混凝土中氯盐的传输机理及钢筋锈胀模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯盐侵蚀是导致钢筋混凝土结构服役性能劣化的重要原因。荷载作用及混凝土裂缝对氯离子的侵蚀有显著影响,研究氯离子在受荷载或开裂混凝土内的传输机理,以及钢筋混凝土锈胀开裂进程,对准确预测钢筋混凝土结构的服役寿命具有十分重要的意义。混凝土结构寿命分为三个阶段:诱导期、发展期和破坏期。本文以此主线,重点研究了荷载和混凝土裂缝在诱导期的影响机理,建立了发展期钢筋混凝土锈胀预测模型。主要研究工作如下:
     (1)设计了一种钢筋混凝土梁的持续加载装置,对施加不同荷载的普通混凝土梁和掺矿粉混凝土梁进行氯盐溶液浸泡试验,分析了荷载作用和混凝土氯离子结合能力对氯离子传输的影响。提出了荷载影响氯离子扩散的影响系数模型,确定了模型中的参数,并引入氯离子结合系数和温度影响系数,修正了Fick第二定律的解析解模型。该修正模型的计算结果与试验结果吻合,可以用来预测浸泡和荷载作用下混凝土中氯离子的传输。
     (2)将干湿循环过程氯离子传输的驱动力分解为对流和扩散作用,考虑水分在干燥和湿润过程中扩散系数的差异,分别建立了水分扩散系数与饱和度的关系,并考虑氯离子结合、温度影响和荷载影响系数,建立了干湿循环和荷载作用下氯离子的传输模型,编制了相应的Matlab程序求解了氯离子在混凝土中的传输方程。为了准确控制干湿循环过程的干湿制度和干燥过程边界条件,设计加工了全自动干湿循环试验系统,结合人工模拟环境试验箱,对干湿循环和荷载作用下的混凝土梁进行了试验研究。数值结果与试验结果的对比验证了数值模型的可靠性,较好地反映了拉、压荷载对氯离子传输的影响。
     (3)通过分析裂缝中氯离子的传输机理,建立了浸泡条件下开裂混凝土氯离子传输的双重孔隙介质模型,提出了制作带有真实裂缝试件的方法和有效测定裂缝周围氯离子浓度的方法,对开裂混凝土氯离子传输规律进行了试验研究,验证了所建立的理论模型。
     (4)采用离散裂缝模型可以较好地反映裂缝周围氯离子的浓度分布,以及对钢筋局部脱钝锈蚀带来的影响。通过将流体力学和毛细力学理论分别用于描述水分在裂缝中的传输和混凝土裂缝壁面对水分的毛细吸收作用,建立了干湿循环作用下开裂混凝土裂缝区域的氯离子传输模型。对干湿循环条件下开裂混凝土氯离子传输进行了试验研究,并采用电子探针的能谱分析技术测定了混凝土开裂区的氯离子浓度。结果发现,混凝土裂缝中存在氯离子浓度梯度,对流区深度大约在20mm~40mm之间,数值计算结果较好地反映了这一特点,并且试验数据与计算结果吻合良好。参数分析发现,裂缝宽度、裂缝粗糙度、裂缝长宽比及干燥过程边界条件影响着裂缝中氯离子的浓度分布。
     (5)基于混凝土各向异性损伤和混凝土的损伤软化,考虑了腐蚀产物和钢筋的弹性力学性能,以及腐蚀产物对钢筋-混凝土界面过渡区孔隙和混凝土开裂裂缝的填充效应,建立了钢筋-腐蚀产物-混凝土三相介质模型。采用直接在混凝土截面上粘贴应变片的方法,测定了钢筋锈蚀过程中混凝土内应变的变化,建立锈蚀率与混凝土应变的对应关系,将模型计算结果与试验结果进行比对,发现模型可以较好地预测混凝土的开裂时间,确定了混凝土环向应变是评价混凝土开裂的理想指标,并进行了模型参数分析。
The chloride attack is always regarded as an important cause of deteriorate in service performance of reinforced concrete structure (RC). Because of the significant influences of loading and cracks of concrete on chloride penetration, the study of chloride transport mechanism subjected to loading and cracks, as well as concrete rust expansion cracking process, play a great significant influence on the accurate prediction of service life. The service life of concrete structure can be divided into three phases:inductive phase, development phase and destruction phase. Thus, present work makes it as a major line, focusing on the mechanism of loading and cracks in the inductive period, and establishing the prediction model of corrosion expansion of reinforced concrete in development phase. The main research works as follows:
     By designing of a device for sustained loading on reinforced concrete beam, the chloride solution immersion tests are carried out for ordinary concrete beams and slag cement concrete beam subjected to different loadings tests, analyzing the influences of loading and binding capacity on chloride ion transport. By proposing a model considering the influence of loading on chloride ion diffusion coefficient, and determining the parameters in model, and introducing of chloride binding factor and temperature coefficient, the analytical Fick's second law is modified. The model calculation is consistent with experimental results, and it can be used to predict the transport of the chloride ion in concrete subjected to soaking conditions and loadings.
