受随机激励工程结构振动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机性是自然界最基本的规律之一,大量军事或民用设施都处于地震、风、海浪、流冰、不平路面激励等随机环境中,从而发生危及设施与人员安全性、舒适性、设施的正常运行或疲劳寿命等十分有害的随机振动。如何在设计阶段就努力将结构的随机振动控制在可以接受的限度以内,是工程界长期以来努力追求的目标。可是迄今为止所取得的成就还远不能满足工程界的需求。在本论文的研究中,密切结合对随机振动控制的需求比较突出的建筑抗震、汽车振动等工程问题,不但融入了近十几年来在数学、力学和控制理论界所出现的一些创新成果,并且采取各种新的思路对它们进行了有针对性的发展和再创新,提出了一系列实施结构随机振动控制的有效方法。这些方法和通过研究并使用这些方法而得到的结论,对于其它工程领域的随机振动控制也是有实用或借鉴意义的。
     建筑结构所受的地震作用和车辆行驰时所受的路面激励都是随机荷载。由它们所造成的结构振动本应按随机振动方法来处理。但由于常规随机振动方法的复杂低效,以往在研究建筑结构抗震控制器或车辆主动悬架控制器时,数值仿真一般都只在效率比较低的时域内进行直接数值积分。如果要对控制前后系统响应的统计特性作较为精确的估计,往往需要采用很多条地震加速度记录或路面不平度样本,并取很小的时间步长进行数值积分,从而耗费大量的计算时间,同时不得不采用十分简化的结构模型,使得控制效果大受影响。本论文在处理这类控制问题时,直接在随机振动方法框架内进行。尤其是将近年来由我国学者提出的虚拟激励法、精细积分法和在哈密顿体系内保辛、保性能,和保持高鲁棒性等措施引入随机振动控制领域,由地震激励功率谱密度或路面功率谱密度直接计算出系统各种平稳或非平稳随机响应的功率谱密度,既精确可靠,又快速方便,并且控制前后建筑结构的地震响应或车辆乘员的舒适度等指标都很容易得到。因此,本论文直接基于平稳/非平稳随机振动虚拟激励、精细积分等理论和方法对控制器进行研究是颇具特色的,具有很强的探索性和应用前景。
     本论文在研究新的建筑结构抗震控制器和车辆主动悬架控制器设计方法时,还尽可能地基于线性矩阵不等式处理框架,由此充分利用现有的凸优化技术而使控制器的设计简便易行。本论文根据建筑结构抗震控制和车辆主动悬架设计的特点,基于线性矩阵不等式处理方法,提出了新的建筑结构抗震鲁棒H_∞控制策略、保性能控制策略和车辆主动悬架鲁棒H_2/H_∞控制策略、考虑时域硬约束的H_∞控制策略。
     具体说来,本论文主要进行了以下几方面的研究工作:
     (1)扩展了LQG控制方法的求解途径和应用范围。由于常规的非平稳随机振动算法非常复杂低效,在结构抗震LQG控制问题中,地震的非平稳随机性以往极少被考虑。本文以毗邻建筑避碰控制为例,对非平稳随机地震激励下的LQG控制问题的求解进行了新的尝试。通过引入区段混合能矩阵,对微分Riccati方程进行了精细求解,并借助虚拟激励法及在状态空间中的时域精细积分法,使这类以前难于处理的时变LQG控制问题得到了高精度、高效率的解决。
     (2)基于线性矩阵不等式处理方法,提出了新的鲁棒风控制方法、给定二次型性能指标下的保性能控制方法和鲁棒H_2/H_∞控制方法,并应用于建筑结构抗震和车辆主动悬架设计。在控制器设计过程中,忽略结构模型参数的不确定性可能会导致控制系统性能恶化甚至失稳。本文基于线性矩阵不等式处理方法,提出并证明了考虑参数不确定性的鲁棒H_∞输出反馈控制器、保性能输出反馈控制器和鲁棒H_2/H_∞输出反馈控制器存在的充分条件。大量数值仿真结果表明,当建筑结构的刚度、阻尼、质量或车辆的悬挂质量存在变异时,本文给出的这三种控制策略都能实现很好的控制效果。
     (3)基于线性矩阵不等式处理方法,提出了一种新的考虑时域硬约束条件的H_∞输出反馈控制器设计方法,并应用于车辆主动悬架设计。车辆的操纵稳定性和乘坐舒适性对悬架各项性能有着不同的要求,为了平衡相互矛盾的诸项性能要求,本文从提高车辆乘坐舒适性入手,以车身加速度响应为控制输出向量,以悬架动行程、轮胎动载荷和作动器输出控制力响应为约束输出向量,分别基于连续时间系统和离散时间系统模型提出并证明了时域硬约束条件下H_∞输出反馈控制器存在的充分条件。
     (4)基于精细积分方法和保辛摄动思想,提出了一种新的时变系统LQG控制精细算法,并用于车桥耦合系统的垂向减振控制。时变系统LQG控制器设计中,需要求解变系数矩阵Riccati微分方程和变系数矩阵Kalman-Bucy滤波方程。通过将原时变Hamilton系统分解为零阶近似和保辛摄动两个Hamilton系统,引入区段混合能,给出了Riccati方程和Kalman-Bucy滤波方程状态转移矩阵基于区段矩阵合并的递推求解格式。以控制车辆过桥时的平顺性为例进行数值仿真,证实了此方法的优越性。
Randomness is one of the most fundamental laws in nature. Many militarian equipment and civil engineering structures are subjected to random environmental loads, such as earthquakes, wind gusts, ocean waves, drift ices or road irregularities. Random vibration induced by these environmental excitations may lead to structural fatigue damage, abnormal facility operation, uncomfortable ride, or safety problems for workers. How to control such harmful random vibrations within acceptable levels has long been a common target for engineering communities. Unfortunately, achievements so far obtained in this field are still quite limited, far beyond the requirements of engineering societies. In this dissertation, aiming at some urgent requirements in building earthquake-resistance and vehicle vibration, the author uses some recent achievements in mathematics, mechanics and control theory, combine and further develop them to generate a series of innovative and effective approaches in order to deal with such random vibration based structural control problems. These approaches and the conclusions drawn by using them in the study of the above civil and vehicle engineering problems have been fully justified in this dissertation. And they are also useful for the random vibration control in other engineering fields.
