人源腺苷酸激酶4结构和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腺苷酸激酶广泛存在于生物体内,参与细胞内能量和核苷酸代谢。它们催化可逆的磷酸转移反应,将三磷酸腺苷酸或鸟苷酸上的γ磷酸转移到单磷酸腺苷酸上,该反应需要镁离子的辅助。腺苷酸激酶属于单磷酸核苷酸激酶家族,该家族还包括鸟苷酸激酶,胸腺嘧啶激酶,和鸟嘧啶/胞嘧啶激酶。所有这些酶有共同典型的α/β折叠,其中α-螺旋包围着以β-片组成的核心,氨基端有共同的磷酸供体结合的P-loop。所有的腺苷酸激酶由三个结构域组成:CORE结构域,LID结构域,和一个单磷酸腺苷酸结合的NMP_(bind)结构域。根据LID结构域的长短可以将腺苷酸激酶分为长亚型和短亚型。短亚型腺苷酸激酶的LID结构域由柔性的环组成,而长亚型腺苷酸激酶的LID结构域由四片反平行的折叠片组成。AK4是目前发现的AK家族中唯一一个没有AK催化活性的特殊成员,AK4的生理功能以及失活的原因至今仍一无所知。
     因此本论文对AK4的结构和功能以及催化机理进行了全面的研究。AK4中Gln159不能像其它AK中的Arg一样与转移中的磷酸基团相互作用形成氢键而稳定反应中间态,因此像其它AK一样的磷酸转移反应不能在AK4中发生,这就是为什么母体AK4无论在体外酶活实验,还是在体内突变互补实验中都没有表现出任何AK的活性。虽然,AK4没有表现出AK的催化活性,然而从AK4与GP5的晶体结构,以及AK4(Q159R)突变体能够有AK催化活性等实验结果都可以看出,AK4本身还具有底物结合能力。AK4(Q159R)突变体能够将GTP上的磷酸基团转移到AMP上,因此AK4可以结合GTP,AMP,GDP和ADP等核苷酸。因此,由于参与催化磷酸转移的重要氨基酸Arg被Gln取代,母体AK4不具有AK催化活性,但仍然具有核苷酸结合能力,我们可以推测,AK4在体内可以作为核苷酸的载体而发挥作用。
     通过检测AK4的mRNA和蛋白水平,我们发现AK4的表达水平在细胞压力(如Hypoxia)存在下都会大幅升高。因此,AK4有可能是细胞压力反应蛋白,在细胞存在压力情况下表达上升。对本底AK4表达水平高的HEK293细胞进行AK4 siRNA实验表明,AK4的siRNA对HEK293细胞的生长,形态,存活有很大影响,且随AK4表达抑制程度增高影响越大;而且AK4蛋白表达被抑制会导致HEK293细胞很难形成克隆。因此可以看出,AK4对HEK293细胞的生长及发育过程是十分重要的。在本底AK4表达水平低的细胞SH-SY5Y中过表达AK4蛋白实验表明,显微镜下观察,过表达AK4的SH-SY5Y细胞的形态和密度与对照组并无明显差异;MTT测细胞活性实验也进一步证明,过表达AK4对SH-SY5Y存活率没有明显影响。但是,在细胞压力(H_2O_2处理)情况下,AK4过表达的细胞要比对照组细胞存活率高,换言之,AK4过表达可以保护SH-SY5Y细胞对抗H2O2引起的细胞死亡。上述实验结果可以看出,AK4可能是细胞压力反应的蛋白,AK4的表达对细胞生长及发育很重要,且AK4的表达对细胞起保护作用。
     本文进一步研究AK4在体内发挥作用的可能的机制,我们试图寻找AK4相互作用的蛋白。通过对AK4-FLAG的免疫共沉淀及质谱分析得到线粒体内膜蛋白ANT可能参与AK4的相互作用,然后进行反向的免疫共沉淀实验进一步确定了AK4与ANT的相互作用。在细胞面对氧化压力的情况下,ANT与AK4之间相互作用会增强,因此我们推测,ANT与AK4的相互作用有可能参与到AK4在氧化压力下保护细胞的过程中。为进一步了解AK4与其它蛋白的相互作用,我们通过体外表达纯化人源的AK4,以及与AK4序列高度相似的AK3的His标签融合蛋白,在体外进行了His的pull-down实验。体外的His-tagged pull-down进一步确定了AK4与ANT的相互作用,而且,还发现了新的与AK4相互作用的蛋白ATP合成酶F1复合物的alpha和beta亚基。另外据报导ANT在线粒体内膜上与ATP合成酶形成大的复合体(ATP synthasome),因此,对AK4相互作用蛋白的研究可以提示,AK4有可能参与到与细胞线粒体内ATP合成及转运相关途径中。
     在AK4中,171位的Leu突变为Pro导致HingeⅣ区域结构发生变化,HingeⅣ的结构也伴随着HingeⅢ的结构发生变化,这种Hinge区域的结构变化最终导致AK4整体结构发生大规模构象变化。这种“twisted-and-closed”构象的AK4(L171P)的结构为蛋白质结构域之间的运动以及蛋白构象变化提供了直接的模型,揭示了Hinge区域如何直接调节蛋白的结构变化。而且在AK家族中,提供了一个新的AK结构构象,而且这种“关闭”结构并不是由底物或其类似物的结合引起的。对AK4这个不具有酶学活性的特殊AK进行了可能的生理功能研究,发现AK4更可能是细胞内的调节蛋白。对AK4结构的研究可以看出,AK4的结构具有非常大的柔性,结构域之间的相对运动幅度较大,对AK4的结构的研究结果为AK4作为一个调节蛋白发挥功能的假设提供了又一证据。
     综上所述,本文对AK4进行了较全面的结构和功能的研究。通过突变及结构分析,AK4虽不具有AK催化活性,但仍然具有核苷酸结合能力,推测AK4在体内可以作为核苷酸的载体而发挥作用。通过对细胞生物学的研究得出AK4受细胞压力反应调节,AK4的表达对细胞生长及发育至关重要。对AK4相互作用蛋白的研究可以提示,AK4有可能参与到与细胞线粒体内ATP合成及转运相关途径中。对AK4(L171P)的结构研究为蛋白质结构域之间的运动以及蛋白构象变化提供了直接的模型,揭示了Hinge区域如何直接调节蛋白的构象变化。
Aden ylate kinases(AKs) are ubiquitous enzymes which are involved in energy metabolism and homoeostasis of cellular adenine nucleotide composition.They catalyze reversible transfer ofγ-phosphate group from Mg2+ATP(or GTP) to AMP, releasing Mg2+ADP(or GDP) and ADP.AKs belong to the nucleoside monophosphate kinase(NMPK) family that includes other members such as guanylate kinases,thymidylate kinases,and UMP/CMP kinases.All of these enzymes share a common typicalα/βfold that consists of aβ-sheet CORE surrounded byα-helices,with a P-loop motif at the N-terminus that binds the phosphoryl donor. All AKs contain a central CORE domain,a LID domain,and an AMP-binding domain called NMPbind.The CORE and NMPbind domains are conserved in all AKs, whereas the LID domain is quite different.
     Six AK genes named AK1-AK6 have been identified in vertebrates.Adenylate kinase 4(AK4) is a unique member with no enzymatic activity in vitro in the adenylate kinase(AK) family although it shares high sequence homology with other AKs.It remains unclear what physiological function AK4 might play or why it is enzymatically inactive.Most residues within active site are conserved in human AK4 except residue 159,where an arginine conserved in other AKs is replaced with a glutamine.Structural analysis revealed that,while AK4 retains the capability of binding nucleotides,AK4 has a giutamine residue instead of a key arginine residue in the active site well conserved in other AKs.Mutation of the glutamine residue to arginine(Q159R) restored the adenylate kinase activity with GTP as substrate.