     Through decomposing the driving force of chloride ion transport subjected to wetting-drying cycles into convection and diffusion, and through considering the difference of the diffusion coefficient of water in the dry and wet process, the relationship between moisture diffusion coefficient and saturation is established, and through considering the combination of chloride ion, temperature influence and loading influence coefficients, the model of chloride ions subjected to wetting-drying cycles and loading is established, with programming of the corresponding Matlab program for solving the transport equation of the chloride ion in concrete. In order to accurately control the boundary conditions of the wetting-drying cycles, a fully automatic wetting-drying cycles test system is designed, and combined with the artificial simulation of environmental chambers, test study is carried out on the influence of wetting-drying cycles and loadings on concrete beam. When comparing the numerical results with experimental results, it can verify the reliability of the numerical model for better reflecting the pull and pressure loading on the transport of the chloride ion.
     Through analysis the mechanism of cracks in chloride ion transport, a dual porosity media model for cracked concrete considering the chloride ion transporting in soaking conditions is established, and the methods are proposed of generating the specimens with real cracks and effective determining the chloride ion concentration around cracks, and through conducting an experiment study, it verify the established theoretical model.
     Using the discrete crack model, it better reflects the distribution of the chloride ion concentration around cracks, as well as on the influence of partially corrosion of reinforcement. Through combining the mechanical theory of hydrodynamics and capillary, which are used to describe the wall face of the capillary absorption and the crack area of the cracked concrete, the model of chloride transport in the cracked concrete in the wetting-drying cycles is proposed. The experiment test of chloride ion concentration in cracked concrete subjected to wetting-drying cycles is studied, and the Energy-Spectrum Analysis Technique of the electron probe is used to determine the concentration of chloride ions of concrete cracked zone. It was found that gradient of chloride ion concentration exist in the concrete cracks, and the depth of the convection zone is approximately20mm-40mm, which verified by the numerical results, reflecting that the characteristics of experimental data and calculation results are in good agreement. Parameter analysis also reveal that the crack width, roughness of cracks, the ratio of length and width and boundary conditions of the drying process can affect the chloride ion concentration distribution in the crack.
     Based on the concrete anisotropic damage and softening damage of concrete, and considering the elastic behavior of the corrosion products, steel and corrosion products, the porosity in steel-concrete interface transition zone and the filling effect among cracks-corrosion products-concrete, three-phase medium model is established. Through pasting the strain gauge directly on the concrete cross section, the strain variation in the process of steel corrosion in concrete is conducted, and corresponding relationship between corrosion rate and concrete strain is established too, and through comparing the model calculation results with the experimental results, it is found that it can greatly predict the cracking of the concrete, and found that the concrete ring is a good indicator for the evaluation of concrete cracking strain, together with the analysis of model parameters.
引文
[1.1]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2002
    [1.2]Mather B. Concrete durability. Cement & Concrete Composites[J].2004,26:3-4
    [1.3]Moss G.M. Advancing a comprehensive understanding of concrete durability. Northwestern university [D]. PhD thesis,1998:24-28
    [1.4]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002
    [1.5]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003
    [1.6]王媛俐,姚燕.重点工程混凝土耐久性研究与工程应用[M].北京:中国建材工业出版社,2001
    [1.7]姬永生.钢筋混凝土的全寿命过程与预计[M].北京:中国铁道出版社,2011
    [1.8]Luca Bertolin, Bernhard Elsener, Pietro Pedeferri, et al. Corrosion of steel in concrete Prevention, Diagnosis, Repair[M].2004
    [1.9]美国ACI222委员会报告,混凝土中金属的腐蚀,海工钢筋混凝土耐久性译文集[R].上海交通部第三航务工程科研所,1988
    [1.10]孙伟.荷载与环境因素耦合作用下结构混凝土的耐久性与服役寿命[J].东南大学学报(自然科学版),2006,36:8-14
    [1.11]Mehta P. K. Concrete durability:fifty year's progress. Proceeding of 2nd International Conference on Concrete Durability[C].ACI SP 126-1,1991:1-33
    [1.12]全国水工混凝土建筑物耐久性及病害处理调查报告[R].水利水电科学研究院,1986
    [1.13]洪乃丰.建筑工程腐蚀与能源资源(3)[N].腐蚀与防护报,2010(6)
    [1.14]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004
    [1.15]金伟良,袁迎曙,卫军,王海龙.氯盐环境下混凝土结构耐久性理论与设计方法[M].北京:科学出版社,2011