     Earthquakes and road irregularities are random and they can reasonably be treated as stochastic processes in the controller designs. However, as the usual random vibration methods are too complex and lack of efficiency, in the past time-domain based direct integration methods were usually adopted in the simulations, with very small time step and simplified structure model.
     In it a substantial number of earthquake acceleration records or excitation samples of the road inputs must be used in order to get statistical characteristics of the system's responses, which greatly increases the required computational effort. In this dissertation, some symplectic conservative, guaranteed cost and high robust methods are introduced in the field of random vibration control. Random responses of the uncontrolled and controlled structures are calculated with pseudo excitation method (PEM) and precise integration method (PIM) used. PEM is a highly efficient and accurate probabilistic method, in it the power spectral densities (PSDs) of the structural responses are calculated directly and conveniently from the ground acceleration or road surface elevation PSD. This yields accurate root mean squares of the structural responses, including the frequency-weighted acceleration root mean squares of the vehicle body. In a word, one feature of this dissertation is the application of stationary/non-stationary random vibration theory to the structural vibration control with PEM and PID used.
     Linear matrix inequality (LMI) approach has emerged as a powerful formulation and design technique for a variety of linear control problems, for which the existing convex optimization techniques such as interior-point algorithms, can be used effectively and conveniently. For new control strategies proposed in this dissertation, LMI optimization approach has been widely used. These strategies, including robust H_∞control, guaranteed cost control, robust H_2/H_∞control and constrained H_∞, control, are applied to building's aseismic control or active suspension design.
     Main research work of this dissertation can be summarized as follows:
     (1) Field of application of LQG method and its solutions are expanded. LQG regulators have been used in many engineering fields, however, as the low efficiency of usual random vibration analysis methods, LQG control technique still requires further development especially when the disturbances are non-stationary. In this dissertation, a new attempt is studied in which the LQG control is applied to adjacent tall buildings subjected to non-stationary seismic random excitations. With interval mixed variable energy introduced, the Riccati differential equation is solved precisely via the combination of interval matrices. With PEM and PIM used, such difficult transient LQG control process is solved with high precision and efficiency.
