颗粒分散体系电磁特性基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,一类非常重要且在国内已得到实用的微波吸收材料是在高分子粘结剂基体中加入超细颗粒制成的混合物,这种材料既可以用于涂覆型吸波材料又可用于结构型吸波材料中的某一层。本文将此混合物称之为颗粒分散体系。单层吸波材料的吸波性能主要取决于材料的复介电常数、复磁导率、材料厚度及使用频率等因素,而该层的宏观电磁参数又取决于各组分的电磁参数及其含量。从电磁参数ε和μ出发研究吸波材料的电磁性能对准确预测材料的吸波性能、缩短设计周期具有极其重要的意义。
     本文对羰基铁粉/环氧颗粒分散体系的电磁性能进行研究,包括体系的等效电磁参数的测量和计算,体系基体、颗粒含量、厚度等对吸波性能的影响等。体系的宏观电磁参数可通过HP8722ES矢量网络分析仪测得。对难以获得准确电磁参数的颗粒吸收剂,提出了根据不同含量分散体系的电磁参数利用曲线拟合和样条插值求解的方法。Maxwell-Garnett公式和Bruggeman公式是适用球形颗粒复合体系的经典计算公式,本文将两组公式及Maxwell-Garnett扩展公式运用于羰基铁粉分散体系。f<15%时,Maxwell-Garnett公式和Bruggeman公式均可准确地预测该体系的等效电磁参数;扩展Maxwell-Garnett公式比经典公式更准确地描述了体系等效电磁参数。此外,根据电磁波在介质中传输的阻抗理论计算了单层羰基铁粉分散体系的反射率,并考虑了不同基体、羰基铁粉含量及体系厚度对反射率的影响。论文主要以DT-50/环氧分散体系为例来说明计算情况。
At present, a composite medium in which ultrafine particles are dispersed in another originally homogeneous polymer (matrix) is an important absorbing material and has been used widely. This kind of material can be used both in coatings and in structure materials. This paper calls it particles disperse system(DS). Absorbing properties of single layer absorbing materials are determined by complex permittivity, complex permeability, thickness, frequency and so on. The external electromagnetic (EM) parameters of materials lie on ingredients' content and EM parameters. The effective EM parameters of composite medium can be calculated, so we can optimize absorbing materials by predicting reflection and cut design outlay and periods.
    This paper investigates the EM properties of carbonyl-iron/epoxy DS, including measuring and calculating the EM parameters of the DS, the influence of matrix, particles content and thickness on absorbing properties. A HP8722ES network analyzer can measure the external EM parameters. We can infer the EM parameters of pure carbonyl-iron from the EM parameters of DS of various content by curve-fit simulating and interpolation. Maxwell-Garnett(MG) formula and Bruggeman formula is applicable for spherical particles DS. This paper evaluates the application of these two formula and their extend formula to carbonyl-iron/epoxy disperse system. MG and Bruggeman formula can predict EM parameters of carbonyl-iron/epoxy DS when f<15%, and Extended MG formula is more accurate than MG. Based on impedance theory of EM wave transmitting in medium, we calculate the reflection of single-layer carbonyl-iron/epoxy DS
    
    
    