    [1.16]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2008
    [1.17]Clifton J. R. Predicting the service life of concrete[J]. ACI Material Journal,1993,90(6):611-617
    [1.18]Tuutti K. Corrosion of Steel in Concrete, Stockholm:Swedish Cement and Concrete Research Institute[J].1982,91(4):469-478
    [1.19]黄士元.按服务年限设计混凝土的方法[J].混凝土,1994(6):24-32
    [1.20]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998
    [1.21]Torres-Acosta A A, Martinez-Madrid M. Residual life of corroding reinforced concrete structures in marine environment[J]. Journal of Materials in Civil Engineering,2003,15(4):344-353
    [1.22]蒋林华.混凝土抗氯离子渗透扩散性研究[J].中国腐蚀与防护学报,2002,22(6):343-348
    [1.23]Basheer L., Kropp J., Cleland D.J. Assessment of the durability of concrete from its permeation properties:a review[J]. Construction and building materials,2001,15(2-3):93-103
    [1.24]Hilsdorf H. Concrete compressive strength, transport characteristics and durability[C]. Performance criteria for concrete durability. E&FN Spon,1995:165-197
    [1.25]Collepardi M., et al. Penetration of chloride ions into cement pastes and concrete[M]. American Ceramic Society,1972,5
    [1.26]Richardson M.G. Fundamentals of durable reinforced concrete[M]. Taylor & Francis,2002
    [1.27]Mangat P., Molloy B. Prediction of long term chloride concentration in concrete[J]. Materials and Structures,1994,27(6):338-346
    [1.28]Maage M., et al. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Materials Journal,1996,93(6)
    [1.29]Clifton J.R. Predicting the service life of concrete[J]. ACI Materials Journal,1993,90(6)
    [1.30]Funahashi M.I. Predicting corrosion-free service life of a concrete structure in a chloride environment[J]. ACI Materials Journal,1990,87(6)
    [1.31]Hansen E.J., Saouma V.E. Numerical Simulation of Reinforced Concrete Deterioration? Part 1: Chloride Diffusion[J]. ACI Materials Journal,1999,96(2)
    [1.32]Saetta A.V., Schrefler B.A., Vitaliani R.V. The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials [J]. Cement and Concrete Research,1993, 23(4):761-772
    [1.33]Berke N., Hicks M.C. Predicting chloride profiles in concrete[J]. Corrosion,1994,50(3)
    [1.34]Amey S.L., et al. Predicting the service life of concrete marine structures:an environmental methodology [J]. ACI Structural Journal,1998,95(2)
    [1.35]Tang L., Nilsson L. Service life prediction for concrete structures under seawater by a numerical approach[J]. Durability of Building Materials and Components,1996,7(1):97-106
    [1.36]Tang L., Nilsson L. A numerical method for prediction of chloride penetration into concrete structures [J]. NATO ASI Series E Applied Sciences-Advanced Study Institute,1996(304):539-552
    [1.37]Mangat P., Molloy B. Prediction of long term chloride concentration in concrete[J]. Materials and Structures,1994,27(6):338-346
    [1.38]Costa A., Appleton J. Chloride penetration into concrete in marine environment-Part II:Prediction of long term chloride penetration[J]. Materials and Structures,1999,32(5):354-359
    [1.39]Anwar M. Chloride profiles in five concrete mixes containing supplementary cementing materials, proceedings of the fourth international conference on concrete under severe conditions[C]. CONSEC'04, Korea, Edited by Oh, B.H., Sakai, K.,and Gjorv, O.E.,and Banthia, N.,2004(1):433-440
    [1.40]Maage M., et al. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Materials Journal,1996,93(6)
    [1.41]Lim C., Gowripalan N., Sirivivatnanon V. Microcracking and chloride permeability of concrete under uniaxial compression[J]. Cement and Concrete Composites,2000,22(5):353-360
    [1.42]Neville A. Chloride attack of reinforced concrete:an overview[J]. Materials and Structures,1995, 28(2):63-70
    [1.43]Martin-Perez B., et al. A study of the effect of chloride binding on service life predictions[J]. Cement and Concrete Research,2000,30(8):1215-1223
    [1.44]Hassan Z. Bingding of external chloride by cement pastes[D]. PhD thesis, department of Building Materials, University of Toronto, Canada,2001
    [1.45]Arya C., Buenfeld N., Newman J. Factors influencing chloride-binding in concrete[J]. Cement and Concrete Research,1990,20(2):291-300
    [1.46]Dhir R., El-Mohr M., Dyer T.. Developing chloride resisting concrete using PFA[J]. Cement and Concrete Research,1997,27(11):1633-1639
    [1.47]Delagrave A., et al. Chloride binding capacity of various hydrated cement paste systems[J]. Advanced Cement based materials,1997,6(1):28-35
    [1.48]Larsson J. The enrichment of chlorides in expressed concrete pore solution submerged in saline solution[J].1995
    [1.49]Roberts M. Effect of calcium chloride on the durability of pre-tensioned wire in prestressed concrete[J]. Magazine of Concrete Research,1962,14(42):143-154
    [1.50]Byfors K. Chloride binding in cement paste[J]. Nordic concrete research,1986(5):27-38.