     (2) Based on LMIs, a new robust H_∞control approach, a new guaranteed cost control approach and a new robust H_2/H_∞control approach are presented, which are applied to aseismic structures or active suspension with uncertainties in model parameters. Uncertainties in the modeling of structures always exist. Neglecting these uncertainties may cause degradation and even instability of controlled structural systems. In this dissertation, based on LMIs, sufficient conditions for the existence of such output feedback controllers are derived, while the specific steps for controller designing are suggested. Numerical results show that whether the variation of the structural stiffness, damping, mass parameters or sprung mass of the vehicles exists or not, the proposed robust controllers behave very satisfactorily.
     (3) Based on LMIs, a constrained H_∞output feedback control method for active suspensions is proposed. Usually, requirements for advanced vehicle suspensions are conflicting in order to improve driving safety and ride comfort. This dissertation formulates the active suspension control problem as a constrained H_∞, output feedback control problem by choosing body accelerations as the controlled output and specifying the suspension stroke, dynamic tire load and control force as time-domain hard constraints. Such constrained H_∞, output feedback controllers are investigated for continuous-time system and discrete-time system respectively. Sufficient conditions for the existence of the controllers, as well as the detail steps for the controller designing, are given.
     (4) Based on the precise integration method and symplectic conservative perturbation method, a new precise algorithm is proposed for linear quadratic Gaussian (LQG) control of time-varying systems, which is applied to the vertical vibration suppressing of a rail carriage moving on a simply supported girder bridge. Vehicle-bridge coupling systems are time-dependent, which lead to the time-varying Riccati differential equation and the time-varying Kalman-Bucy filter equation, both of them need be solved in the LQG controller design. In this dissertation, the original time-varying Hamiltonian system, which corresponds to the time-varying Riccati differential equation, is decomposed into two Hamiltonian systems, i.e. a zero-order system and a residual perturbation system via the canonical transformation. With interval mixed variable energy introduced, the Riccati equations are solved recursively via combinations of interval matrices, as well as the state transfer matrices of the Kalman-Bucy filter equation. Its superiority has also been justified via numerical simulations of the random vibration control of a vehicle-bridge coupling system caused by irregular bridge surfaces.
引文
[1]Kelly J M,Skinner R I,Heine A J.Mechanisms of energy absorption in special devices for use in earthquake resistant structures.Bulletin of New Zealand National Society for Earthquake Engineering,1972,5(3):63-88.
    [2]Soong T T,Spencer Jr B F.Supplemental energy dissipation:state-of-the-art and state-of-the-practice.Engineering Structures,2002,24(3):243-259.
    [3]Yao J T P.Concept of structural control.Journal of Structural Division,ASCE,1972,98:1567-1574.
    [4]欧进萍.结构振动控制:主动、半主动和智能控制.北京:科学出版社,2003.
    [5]Yang G.Large-scale magnetorheological fluid damper for vibration mitigation:modeling,testing and control:(Ph.D.dissertation).Indiana,USA:University of Notre Dame,2001.
    [6]Spencer B F,Nagarajaiah S.State of the art of structural control.Journal of Structural Engineering,ASCE,2003,129,845-856.
    [7]Ni Y Q,Ko J M,Chen Z Q,Spencer B F Jr.Lessons learned from application of semi-active MR dampers to bridge cables for wind-rain-induced vibration control.Proceedings of China-Japan Workshop on Vibration Control and Health Monitoring of Structures,2002,Shanghai,China.
    [8]王修勇,陈政清,倪一清.斜拉桥拉索风雨振观测及其控制.土木工程学报,2003,36(6):53-59.
    [9]潘颖,王超,蔡国平.线性时滞系统的离散最优控制.计算力学学报,2004,21(2):177-184.
    [10]于骁,张文首,林家浩等.建筑结构基于平衡降阶的时滞离散最优控制.振动与冲击,2007,26(8):22-26.