    and discuss the influence of matrix type, carbonyl-iron content and thickness on absorbing properties.
引文
[1]吴晓光,车晔秋编译.国外微波吸收材料.国防科技大学出版社.1992:1-5
    [2]曹茂盛.己发展中的隐身技术.物理学与高科技.第三版.哈尔滨工业大学出版社.1998:182-187
    [3]宋月贤,韦玮,郑元锁等.用于电磁屏蔽与吸波技术的聚苯胺导电聚合物的研究与进展.化工新型材料.Vol.28,No.9:3-7
    [4]曹克广.国外微波隐身材料的发展及现状.抚顺石油学院学报.1997,Vol.17(2):29-32
    [5]张卫东,冯小云,孟秀兰.国外隐身材料研究进展.宇航材料工艺.2003(1):1-5
    [6]黄志洵.电磁波隐身技术的发展.北京广播学院学报(自然科学版).1996(1):20-31
    [7]吴明忠,赵振声,何华辉.隐身与反隐身技术的现状和发展.上海航天.1996(3):36-42
    [8]朱孝信.舰船用若干先进功能材料的发展.武汉造船.1998(6):30-34
    [9]孙社营.吸波材料及其在舰船上的应用.材料开发与应用.1996(4),vol.11:43-48
    [10]孟新强,朱绪宝.隐身技术和隐身武器的研究及应用现状.弹箭与制导学报.1999(3):59-64
    [11]R. A. Stonier. Stealth aircraft & technology from world war Ⅱ to the Gulf Part Ⅰ.SAMPE Journal.1991, 27(4): 9-17
    [12]R. A. Stonier. Stealth aircraft & technology from world war Ⅱ to the Gulf Part Ⅱ. SAMPE Journal, 1991, 27(5): 9-18
    [13]王为,程杰,高俊丽等.雷达吸波材料的研究现状.雷达与对抗.1999(1):30-33
    [14]王海.雷达吸波材料的研究现状和发展方向.上海航天.1996(1):55-59
    
    
    [15]K. J. Vinoy, R. M. Jha. Trends in radar absorbing materials technology, SADHANA-ACAD P ENG. S, 1995,S 20:815-850
    [16]M. S. Cao, Q. F. Li, J. Yuan, G. Z. Xu, S. M. Qin, X. Y. Fang. Towards an intelligent CAD system for multiplayer electromagnetic absorber design. Materials and Design, 1998, 19(3): 113-120.
    [17]M. S. Cao. Design and prediction for multi-layer absorbing composites. Harbin Institute of Technology, 1998:58-70
    [18]刘列,明雪,胡连成等.吸波涂层材料技术的现状和发展.宇航材料工艺.1994(1):1-9
    [19]曾祥云,马铁军,李家俊.吸波材料(RAM)用损耗介质及RAM技术发展趋势.材料导报.1997(3),vol.11:57-60
    [20]焦桓,周万城.雷达吸收剂研究进展.材料导报.2000(3),vol.14:11-12
    [21]赵东林,周万城.纳米雷达波吸收剂的研究和发展.材料工程.1998(5):
    [22]曹茂盛博士论文.多层复合隐身材料设计及性能预报.哈尔滨工业大学.1999.1:58-65
    [23]李斌太,杜林虎,周洋等.铁氧体吸收剂粉体的煅烧工艺研究.航空材料学报.2000(3),vol.20:139-143
    [24]阚涛,娄明连.含BaFe_(12)O_(19)的尖晶石型铁氧体电波吸收材料平行磁场织构处理感生各向异性.磁性材料及器件.Vol.31,No.5,2000:21-24
    [25]赵振声,张秀成,聂彦等.多晶铁纤维吸波材料的吸波磁性研究.磁性材料及器件.Vol.31,No.1,2000:18-38
    [26]邢丽英,刘俊能,任淑芳.短碳纤维电磁特性及其在吸波材料中应用研究.材料工程.1998(1):19-21
    [27]葛副鼎,库万军,朱静.手性材料及其在隐身吸波材料中的应用.材料导报.1999(1),vol.13:10-11
    [28]时振栋等.电磁波的应用.高等教育出版社.1990:1-24
    [29]王炳根.在生产工艺过程中控制羰基铁粉性能.粉末冶金工业.1996(4):32-35
    [30]Magali S. P., Maria L. G., Regina C. R.. Performance of radar
    