    [1.51]Wowra O., Setzer M. Sorption of chlorides on hydrated cements and C3S pastes[M]. Routledge, 1997
    [1.52]Holden W., Page C., Short N. The influence of chlorides and sulphates on durability[J]. Corrosion of Reinforcement in Concrete Construction,1983:143-150
    [1.53]Castellote M., Andrade C., Alonso C. Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments [J]. Cement and Concrete Research,1999,29(11):1799-1806
    [1.54]余红发,孙伟,等.混凝土使用寿命预测方法的研究Ⅰ—理论模型[J].硅酸盐学报,2002,30(6):686-690
    [1.55]余红发,孙伟,等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247
    [1.56]余红发,翁智财,等.矿渣掺量对混凝土氯离子结合能力的影响[J].硅酸盐学报,2007,35(6):801—806
    [1.57]Tang L., Nilsson L.O., Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research,1993,23(2):247-253
    [1.58]Tuutti K. The effect of individual parameters on chloride induced corrosion. In L.-O. Nilsson (Ed.), Chloride penetration into concrete structures [C]. Goteborg, Sweden,1993
    [1.59]Andrade C., Alonso C. Progress on design and residual life calculation with regard to rebar corrosion of reinforced concrete[R]. ASTM special technical publication,1996,1276:23-40
    [1.60]金伟良,金立兵,廷永东,姚昌建.海水干湿交替区氯离子对混凝土侵入作用的现场检测和分析[J].水利学报,2009,40(3):364-371
    [1.61]姬永生.钢筋混凝土的全寿命过程与预计[M].北京:中国铁道出版社,2011
    [1.62]LIFECON. Service Life Models:Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and types of structures in Europe [R]. Life Cycle Management of Concrete Infrastructures for improved Sustainability.2003
    [1.63]Richards L.A. Capillary conduction of liquids through porous mediums[J]. Physics,1931,1(5): 318-333
    [1.64]Hall C. Water sorptivity of mortars and concretes:a review[J]. Magazine of Concrete Research, 1989(41):51-56
    [1.65]Pel L., Kopinga K., Brocken H. Moisture transport in porous building materials[M]. Technische Universiteit Eindhoven,1995
    [1.66]Chaube R., Shimomura T., Maekawa K.. Multi-phase water movement in concrete as a multi-component system[M]. CHAPMAN & HALL,1993
    [1.67]李春秋,李克非.干湿交替下表层混凝土中水分传输:理论,试验和模拟[J].硅酸盐学报,2010(7):1151-1159
    [1.68]Climent M.A., et al.. A test method for measuring chloride diffusion coefficients through nonsaturated concrete:Part Ⅰ. The instantaneous plane source diffusion case[J]. Cement and Concrete
    Research,2002,32(7):1113-1123
    [1.69]姬永生,袁迎曙.干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J].工业建筑,2007,36(12):16—19
    [1.70]樊友煌,余红发,张云清.干湿循环对混凝土在高浓度卤水中氯离子扩散行为的影响[J].盐湖研究,2007,15(1):49-54
    [1.71]金伟良,张奕,卢振勇.非饱和状态下氯离子在混凝土中的渗透机理及计算模型[J].硅酸盐学报,2008,36(010):1362-1369
    [1.72]张奕.氯离子在混凝土中的输运机理研究[D].浙江大学博士学位论文,2008
    [1.73]Horii H., Shin H.C. Pallewatta T M. Mechanism of fatigue crack growth in concrete [J]. Cement and Concrete Composites,1992,14(2):83-90
    [1.74]莫斯克温B.M.等著,倪继淼等译.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1988
    [1.75]Lim C., Gowripalan N., Sirivivatnanon V.. Microcracking and chloride permeability of concrete under uniaxial compression[J]. Cement and Concrete Composites,2000,22(5):353-360
    [1.76]Gowripalan N., Sirivivatnanon V., Lim C. Chloride diffusivity of concrete cracked in flexure[J]. Cement and Concrete Research,2000,30(5):725-730
    [1.77]袁承斌,张德峰.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报:自然科学版,2003,31(1):50-54
    [1.78]邢锋,冷发光,冯乃谦,等.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土,2004(5):3—8
    [1.79]张武满,巴恒静,高小建,等.重复载荷作用下矿渣混凝土的渗透性[J].深圳大学学报:理工版,2007,24(4):352-356
    [1.80]蒋金洋,孙伟,王晶,等.弯曲疲劳载荷作用下结构混凝土抗氯离子扩散性能[J].东南大学学报:自然科学版,2010,40(2):362—366
    [1.81]Xiang T., Zhao R. Reliability evaluation of chloride diffusion in fatigue damaged concrete[J]. Engineering structures,2007,29(7):1539-1547
    [1.82]Ozbolt J., et al. Modelling the effect of damage on transport processes in concrete[J]. Construction and building materials,2010,24(9):1638-1648
    [1.83]Rodriguez O.G., Hooton R.D. Influence of cracks on chloride ingress into concrete[J]. ACI Materials Journal,2003,100(2):120-126
    [1.84]Grassl P. A lattice approach to model flow in cracked concrete[J]. Cement and Concrete Composites, 2009,31(7):454-460
    [1.85]Marsavina L., et al. Experimental and numerical determination of the chloride penetration in cracked concrete[J]. Construction and building materials,2009,23(1):264-274
    [1.86]Djerbi A., et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research,2008,38(6):877-883
    [1.87]Gagne R., Francois R., Masse P. Chloride penetration testing of cracked mortar samples, Proceedings of the Third International Conference on Concrete Under Severe Conditions[C]. CONSEC'01, Canada,2001:198-205
    [1.88]Win P.P., Watanabe M., Machida A. Penetration profile of chloride ion in cracked reinforced concrete[J]. Cement and Concrete Research,2004,34(7):1073-1079