    [11]Bakioglu M,Aldemir U.A new numerical algorithm for sub-optimal control of earthquake excited linear structures.International Journal for Numerical Methods in Engineering,2001,50:2601-2616.
    [12]Aldemir U,Bakioglu M.Active structural control based on the prediction and degree of stability.Journal of Sound and Vibration,2001,247(4):561-576.
    [13]Xu Y L,Zhang W S.Closed-form solution for seismic response of adjacent buildings with linear quadratic Gaussian controllers.Earthquake Engineering and Structural Dynamics,2002,31:235-259.
    [14]张文首,林家浩,于骁.海洋平台地震响应的LQG控制.动力学与控制学报,2003,1(1):47-52.
    [15]Wang S G.Linear quadratic Gaussian-alpha control with relative stability and gain parameter for the structural benchmark problems.Journal of Engineering Mechanics,ASCE,2004,130(4):511-517.
    [16]Lu L T,Chiang W L,Tang J P.LQG/LTR control methodology in active structural control.Journal of Engineering Mechanics,ASCE,1998,124(4):446-454.
    [17]盛严,王超,潘颖.基于LQG/LTR的磁流变阻尼器半主动控制律.工程力学,2004,21(1):112-117.
    [18]盛严,潘颖,王超.结构主动控制的LQG/LTR改进方法.计算力学学报,2004,21(5):575-579.
    [19]Yang J N,Akbarpour A,Ghaemmaghami P.New optimal control algorithms for structural control.Journal of Engineering Mechanics,ASCE,1987,113(9):1369-1386.
    [20]Yang J N,Li Z,Liu S C.Stable controllers for instantaneous optimal control.Journal of Engineering Mechanics,ASCE,1992,118(8):1612-1630.
    [21]李金桥,于建华.基于精细积分的结构主动最优控制算法.西南交通大学学报,2004,39(1): 77-81.
    [22]张文首,卢立勤,于骁等.基于精细积分的瞬时最优控制算法.振动工程学报,2006,19(4):514-518.
    [23]杨飚,欧进萍.结构瞬时最优控制参数影响的数值分析.世界地震工程,2004,20(3):25-32.
    [24]Chung L L,Wang Y P,Tung C C.Instantaneous control of structures with time-delay consideration.Engineering Structures,1997,19(6):465-475.
    [25]Akhiev S S,Aldemir U,Bakioglu M.Multipoint instantaneous optimal control of structures.Computers & Structures,2002,80:909-917.
    [26]张微敬,欧进萍.基于参数灵敏度最小的鲁棒主动控制方法.地震工程与工程振动,2002,22(3):106-110.
    [27]张春巍,欧进萍.结构振动的电磁驱动AMD系统控制策略与试验.噪声与振动控制,2006,(5):9-13+40.
    [28]邹祖军.用图论法进行结构振动控制的极点配置.力学季刊,2001,22(3):378-382.
    [29]Fang J Q,Li Q S,Jeary A P.Modified independent modal space control of m.d.o.f,systems.Journal of Sound and Vibration,2003,261:421-441.
    [30]Park K S,Koh H M,Seo C W.Independent modal space fuzzy control of earthquake-excited structures.Engineering Structures,2004,26:279-289.
    [31]Moon S J,Bergman L A,Voulgaris P G.Sliding mode control of cable-stayed bridge subjected to seismic excitation.Journal of Engineering Mechanics,ASCE,2003,129(1):71-78.
    [32]Wang An P,Lee C D.Fuzzy sliding mode control for a building structure based on genetic algorithms.Earthquake Engineering and Structural Dynamics,2002,31:881-895.
    [33]Yang J N,Lin S,Jabbari F.H_2-based control strategies for civil engineering structures.Journal of Structural Control,2003,10:205-230.
    [34]Yang J N,Lin S,Jabbari F.H_∞-based control strategies for civil engineering structures.Structural Control and Health Monitoring,2004,11:223-237.
    [35]Kim J T,Jung H J,Lee I W.Optimal structural control using neural networks.Journal of Engineering Mechanics,ASCE,2000,126(2):201-205.
    [36]Brown A S,Yang H T Y.Neural networks for multiobjective adaptive structural control.Journal of Structural Engineering,ASCE,2001,127(2):203-210.