     In this study,we strive to establish the functional importance of AK4.When cells were exposed to hypoxia,the AK4 protein level increased significantly Moreover,we tested the AK4 levels in a commonly used transgenic mouse model of ALS,a neurodegenerative disease in which oxidative stress has been implicated,the AK4 level was significantly higher in the spinal cords of ALS mice.The results support that AK4 protein levels increase in response to different stress in cultured cells as well as in an animal model of human disease,suggesting that AK4 might provide protective benefits to cells under stress.Laterly,we showed that small hairpin RNA (shRNA)-mediated knockdown of AK4 in HEK293 cells with high levels of endogenous AK4 resulted in reduced cell proliferation and cell death.Furthermore, we found that AK4 over-expression in the neuronal cell line SH-SY5Y with low endogenous levels of AK4 protected cells from H2O2 induced cell death.These results indicate that the enzymatically inactive AK4 is a cell stress protective protein critical to cell survival and proliferation.
     Proteomic studies revealed that the mitochondrial ADP/ATP translocases(ANTs) interacted with AK4 and more interaction can be detected when cells were exposed to H2O2 treatment.It is likely that AK4 function by modulating its interaction with the mitochondrial inner membrane protein ANT.In vitro pull-down experiments further confirmed the protein-protein interactions between AK4 and ANT,further more,the a andβsubuinits of mitochondrial ATP synthase F1 complex are also found to be involved in the protein interactions with AK4.ANTs are important in mitochondrial ADP/ATP transport in the cell energy metabolism system,which also be reported to form into big complex(ATP sythasome) with mitochondrial ATP synthase.In other words,the proteins identified to be interacted with AK4 play key roles in process of mitochondrial ATP synthesis and translocation.Combined with the result of AK4 retains the capability of binding nucleotides,which suggests that AK4 may be also involved in the process of mitochondrial ATP synthesis and translocation through interaction with ANT and ATP synthase.
     It is well known that motion of LID and NMP-binding(NMP_(bind)) domains in adenylate kinase(AK) is important in ligand binding and catalysis.However,the nature of such domain motions is poorly characterized.One of the critical hinge regions is hingeⅣ,which connects the CORE and LID domains.In addition,the hingeⅣcontains a strictly conserved residue,L 171,in the AK family.To investigate the role of hingeⅣ,crystal structure of human adenylate kinase 4(AK4) L171P mutant was determined.This mutation dramatically changes the orientation of the LID domain,which could be described as a novel twisted-and-closed conformation in contrast to the open and closed conformations in other AKs.This mutant provides a new example of domain motions in AK family.
     Collectively,these results indicate that the enzymatically inactive AK4 is a cell stress protective protein critical to cell survival and proliferation and it is likely to function by modulating its interaction with the mitochondrial inner membrane protein ANT and ATP synthase.So it is possibly that AK4 involved in the process of mitochondrial ATP synthesis and translocation through interaction with ANT and ATP synthase.The crystal structures of AK4(L171P) provide a direct model of hinge regions regulate protein conformational change.
引文
Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994). Structure at 2.8 A resolution of Fl-ATPase from bovine heart mitochondria. Nature 370, 621-628.
    