    [1.89]Schiessl P., Raupach M. Influence o f concrete composition and microclimate on the critical chloride content in concrete, Proc.3rd Int. Symp. " Corrosion of Reinforcement in Concrete" [C]. Elsevier Applied Science, Wishaw, U K,1990:49-58
    [1.90]Schiessl P., Lay S. Influence of concrete composition, in:Bohni, H (Ed.), Corrosion in reinforced concrete structures[C]. Woodhead Publishing Limited, Cambridge,2005,91-134
    [1.91]Sandberg P.,et al. Critical chloride concentrations for the onset of active reinforcement corrosion[C]. Chloride penetration into concrete, Proceedings of the RILEM International Workshop, France,1995:453-457
    [1.92]Angst U., et al. Critical chloride content in reinforced concrete-A review[J]. Cement and Concrete Research,2009,39(12):1122-1138
    [1.93]Huasmnan D. A. Steel corrosion in concrete. How does it occur? [J]. Mater Prot,1967:19-23
    [1.94]Diamond S. Chloride concentrations in concrete pore solutions resulting from calcium and sodium chloride admixtures [J]. Cement, concrete and aggregates,1986,8(2):97-102
    [1.95]Yonazaea T. Pore solution composition and chloride effects on the corrosion of steel in concrete[J]. Corrosion,1988,44(7):489-499
    [1.96]Page C., Havdahl J. Electrochemical monitoring of corrosion of steel in microsilica cement pastes[J]. Materials and Structures,1985,18(1):41-47
    [1.97]Thangavel K., Rengaswamy N. Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete[J]. Cement and Concrete Composites,1998,20(4):283-292
    [1.98]Ann K.Y., Song H.W. Chloride threshold level for corrosion of steel in concrete[J]. Corrosion Science,2007,49(11):4113-4133
    [1.99]洪乃丰.混凝土中钢筋腐蚀与防护技术—钢筋腐蚀危害与对混凝土的破坏作用[J].工业建筑,1999,29(8):66-68
    [1.100]Gonzalez, J., et al. Some questions on the corrosion of steel in concrete—Part Ⅰ:when, how and how much steel corrodes [J]. Materials and Structures,1996,29(1):40-46
    [1.101]Richardson, M.G. Fundamentals of durable reinforced concrete[M]. Taylor & Francis,2002
    [1.102]Bentur, A., Diamond S., Berke N.S. Steel corrosion in concrete:fundamentals and civil engineering practice[M]. Taylor & Francis,1997
    [1.103]Broomfield J.P. Corrosion of steel in concrete:understanding, investigation and repair[M]. Spons Architecture Price Book,2007
    [1.104]Bazant Z.P. Physical model for steel corrosion in concrete sea structures-application[J]. Journal of the Structural Division,1979,105(6):1155-1166
    [1.105]Liu Y., Weyers R.E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures [J]. ACI Materials Journal,1998,95(6):675-681
    [1.106]牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型[J].工业建筑,1996,26(4):8—10
    [1.107]李海波,鄢飞,赵羽习等.钢筋混凝土结构开裂时刻的钢筋锈胀力模型[J].浙江大学学报,2000,34(4):412422
    [1.108]徐港,卫军,刘红庆.钢筋非均匀锈蚀试验研究[J].华中科技大学学报,2006,34(5):111—114
    [1.109]Liu Y., Weyers R E. Modelling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures [J].ACI Material Journal,1998,98(6):675-681
    [1.110]Alonso C., Andrade C.,Rodriguez J.,et al. Factors controlling cracking of concrete affected by reinforcement corrosion[J]. Material and Structures,1998,31(7):435-441
    [1.111]El Maaddawy T.,Soudki K. Model for predtction of time from corrosion initiation to corrosion cracking[J]. Cement and Concrete Composition.2007,39(3):168-175
    [1.112]Williamson S., Clark L. Pressure required to cause cover cracking of concrete due to reinforcement corrosion[J]. Magazine of Concrete Research,2000,52(6):455-467
    [1.113]Morinaga S. Prediction of service lives of reinforced concrete buildings based on rate of corrosion of reinforcing steel [R]. Special Report of Institute of Technology Shimizu Corporation,1989,23
    [1.114]Marita L. Allan. Probility of corrosion induced cracking in reinforced concrete [J].Cement and Concrete Research,1995,25(6):1179-1190
    [1.115]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析[J].水利学报,2005,36(8):939-945
    [1.116]陈月顺,周锡武,卫军等.钢筋混凝土结构锈胀裂缝扩展分析[J].东南大学学报,2006(11):279-282
    [1.117]李永和,葛修润.在役钢筋混凝土结构三维锈蚀层面模型与数值分析[J].中国科学,2002,32(5):653—661
    [1.118]E Maaddawy T., Soudki K,Topper T. Long-term performance of corrosion-damaged reinforced concrete beams[J]. ACI Structural Journal.2005,102(5):649-656
    [1.119]张伟平,张誉.混凝土中钢筋锈蚀过程的计算机仿真分析[J].同济大学学报,2001,29(10):1374—1377
    [1.120]Jang B.S., Oh B.H. Effects of non-uniform corrosion on the cracking and service life of reinforced concrete structures[J]. Cement and Concrete Research.2010(40):1441-1450
    [2.1]Schneider U., Chen S.W. The chemomechanical effect and the mechanochemical effect on high-performance concrete subjected to stress corrosion[J]. Cement and Concrete Research,1998,28(4): 509-522