    [37]周强,瞿伟廉.安装MR阻尼器工程结构的非参数模型自适应控制.地震工程与工程振动,2004,24(4):127-132.
    [38]Crolla D,喻凡.车辆动力学及其控制.北京:人民交通出版社,2004.
    [39]翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制:(博士学位论文).南京:南京航空航天大学,2001.
    [40]余淼.汽车磁流变半主动悬架控制系统研究:(博士学位论文).重庆:重庆大学,2003.
    [41]陈燕虹.半主动空气弹簧悬架智能控制算法的仿真及试验研究:(博士学位论文).长春:吉林大学,2005.
    [42]方子帆.基于MR阻尼器的半主动悬架控制方法研究:(博士学位论文).重庆:重庆大学,2006.
    [43]Nagai M,Shioneri T,Hayase M.Analysis of vibration suppression control systems of semi-active secondary suspensions.Proceedings of SICE'89,Matsuyama,1989:929-932.
    [44] Goodall R M, Kortiim W. Active controls in ground transportation - a review of the state-of-the-art and future potential. Vehicle System Dynamics, 1983, 12(4-5):225-257.
    [45] Bender E K. Some fundamental limitations of active and passive vehicle-suspension systems. SAE paper, No. 680750,1968: 2910-2915.
    [46] Bender E K. Optimum linear preview control with application to vehicle suspension. Journal of Basic Engineering, Series D, 1968,90(2): 213-221.
    [47] Thompson A G. Design of active suspension. Proceedings of the Institution of Mechanical Engineers, 1970, 185(36): 553-563.
    [48] Sharp R S, Crolla D A. Road vehicle suspension system design - a review. Vehicle System Dynamics, 1987, 16:167-192.
    [49] Wright P G, Williams D A. The application of active suspension to high performance road vehicles. Proceedings of the Institution of Mechanical Engineers, London, UK, 1984: 23-28.
    [50] Acker B, Draenberg W, Gall H. Active suspension for passenger cars. Proceedings of the 11th IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks, Kingston, 1989:15-25.
    [51] Aoyama Y, Kawabata K, Hasegawa S et al. Development of the full active suspension by Nissan. SAE paper, No. 901747, 1990.
    [52] Yokoya K, Kizu R, Kawaguchi H et al. Integrated control system between active control suspension and four wheel steering for the 1989 Celica. SAE paper, No. 901748,1990.
    [53] Crosby M J, Karnopp D C. The active damper—a new concept for shock and vibration control. The Shock and Vibration Bulletin, 1973, 43:119-133.
    [54] Gilbert R, Jackson M. Magnetic ride control. GM TechLink 4, 2002.
    [55] Karnopp D, Crosby M J, Harwood R A. Vibration control using semi-active force generators. Journal of Engineering for industry, ASME, 1974, 96(2): 619-626.
    [56] Teramura E, Haseda S, Shimoyama Y et al. Semi-active damping control system with smart actuator. JSAE Review, 1997, 18(3): 323-329.
    [57] Choi S B, Lee H K, Chang E G. Field test results of a semi-active ER suspension system associated with skyhook controller. Mechatronics, 2001,11: 345-353.
    [58] Hac A. Optimal linear preview control of active vehicle suspension. Vehicle System Dynamics, 1992, 21(3): 167-195.
    [59] Marzbanrad J, Ahmadi G, Zohoor H et al. Stochastic optimal preview control of a vehicle suspension. Journal of Sound and Vibration, 2004, 275: 973-990.
    [60] Roh H S, Park Y. Stochastic optimal preview control of an active vehicle suspension. Journal of Sound and Vibration, 1999, 220(2): 313-330.
    [61] Vahidi A, Eskandarian A. Influence of preview uncertainties in the preview control of vehicle suspensions. Journal of Multi-body Dynamics, 2002, 216(4): 295-301.
    [62] Thompson A G, Davis B R. Computation of the rms state variables and control forces in a half-car model with preview active suspension using spectral decomposition methods, Journal of Sound and Vibration, 2005, 285: 571-583.
