23:775-784.
    [103]Khatib J M. Metakaolin concrete at a low water to binder ratio [J]. Construction and Building Materials,2008,22:1691-1700.
    [104]李鑫,邢锋,康飞宇.偏高岭土及其复合粉改善混凝土氯离子导电量的研究[J].材料科学与工程学报,2004,22(6):809-812.
    [105]Thomas M D A, Gruber K A, Hooton R D. The use of high reactivity metakaolin in high performance concrete[C].1st Engineering Foundation Conference on High Strength Concrete, Hawaii:517-530.
    [106]J J Zeng, Z H Shui, G M Wang. The early hydration and strength development of high-strength precast concrete with cement/metakaolin systems. Journal of Wuhan University of Technology Materials Science, 2010(25):712-716.
    [107]Z H Shui, T Sun, Z H Fu, G M Wang. Dominant factors on the early hydration of metakaolin-cement paste. Journal of Wuhan University of Technology Materials Science,2010(25):849-852.
    [108]P Duan, Z H Shui, W Chen, C H Shen. Influence of metakaolin on pore structure-related properties and thermodymamic stability of hydrate phases of concrete in seawater environment. Construction and Building Materials, 2012(36):947-953.
    [109]徐洪国,水中和,章瑞等.偏高岭土对水泥石热膨胀性能的影响.硅酸盐通报,2011(30):278-282.
    [110]苏彪,王桂明,水中和,李龙.偏高岭土在PHC管桩中的应用前景浅析. 混凝土与水泥制品,2010(4):27-29.
    [111]J J Brook., M.A Megat, Johari. Effect of metakaolin on creep and shrinkage of concrete[J]. Cement and Concrete Composites,2001(23):495-502.
    [112]Z Li, Z Ding. Property improvement of Portland cement by incorporating with metakaolin and slag[J]. Cement and Concrete Research,2003(33):579-584.
    [113]胡级华,杨兆光,郑忠等.胶体与界面化学[M],广州:华南理工大学出版社,1999.
    [114]马军涛,水中和,陈伟,徐文冰.养护湿度对补偿收缩混凝土碳化速率的影响[J].混凝土,2011(1):24-27.
    [115]屠柳青.高性能补偿收缩混凝土碳化行为与机理研究[D].武汉:武汉理工大学,2011.
    [116]水中和,屠柳青,马军涛,陈伟,徐文冰.膨胀剂对粉煤灰混凝土显微结构及抗碳化性能的影响[J].混凝土,2011(7):62-68.
    [117]Xuan D X, Shui Z H, Wu S P. Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete [J]. Construction and Building Materials,2009(23):2631-2635.
    [118]王栋民,左彦峰,欧阳世翕.氯离子在掺不同矿物质掺合料高性能混凝土中的扩散性能[J].硅酸盐学报,2004(32):858-861.
    [119]刘连新,张伟勤,代大虎.抗盐渍土侵蚀混凝土的工程实践与试验研究[J].青海大学学报(自然科学版),2004(22):31-36.
    [120]马强,朋改飞,谢永江等.双掺硅灰、粉煤灰对青藏铁路用高性能混凝土性能的影响[J].混凝土,2004(173):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700