    [2.2]Yoon S., Wang K., Weiss W., et al. Interaction between Loading, Corrosion, and Serviceability of Reinforced Concrete[J]. ACI Material journal,2000,97(6):637-644
    [2.3]刘伟.外加电流加速锈蚀钢筋混凝土梁的长期性能[D].同济大学硕士学位论文,2011
    [2.4]杨林德,潘洪科,祝彦知,等.多因素作用下混凝土抗碳化性能的试验研究[J].建筑材料学报,2008,11(3):345—348
    [2.5]Sangoju B., et al. Chloride-Induced Corrosion of Steel in Cracked OPC and PPC Concretes: Experimental Study. Journal of Materials in Civil Engineering,2011,23:1057-1066
    [2.6]Wang K., Jansen D.C, Shah S.P, Karr A.F. Permeability study of cracked concrete[J]. Cement and Concrete Research,1997,27(3):381-393
    [2.7]钟丽娟.混凝土盐雾加速侵蚀的相似性研究[D].同济大学硕士学位论文,2010
    [2.8]Gowripalan N., Sirivivatnanon V., Lim C. Chloride diffusivity of concrete cracked in flexure[J]. Cement and Concrete Research,2000,30(5):725-730
    [2.9]Jaffer S.J., Hansson C.M.. Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions[J]. Cement and Concrete Research,2009,39(2):116-125
    [2.10]金南国,金贤玉,郑砚国,荒牧军治.早龄期混凝土断裂性能和微观结构的试验研究[J].浙江大学学报:工学版,2005,39(9):1374—1377
    [2.11]中华人民共和国建设部.建筑结构检测技术标准(GB/T 50344-2004) [S],北京:中国建筑工业出版社,2004
    [2.12]Yuan Q., et al. Chloride binding of cement-based materials subjected to external chloride environment-A review [J]. Construction and building materials,2009,23(1):1-13
    [2.13]Luping T., Nilsson L.O.. Chloride binding capacity and binding isotherms of OPC pastes and mortars [J]. Cement and Concrete Research,1993,23(2):247-253
    [2.14]Martin-Perez B., Pantazopoulou S., Thomas M.. Numerical solution of mass transport equations in concrete structures [J]. Computers & Structures,2001,79(13):1251-1264
    [2.15]Kwon S.J., et al. Service life prediction of concrete wharves with early-aged crack:Probabilistic approach for chloride diffusion[J]. Structural Safety,2009,31(1):75-83
    [2.16]Martin-Perez B., et al. A study of the effect of chloride binding on service life predictions[J]. Cement and Concrete Research,2000,30(8):1215-1223
    [2.17]Ishida T., Iqbal P.O.N., Anh H.T.L. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete [J]. Cement and Concrete Research,2009,39(10):913-923
    [2.18]Soroushian P., Elzafraney M. Damage effects on concrete performance and microstructure [J]. Cement and Concrete Composites,2004,26(7):853-859
    [2.19]Gerard B., Pijaudier-Cabot G., Laborderie C. Coupled diffusion-damage modelling and the implications on failure due to strain localisation[J]. International journal of solids and structures,1998, 35(31):4107-4120
    [2.20]Cerny R., DrchalovaJ., Rovnanikova P. The effects of thermal load and frost cycles on the water transport in two high-performance concretes[J]. Cement and Concrete Research,2001,31(8):1129-1140
    [2.21]Gerard B., Marchand J. Influence of cracking on the diffusion properties of cement-based materials: Part Ⅰ:Influence of continuous cracks on the steady-state regime[J]. Cement and Concrete Research,2000, 30(1):37-43
    [2.22]Xiang T., Zhao R. Reliability evaluation of chloride diffusion in fatigue damaged concrete [J]. Engineering structures,2007,29(7):1539-1547
    [2.23]Lin G., Liu Y., Xiang Z. Numerical modeling for predicting service life of reinforced concrete structures exposed to chloride environments [J]. Cement and Concrete Composites,2010,32(8):571-579
    [2.24]Van Brakel J., Heertjes P. Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor [J]. International Journal of Heat and Mass Transfer,1974,17(9): 1093-1103
    [2.25]Atkinson A., Nickerson A. The diffusion of ions through water-saturated cement [J]. Journal of materials science,1984,19(9):3068-3078
    [2.26]Yang C., Cho S., Wang L. The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials [J]. Materials chemistry and physics,2006,100(2-3):203-210
    [2.27]Maekawa K., Ishida T., Kishi T. Multi-scale modeling of concrete performance [J]. Journal of Advanced Concrete Technology,2003,1(2):91-126
    [2.28]Nakarai K., Ishida T., Maekawa K. Multi-scale physicochemical modeling of soil-cementitious material interaction [J]. Soils and foundations,2006,46(5):653-663
    [2.29]Maekawa K., Ishida T., Kishi T. Multi-scale modeling of concrete performance [J]. Journal of Advanced Concrete Technology,2003,1(2):91-126
    [2.30]Kermani A. Permeability of stressed concrete[J]. Building research and information,1991,19(6): 360-366
    [2.31]Hearn N. Effect of shrinkage and load-induced cracking on water permeability of concrete[J]. ACI Materials Journal,1999,96(2):234-241
    [2.32]Banthia N., Biparva A., Mindess S. Permeability of concrete under stress[J]. Cement and Concrete Research,2005,35(9):1651-1655