    [63] Yu F, Zhang J W, Crolla D A. A study of a Kalman filter active vehicle suspension system using correlation of front and rear wheel road inputs. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214(5): 493-502.
    [64]Hac A,Youn I.Optimal design of active and semi-active suspensions including time delays and preview.Journal of Vibration and Acoustics,ASME,1993,115(4):498-508.
    [65]Youn I,Hac A.Semi-active suspensions with adaptive capability.Journal of Sound and Vibration,1995,180(3):475-492.
    [66]Gordon T J,Sharp R S.On improving the performance of automotive semi-active suspension systems through road preview.Journal of Sound and Vibration,1998,217(1):163-182.
    [67]Choi S B,Han S S.H_∞ control of electrorheological suspension system subjected to parameter uncertainties.Mechatronics,2003,13(7):639-657.
    [68]王莹,方敏,陈无畏.基于4自由度车辆模型的电液主动悬架H_∞控制.汽车工程,2004,26(1):9-12+23.
    [69]陈虹,赵桂军,孙鹏远等.H_2和H_∞主动悬架统一的理论框架与比较.汽车工程,2003,25(1):1-6.
    [70]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [71]Lin J H,Zhang W S,Williams F W.Pseudo-excitation algorithm for nonstationary random seismic responses.Engineering Structures,1994,16(4):270-276.
    [72]Lin J H,Zhang W S,Li J J.Structural responses to arbitrarily coherent stationary random excitations.Computers & Structures,1994,50(5):629-633.
    [73]Lin J H,Shen W P,Williams F W.Accurate high-speed computation of non-stationary random structural response.Engineering Structures,I997,19(7):586-593.
    [74]Lin J H,Sun D K,Sun Y,Williams F W.Structural responses to non-uniformly modulated evolutionary random seismic excitations.Communications in Numerical Methods in Engineering,1997,13:605-616.
    [75]Lin J H,Zhao Y,Zhang Y H.Accurate and highly efficient algorithms for structural stationary/non-stationary random responses.Computer Methods in Applied Mechanics and Engineering,2001,191(1-2):103-111.
    [76]Lin J H,Zhang Y H,Li Q S,Williams F W.Seismic spatial effects for long-span bridges,using the pseudo excitation method.Engineering Structures,2004,26:1207-1216.
    [77]Zhong W.X,Williams F W.Precise time step integration method.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,1994,208:427-430.
    [78]Lin J H,Shen W P,Williams F W.A high precision direct integration scheme for structures subjected to transient dynamic loading.Computers & Structures,1995,56,113-120.
    [79]Zhong W X.On precise integration method.Journal of Computational and Applied Mathematics,2004,163,59-78.
    [80]钟万勰.应用力学对偶体系.北京:科学出版社,2002.
    [81]钟万勰.应用力学的辛数学方法.北京:高等教育出版社,2006.
    [82]顾元宪,陈飚松,张洪武.结构动力方程的增维精细积分法.力学学报,2000,32(4):447-456.
    [83]张素英,邓子辰.非线性动力方程的增维精细积分法.计算力学学报,2003,20(4):423-426.
    [84]张文首,林家浩,刘婷婷等.结构非平稳随机响应的增维精细时程积分.振动与冲击,2006,25(5):18-20.
    [85]谭述君,钟万勰.非齐次动力方程Duhamel项的精细积分.力学学报,2007,39(3):374-381.
    [86]钟秋海.现代控制理论.北京:高等教育出版社,2004.
    [87]于长官.现代控制理论及应用.哈尔滨工业大学出版社,2005.
    [88]俞立.鲁棒控制—线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    [89]王德进.H_2和H_∞优化控制理论.哈尔滨:哈尔滨工业大学出版社,2001.
    [90]de Souza C E,Xie L H.On the discrete-time bounded real lemma with application in the characterization of static state feedback H_∞ controllers.Systems & Control Letters,1992,18(1):61-71.
    [91]Kaminer I,Khargonekar P P,Rotea M A.Mixed H_2/H_∞ control for discrete-time systems via convex optimization.Automatica,1993,29(1):57-70.
    [92]Green M,Limebeer D J N.Linear robust control.Englewood Cliffs,NJ:Prentice-Hall,1995.