    absorbing materials by waveguide measurements for X- and Ku-band frequencies. European Polymer Journal. 38(2002): 2321-2327
    [31]葛福鼎,朱静,陈利明.超微磁性颗粒在高分子中的分形聚集态.电子显微学报.1995.3:27
    [32]王智勇,刘俊能.超细金属粉微波电磁性能的研究.航空材料学报.1994(4):7-14
    [33]张立德,牟季美著.纳米材料和纳米结构.科学出版社.2001.2:182-185
    [34]王志良,任伟编著.电磁散射理论.四川科学技术出版社.1993:182-302
    [35][法].R.科埃略,B.阿拉德尼兹著.科学出版社.电介质材料及其介电性能.2000:182
    [36]吴明忠,赵振声,何华辉.单轴各向异性吸波材料对斜入射电磁波的反射.华中理工大学学报.1998.11
    [37]A.J. Sloyanov, E.C. Fischer, H. Uberal. Effective medium theory for larger particulate size composites, J.Appl. Phys. 2001, 89(8): 4486-4490
    [38]L. Tsang, J. A. Tong, R. T. Shin. Theory of microwave remote sensing. New York: John Wiley & Sons Inc, 1985:425-75
    [39]赵凤章,李承祖,陈建华.颗粒性混合物等效介电常数的一种近似理论.宇航材料工艺.1989(10):10
    [40]曹晓辉,黄荣芳,闻立时等.微粒子复合体介电特性有效媒质理论的形状修正.1996(2):60-66
    [41]杜昊,肖金泉,谭明辉等.利用有效媒质理论对纳米金属薄膜介电函数的初步分析.金属学报.2000(11):1165-1169
    [42]L. Tsang, J. A. Kong. Scattering of electromagnetic waves from random media with strong permittivity fluctuation. Radio Science.Vol. 16, No.3, 1981 (5-6):302-320
    [43]Weng Cho Chew, James A. Friedrich, Robert Geiger. A multiple scattering solution for the effective permittivity of a sphere mixture. IEEE Trancactions on Geoscience and Remote Sensing. Vol. 28, No.
    
    2:(1990)207~214
    [44]阳开新.铁氧体吸波材料及其应用.磁性材料及器件.1996(8):19-23
    [45]朱天社,徐敏成.功能材料.1994,25(增刊):776-778
    [46]Kimmo Kirkkiinen, Ari Sihvola and Keijo Nikoskinen., Analysis of a Three-Dimensional Dielectric Mixture with Finite Difference Method. IEEE Transactions on Geoscience and Remote Sensing. Vol.39, No.5, May 2001:1013-1018
    [47]Keith W. Whites, Feng Wu. Effects of Particle Shape on the Effective Permittivity of Composite Materials With Measurements for Lattices of Cubes. IEEE Transactions on Microwave Theory and Techniques. Vol. 50, No. 7, July 2002:1723-1729
    [48]Akhlesh Lakhtakia. Application of strong permittivity fluctuation theory for isotropic, cubically nonlinear composite mediums. Optics Communications. 192(2001 ): 145-151
    [49]Petr Chylek, Gorden Videen. Scattering by a composite sphere and effective medium approximations. Optics Communications: 146(1998): 15-20
    [50]Ludmilla Kolokolova, Bo A.S. Gustafson. Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories. Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 611-625
    [51]A V Goncharenkol, V Z Lozovski and E F Venger. Effective dielectric response of a shape-distributed particle system. J. Phys.: Condens. Matter 13 (2001) 8217-8234
    [52]A V Goncharenkol, V V Popelnukh and E F Venger. Effective of weak non sphericity on linear and nonlinear optical properties of small particle composites. J. Phys.: Appl. Phys.35(2002): 1833-1838
    [53]Ari H. Sihvola, Esko Alanen. Studies of mixing formulae in the complex plane. IEEE Transactions on Geoscience and Remote Sensing. Vol.29, No.4. July 1991:679-687
    [54]Mark J. Bloemer, Joseph W. Haus. Broadband waveguide polarizers
    