    [2.33]Sugiyama T., T.W. Bremner, T.A. Holm. Effect of stress on gas permeability in concrete[J]. ACI Materials Journal,1996,93(5):443-450
    [2.34]Choinska M., et al. Effects and interactions of temperature and stress-level related damage on permeability of concrete[J]. Cement and Concrete Research,2007,37(1):79-88
    [2.35]Lawler J.S., Zampini D., Shah S.P. Permeability of cracked hybrid fiber-reinforced mortar under load[J]. ACI Materials Journal,2002.99(4):379-385
    [2.36]Wang K., et al. Permeability study of cracked concrete[J]. Cement and Concrete Research,1997, 27(3):381-393
    [2.37]Lim C., Gowripalan N., Sirivivatnanon V. Microcracking and chloride permeability of concrete under uniaxial compression[J]. Cement and Concrete Composites,2000,22(5):353-360
    [2.38]Wang H., et al. Effect of External Loads on Chloride Transport in Concrete[J]. Journal of Materials in Civil Engineering,2011,23:1043-1049
    [2.39]Lee J. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics,1998,124:892-900
    [3.1]Rose D. Water movement in unsaturated porous materials [J]. Rilem Bulletin,1965, (29):119-124
    [3.2]Bazant Z., Najjar L. Nonlinear water diffusion in nonsaturated concrete[J]. Materials and Structures, 1972,5(1):3-20
    [3.3]Maekawa K., Chaube R., Kishi T. Modeling of concrete performance [M]. E&FN Spon, London, 1999
    [3.4]Maekawa K., Chaube R., Kishi T. Modelling of concrete performance:Hydration, microstructure formation, and mass transport[M]. Taylor & Francis,1999
    [3.5]高世桥,刘海鹏.毛细力学[M].北京:科学出版社,2010
    [3.6]陆金甫,顾丽珍,陈景良.偏微分方程差分方法[M].北京:高等教育出版社,1988
    [3.7]张庆章,黄庆华,张伟平,顾祥林.潮汐区海水侵蚀混凝土结构加速模拟试验装置[J].实验室研究与探索,2011,30(8):4-7
    [3.8]中华人民共和国建设部.建筑结构检测技术标准(GB/T 50344—2004)[S],北京:中国建筑工业出版社,2004
    [3.9]Helland S. Assessment and prediction of service life of marine structures tool for performance based requirements[J]. Workshop on Design of Durability of Concrete, Berlin, June 1999
    [3.10]金伟良,张奕,卢振勇.非饱和状态下氯离子在混凝土中的渗透机理及计算模型.硅酸盐学报,2008,36(10):1362—1369
    [4.1]Gerard B., Marchand J. Influence of cracking on the diffusion properties of cement-based materials: Part I:Influence of continuous cracks on the steady-state regime [J]. Cement and Concrete Research,2000, 30(1):37-43
    [4.2]Park S.S., et al. Modeling of water permeability in early aged concrete with cracks based on micro pore structure [J]. Construction and building materials (2011), doi:10.1016 /j.conbuildmat.2011.07002
    [4.3]Win P.P., Watanabe M., Machida A., Penetration profile of chloride ion in cracked reinforced concrete [J]. Cement and Concrete Research,2004,34(7):1073-1079
    [4.4]Kato E., Kato Y., Uomoto T. Development of simulation model of chloride ion transportation in cracked concrete [J]. Journal of Advanced Concrete Technology,2005,3(1):85-94
    [4.5]Fu C, Jin X., Jin N.. Modeling of Chloride Ions Diffusion in Cracked Concrete [C]. ASCE,2010: 3579-3589
    [4.6]Kwon S.J., et al. Service life prediction of concrete wharves with early-aged crack:Probabilistic approach for chloride diffusion [J]. Structural Safety,2009,31(1):75-83
    [4.7]Marsavina L., et al. Experimental and numerical determination of the chloride penetration in cracked concrete[J]. Construction and building materials,2009,23(1):264-274
    [4.8]中华人民共和国国家标准:混凝土结构设计规范(GB50010—2010)[S].北京:中国建筑工业出版社,2010
    [4.9]Boulfiza M., et al. Prediction of chloride ions ingress in uncracked and cracked concrete [J]. ACI Materials Journal,2003,100(1):38-48
    [4.10]Bazant Z.P., Sener S., Kim J.K.. Effect of cracking on drying permeability and diffusivity of concrete [J]. ACI Materials Journal,1987,84(5)351-357
    [4.11]Djerbi A., et al. Influence of traversing crack on chloride diffusion into concrete [J]. Cement and Concrete Research,2008,38(6):877-883
    [4.12]Nordtest method-NT-BUILD 492. Concrete, mortar and cement-based repair materials:chloride migration coefficient from non-steady-state migration experiments [S]. published by Nordtest,1999
    [4.13]Jensen O.M., et al. Chloride ingress in cement paste and mortar [J]. Cement and Concrete Research, 1999,29(9):1497-1504
    [5.1]Boulfiza M., et al. Prediction of chloride ions ingress in uncracked and cracked concrete[J]. ACI Materials Journal,2003,100(1):38-48
    [5.2]Ishida T., Iqbal P.O.N., Anh H.T.L. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete[J]. Cement and Concrete Research,2009,39(10):913-923
    [5.3]Kato E., Kato Y., Uomoto T. Development of simulation model of chloride ion transportation in cracked concrete[J]. Journal of Advanced Concrete Technology,2005,3(1):85-94
    [5.4]Akhavan A., Shafaatian S.M.H., Rajabipour F. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars[J]. Cement and Concrete Research,2011