    Admiraal, S. J., and Herschlag, D. (1995). Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem Biol 2, 729-739.
    
    Allen, R. D., Schroeder, C. C., and Fok, A. K. (1989). An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol 108,2233-2240.
    
    Antonsson, B., Montessuit, S., Sanchez, B., and Martinou, J. C. (2001). Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276,.11615-11623.
    
    Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schagger, H. (1998). Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. Embo J 17, 7170-7178.
    
    Bakker, H. D., Scholte, H. R., Van den Bogert, C, Ruitenbeek, W., Jeneson, J. A.,Wanders, R. J., Abeling, N. G., Dorland, B., Sengers, R. C, and Van Gennip, A. H.(1993). Deficiency of the adenine nucleotide translocator in muscle of a patient with myopathy and lactic acidosis: a new mitochondrial defect. Pediatr Res 33, 412-417.
    
    Bandlow, W., Strobel, G., Zoglowek, C., Oechsner, U., and Magdolen, V. (1988).Yeast adenylate kinase is active simultaneously in mitochondria and cytoplasm and is required for non-fermentative growth. Eur J Biochem 178,451 -457.
    
    Barbour, R. L., and Chan, S. H. (1981). Characterization of the kinetics and mechanism of the mitochondrial ADP-atp carrier. J Biol Chem 256, 1940-1948.
    
    Bartley, W., and Davies, R. E. (1954). Active transport of ions by sub-cellular particles. Biochem J 57, 37-49.
    
    Bernardi, P., and Forte, M. (2007). The mitochondrial permeability transition pore. Novartis Found Symp 287, 157-164; discussion 164-159.
    
    Berry, M. B., and Phillips, G. N., Jr. (1998). Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5 A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins 32, 276-288.
    
    Bessman, S. P., and Carpenter, C. L. (1985). The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54, 831-862.
    
    Beutner, G., Ruck, A., Riede, B., and Brdiczka, D. (1998). Complexes between porin,hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368, 7-18.
    
    Beyer, K., and Klingenberg, M. (1985). ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24, 3821-3826.
    Bianchi, P., Zappa, M., Bredi, E., Vercellati, C., Pelissero, G., Barraco, F., and Zanella, A. (1999). A case of complete adenylate kinase deficiency due to a nonsense mutation in AK-1 gene (Arg 107 --> Stop, CGA --> TGA) associated with chronic haemolytic anaemia. Br J Haematol 105, 75-79.
    
    Bornhovd, C, Vogel, F., Neupert, W., and Reichert, A. S. (2006). Mitochondrial membrane potential is dependent on the oligomeric state of FIFO-ATP synthase supracomplexes. J Biol Chem 281, 13990-13998.
    