    [93]Chilali M,Gahinet P.H_∞ design with pole placement constraints:an LMI approach.IEEE Transactions on Automatic Control,1996,41(3):358-367.
    [94]Scherer C,Gahinet P,Chilali M.Multiobjective output-feedback control via LMI optimization.IEEE Transactions on Automatic Control,1997,42(7):896-911.
    [95]Soong T T.Active Structural Control:Theory and Practice.Essex:Longman Scientific and Technical,1990.
    [96]Housner G W,Bergman L A,Caughey T K et al.Structural control:past,present and future.Journal of Engineering Mechanics,ASCE,1997:123(9):897-958.
    [97]Xie L H.Output feedback H_∞ control of systems with parameter uncertainty.International Journal of Control,1996,63(4):741-750.
    [98]Yu L.Optimal guaranteed cost control of linear uncertain system:an LMI approach.控制理论与应用,2000,17(3):423-428.
    [99]Qin C T,Duan G R.Optimal robust guaranteed cost control of uncertain linear continuous time systems via dynamical output feedback.Proceedings of the 6th World Congress on Intelligent Control and Automation,Dalian,China,2006:2441-2445.
    [100]Lai C T,Fang C H,Kau S Wet al.Robust H_2 control of norm-bounded uncertain continuous-time system—an LMI approach.2004 IEEE International Symposium on Computer Aided Control Systems Design,Taipei,Taiwan,2004:243-248.
    [101]Yoshimura T,Nakaminami K,Kurimoto Met al.Active suspension of passenger cars using linear and fuzzy-logic controls.Control Engineering Practice,1999(7),41-47.
    [102]Wu J C,Yang J N.LQG control of lateral-torsional motion of Nanjing TV transmission tower.Earthquake Engineering and Structural Dynamics,2000,29:1111-1130.
    [103]钟万勰.线性二次最优控制的精细积分法.自动化学报,2001,27(2):166-173.
    [104]钟万勰.卡尔曼—布西滤波的精细积分.大连理工大学学报,1999,39(2):191-200.
    [105]钟万勰,吴志刚,谭述君.状态空间控制理论与计算.北京:科学出版社,2007.
    [106]钟万勰,蔡志勤.LQG量测反馈最优控制的精细积分.应用数学和力学,2000,21(12):1279-1284.
    [107]Dyke S J,Caicedo J M,Turan G et al.Phase I benchmark control problem for seismic response of cable-stayed bridges.Journal of Structural Engineering,ASCE,2003,129(7):857-872.
    [108]谭述君,钟万勰.变系数微分Riccati方程的保辛摄动近似求解.大连理工大学学报,2006,46(S1):7-13.
    [109]Wang S G.Robust active control for uncertain structural systems with acceleration sensors.Journal of Structural Control,2003,10:59-76.
    [110]Yuen K V,Beck J L.Reliability-based robust control for uncertain dynamical systems using feedback of incomplete noisy response measurements.Earthquake Engineering and Structural Dynamics,2003,32:751-770.
    [111]Samali B,AI-Dawod M,Kwok K C S et al.Active control of cross wind response of 76-story tall building using a fuzzy controller,Journal of Engineering Mechanics,ASCE,2004,130(4):492-498.
    [112]张远勤,林桐.基于线性矩阵不等式(LMI)的建筑结构抗震H_∞控制.地震工程与工程振动,2003,23(5):169-173.
    [113]Xie L H,Fu M Y,de Souza C E.H_∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback.IEEE Transactions on Automatic Control,1992,37(8):1253-1256.
    [114]Gu K Q.H_∞ control of systems under norm bounded uncertainties in all system matrices.IEEE Transactions on Automatic Control,1994,39(6):1320-1322.
    [115]Arfiadi Y,Hadi M N S.Continuous bounded controllers for active control of structures.Computers & Structures,2006,84:798-807.
    [116]Gao W.Random seismic response analysis of truss structures with uncertain parameters.Engineering Structures,2007,29:1487-1498.
    [117]Yu L,Gao F.Output feedback guaranteed cost control for uncertain discrete-time systems using linear matrix inequalities.Journal of Optimization Theory and Applications,2002,113(3):621-634.