    based on the anisotropic optical constants of nanocomposite films. Journal of Lightwave Technology. Vol. 14, No. 4:(1996) 1534-1540
    [55]H. P. Chiang, P. T. Leung, W. S. Tse. Optical Properties of Composite Materials at High Temperatures. Solid State Communications. Vol. 101, No. 1:(1997) 45-50
    [56]J. R. Kalnin, E. A. Kotomin, J. Maier. Calculations of the effective diffusion coefficient for inhomogeneous media. Journal of Physics and Chemistry of Solids:63(2002) 449-456
    [57]G. L. Hornyak, C. J. Patrissi, C. R. Martin, etc. Dynamical Maxwell-Garnett optical modeling of nanogold-porous alumina composites: Mie and kappa influence on absorption maxima. NanoStructured Materials. Vol.9:(1997) 575-578
    [58]刘述章,邱才明,林为干.羰基铁类随机混合吸波材料等效电磁参数的计算.Vol.22,No.9(1994):104-108
    [59]刘述章,邱才明.含涂层椭球粒子随机混合媒质的等效电磁参数的计算.Vol.14,No.1(1996):67-73
    [60]贾宝富,刘述章,林为干.颗粒媒质等效电磁参数的研究.电子科学学刊.1990(9):503-512
    [61]邱才明,刘述章,林为干.含强散射体的随机混合媒质的等效电磁参数.电子学报,1993,21(6):6-13
    [62]杨华军,饶克谨,赵伯琳.纤维布层板吸波材料的等效电磁参数.电子科技大学学报.Vol.27,No.3:280-283
    [63]吴明忠,赵振声,何华辉.层状多晶铁纤维吸波材料的等效电磁参数.磁性材料及器件.Vol.29,No.1:31-38
    [64]Mingzhong Wu, Haijun Zhang, Xi Yao and Liangying. Zhang Microwave characterization of ferrite particles. J. Phys. D: Appl. Phys. 34 (2001): 889-895
    [65]K. W. Yu. Mean Field Theory Lossy Nonlinear Composites. Solid State Coimmunications. Vol. 105, No. 11: (1998) 689-693.
    [66]吴亚敏,高雷.强非线性复合材料中的原胞有效媒质近似.苏州大学学报(自然科学).1999(7):46-54
    [67]L Gao, Jones T K Wan, K W Yu and Z Y Li. Effective non-linear
    
    optical properties of metal-dielectric composites of spheroidal particles. J. Phys.: Condens. Matter 12 (2000) 6825-6836.
    [68]L Gao, J Z Gu. Effective Dielectric Constant of a Two-component Material with Shape Distribution. J. Phys. D: Appl. Phys. 35 (2002)267-271
    [69]Lei Gao, Zhenya Li. Temperature Dependence of Nonlinear Optical Response in Metal/dielectrics Composite Media. Solid State Communications. Vol. 107, No. 12:(1998) 751-755
    [70]Xinyu Liu, Zhenya Li. High Order Nonlinear Susceptibilities of Composite Medium. Solid State Communications. Vol.96, No.12: (1995) 981-985
    [71]郭琳,张明,洪伟等.FF/FB媒质等效电磁参数的数值计算.电波科学学报.Vol.16,No.1:1-5
    [72]王相元,盛玉宝,钱鉴.羰基铁粉复合材料的复介电常数和复磁导率和体积浓度的关系.宇航材料工艺.1987(4-5):47-51
    [73]王相元,盛玉宝,钱鉴等.吸波材料电磁参量与吸收剂百分体积关系.南京大学学报.1992(10):554-557
    [74]曹江.介质材料电磁参数测量综述.宇航计测技术.1994(6):30-34
    [75]汪忠柱,姚学标,胡国光等.应用微波网络分析仪测量固态双复介质的电磁特性参数及其误差评估.磁性材料及器件.2001(8):59-63
    [76]A.Berthault, D.Rousselle and G.Zerah. Magnetic Properties of Permalloy Micropartieles. Journal of Magnetism and Magnetic Materials.1992, 112:477-480

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700