    [5.5]Picandet V, Khelidj A, Bellegou H. Crack effects on gas and water permeability of concretes [J]. Cement and Concrete Research.2009,39(6):537-547
    [5.6]Massey B.S., Ward-Smith J. Mechanics of fluids[M], Taylor & Francis,1998
    [5.7]Pokluda J., Sandera P. Micromechanisms of Fracture and Fatigue:In a Multi-scale Context[M]. Springer Verlag,2010
    [5.8]van Genuchten M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci Soc Am J.1980,44(5):892-898
    [5.9]Maekawa K., Ishida T., Kishi T. Multi-scale modeling of concrete performance[J]. Journal of Advanced Concrete Technology.2003,1(2):91-126
    [6.1]Bazant Z.P. Physical Model for Steel Corrosion in Concrete Sea Structures-Application[J]. Journal of the Structural Division-ASCE,1979(105):1155-1166
    [6.2]Sanchez P.J., Huespe A.E., Oliver J., Toro S. Mesoscopic model to simulate the mechanical behavior of reinforced concrete members affected by corrosion[J]. International journal of solids and structures, 2010,47(5):559-570
    [6.3]Coronelli D. Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete[J]. ACI Structural Journal,2002,99(3):267-276
    [6.4]Melchers R.E., Jeffrey R. Early corrosion of mild steel in seawater[J]. Corrosion Science,2005,47(7): 1678-1693
    [6.5]Grassl P., Jirasek M. Damage-plastic model for concrete failure[J]. International journal of solids and structures,2006,43(22):7166-7196
    [6.6]Tepfers R. Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars[J]. Magazine of Concrete Research,1979,31(106):3-12
    [6.7]Morinaga S. Prediction of service lives of reinforced concrete buildings based on the corrosion rate of reinforcing steel[C]. Proceedings of Building Materials and Components, Brighton, UK,1990:5-16
    [6.8]Andrade C., Alonso C., Molina F.J. Cover Cracking as a Function of Bar Corrosion:Part I-Experimental test[J]. Materials and Structures,1993,26(8):453-464
    [6.9]Molina F.J., Alonso C., Andrade C. Cover Cracking as a Function of Rebar Corrosion:part 2—numerical model[J]. Materials and Structures,1993,26(9):532-548
    [6.10]Gambarova P.G., Rosati G. Bond and splitting in reinforced concrete:test results on bar pull-out[J]. Materials and Structures,1996,29(169):267-276
    [6.11]Liu Y.P., Weyers R.E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal,1998,95(6):675-681
    [6.12]Pantazopoulou S.J., Papoulia K.D. Modeling cover-cracking due to reinforcement corrosion in RC structures[J]. Journal of Engineering Mechanics,2001,127:342-351
    [6.13]Bhargava K., Ghosh A.K., Mori Y., Ramanujam S. Modeling of time to corrosion-induced cover cracking in reinforced concrete structures[J]. Cement and Concrete Research,2005,35(11):2203-2218
    [6.14]Bhargava K., Ghosh A.K., Mori Y., Ramanujam S. Analytical model for time to cover cracking in RC structures due to rebar corrosion[J]. Nuclear engineering and Design,2006,236(11):1123-1139
    [6.15]Bhargava K., Ghosh A.K., Mori Y., Ramanujam S. Model for cover cracking due to rebar corrosion in RC structures[J]. Engineering structures,2006,28(8):1093-1109
    [6.16]Chernin L., Val D.V., Volokh K.Y. Analytical modelling of concrete cover cracking caused by corrosion of reinforcement[J]. Materials and Structures,2010,43(4):543-556
    [6.17]Chernin L., Val D.V. Prediction of corrosion-induced cover cracking in reinforced concrete structures[J]. Construction and building materials,2011,25(4):1854-1869
    [6.18]Shodja H.M., Kiani K., Hashemian A. A model for the evolution of concrete deterioration due to reinforcement corrosion[J]. Mathematical and Computer Modelling,2010,52(9):1403-1422
    [6.19]Bertolini L. Steel corrosion and service life of reinforced concrete structures[J]. Structure and Infrastructure Engineering,2008,4(2):123-137
    [6.20]Lundgren K. Modelling the effect of corrosion on bond in reinforced concrete[J]. Magazine of Concrete Research,2002,54(3):165-173
    [6.21]Lundgren K. Bond between ribbed bars and concrete. Part 2:The effect of corrosion [J]. Magazine of Concrete Research,2005,57(7):383-395
    [6.22]Ouglova A., Berthaud Y, Francois M., Foct F. Mechanical properties of an iron oxide formed by corrosion in reinforced concrete structures[J]. Corrosion Science,2006,48(12):3988-4000
    [6.23]Alsulaimani G.J., Kaleemullah M., Basunbul I.A., Rasheeduzzafar. Influence of Corrosion and Cracking on Bond Behavior and Strength of Reinforced-Concrete Members[J]. ACI Structural Journal, 1990,87(2):220-231
    [6.24]CEB-FIP, M.,90. Design of concrete structures. CEB-FIP Model Code 1990[S].1993, Thomas Telford

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700