    [118]史明光,方敏,陈无畏.基于LMI的四自由度车辆模型主动悬架H_∞控制.合肥工业大学学报,2004,27(3):237-241.
    [119]Chen H,Guo K H.Constrained H_∞ control of active suspensions:an LMI approach.IEEE Transactions on Control Systems Technology,2005,13(3):412-421.
    [120]姜立标,王薇,谢东等.汽车半主动空气悬架自适应模糊神经网络控制.哈尔滨工业大学学报,2005,37(12):1747-1750.
    [121]郑玲,邓兆祥,李以农.汽车半主动悬架的滑模控制及鲁棒性.汽车工程,2004,26(6):678-682.
    [122]喻凡,郭孔辉.自适应悬架对车辆性能改进的潜力.中国机械工程,1998,9(6):67-69.
    [123]Doyle J C.Guaranteed margins for LQG regulators.IEEE Transactions on Automatic Control,1978,AC-23(4):756-757.
    [124]张远勤,林桐,穆静等.基于LMI的建筑结构地震动H_2/H_∞混合控制.福州大学学报(自然科学版),2004,32(1):60-64.
    [125]Wu H N,Fei Y C.Mixed H_2/H_∞ robust output feedback control for uncertain linear systems.Control Theory and Applications,2000,17(3):367-373.
    [126]Yang C D,Sun Y P.Mixed H_2/H_∞ state-feedback design for microsatellite attitude control.Control Engineering Practice,2002,(10):951-970.
    [127]俞立,陈国定,潘海天.不确定离散时间系统的H_2/H_∞最优保性能控制.控制与决策,2001,16(2):151-154.
    [128]余志生.汽车理论.北京:机械工业出版社,2000.
    [129]韩波,王庆丰,路甬祥.基于LQG理论的液压主动悬架仿真研究.机械工程学报,1998,34(6):59-65.
    [130]方敏,史明光,陈无畏.汽车主动悬架多目标H_2/H_∞混合控制.农业机械学报,2005,36(3):4-7.
    [131]陈虹,马苗苗,孙鹏远.主动悬架H_2/广义H_2输出反馈控制.控制理论与应用,2007,24(5):790-794.
    [132]Chen H,Liu Z Y,Sun P Y.Application of constrained H_∞ control to active suspension systems on half-car models.Journal of Dynamic Systems,Measurement,and Control,2005,127(3):345-354.
    [133]Ma M M,Chen H.Constrained H_2 control of active suspensions using LMI optimization.Proceedings of the 25th Chinese Control Conference,Harbin,China,2006:702-707.
    [134]Sung Y G.Modelling and control with piezoactuators for a simply supported beam under a moving mass.Journal of Sound and Vibration,2002,250(4):617-626.
    [135]李宛州,王京春.工业过程中一类时变模型的建立与控制方法研究.自动化学报,2006,32(1):120-124.
    [136]Kulkarni J E,Campbell M E,Dullerud G E.Stabilization of spacecraft flight in Halo orbits:an H_∞approach.IEEE Transactions on Control Systems Technology,2006,14(3):572-578.
    [137]郝强,强士中,马栋君.移动荷载作用下桥梁的振动控制.国外桥梁,1999,(3):38-42.
    [138]肖新标,沈火明.移动荷载作用下的桥梁振动及其TMD控制.振动与冲击,2005,24(2):58-61.
    [139]翟婉明.车辆—轨道耦合动力学.北京:中国铁道出版社,2001.
    [140]陈果.车辆—轨道耦合系统随机振动分析.成都:西南交通大学,2000.
    [141]夏禾.车辆与结构动力相互作用.北京:科学出版社,2002.
    [142]Wu Y S,Yang Y B.Steady-state response and riding comfort of trains moving over a series of simply supported bridges.Engineering Structures,2003,25(2):251-265.
    [143]Burl J B.Linear Optimal Control.Reading,MA:Addison-Wesley,1999.
    [144]谭述君,钟万勰.线性时变系统二次最优控制问题的保辛近似求解.应用数学和力学,2007,28(3):253-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700