    Brandolin, G., Boulay, F., Dalbon, P., and Vignais, P. V. (1989). Orientation of the N-terminal region of the membrane-bound ADP/ATP carrier protein explored by antipeptide antibodies and an arginine-specific endoprotease. Evidence that the accessibility of the N-terminal residues depends on the conformational state of the carrier. Biochemistry 28, 1093-1100.
    
    Brandolin, G., Doussiere, J., Gulik, A., Gulik-Krzywicki, T., Lauquin, G. J., and Vignais, P. V. (1980). Kinetic, binding and ultrastructural properties of the beef heart adenine nucleotide carrier protein after incorporation into phospholipid vesicles.Biochim Biophys Acta 592, 592-614.
    
    Brandolin, G., Dupont, Y., and Vignais, P. V. (1981). Substrate-induced fluorescence changes of the isolated ADP/ATP carrier protein in solution. Biochem Biophys Res Commun 95,28-35.
    
    Brdiczka, D. (1991). Contact sites between mitochondrial envelope membranes.Structure and function in energy- and protein-transfer. Biochim Biophys Acta 1071,291-312.
    
    Brdiczka, D., and Schumacher, D. (1976). Iodination of peripheral mitochondrial membrane proteins in correlation to the functional state of the ADP/ATP carrier.Biochem Biophys Res Commun 73, 823-832.
    
    Brunger, A. T., Adams, P. D., Clore, G. M, DeLano, W. L., Gros, P.,Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M:, Pannu, N. S., et al.(1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-921.
    
    Carrasco, A. J., Dzeja, P. P., Alekseev, A. E., Pucar, D., Zingman, L. V., Abraham, M.R., Hodgson, D., Bienengraeber, M., Puceat, ML, Janssen, E., et al. (2001). Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci U S A 98, 7623-7628.
    
    Cesura, A. M., Pinard, E., Schubenel, R., Goetschy, V., Friedlein, A., Langen, H.,Polcic, P., Forte, M. A., Bernardi, P., and Kemp, J. A. (2003). The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J Biol Chem 278, 49812-49818.
    
    Chen, C., Ko, Y., Delannoy, M., Ludtke, S. J., Chiu, W., and Pedersen, P. L. (2004).Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279,31761-31768.
    
    Chen, L., Fink, T., Ebbesen, P., and Zachar, V. (2006). Temporal transcriptome of mouse ATDC5 chondroprogenitors differentiating under hypoxic conditions. Exp Cell Res 312, 1727-1744.
    Collavin, L., Lazarevic, D., Utrera, R., Marzinotto, S., Monte, M., and Schneider, C.(1999). wt p53 dependent expression of a membrane-associated isoform of adenylate kinase. Oncogene 18, 5879-5888.
    
    Cortes-Hernandez, P., Vazquez-Memije, M. E., and Garcia, J. J. (2007). ATP6 homoplasmic mutations inhibit and destabilize the human F1F0-ATP synthase without preventing enzyme assembly and oligomerization. J Biol Chem 282,1051-1058.
    
    Crompton, M., Barksby, E., Johnson, N., and Capano, M. (2002). Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84,143-152.
    
    Crompton, M, Virji, S., Doyle, V., Johnson, N., and Ward, J. M. (1999). The mitochondrial permeability transition pore. Biochem Soc Symp 66, 167-179.
    
    Crompton, M., Virji, S., and Ward, J. M. (1998). Cyclophilin-D binding proteins.Biochem Soc Trans 26, S330.
    
    Dahnke, T., Shi, Z., Yan, H., Jiang, R. T., and Tsai, M. D. (1992). Mechanism of adenylate kinase. Structural and functional roles of the conserved arginine-97 and arginine-132. Biochemistry 31, 6318-6328.
    
    Dahout-Gonzalez, C., Brandolin, G., and Pebay-Peyroula, E. (2003). Crystallization of the bovine ADP/ATP carrier is critically dependent upon the detergent-to-protein ratio. Acta Crystallogr D Biol Crystallogr 59, 2353-2355.
    
    Dahout-Gonzalez, C., Nury, H., Trezeguet, V., Lauquin, G. J., Pebay-Peyroula, E.,and Brandolin, G. (2006). Molecular, functional, and pathological aspects of the mitochondrial ADP/ATP carrier. Physiology (Bethesda) 21, 242-249.
    
    Dahout-Gonzalez, C., Ramus, C, Dassa, E. P., Dianoux, A. C., and Brandolin, G.(2005). Conformation-dependent swinging of the matrix loop m2 of the mitochondrial Saccharomyces cerevisiae ADP/ATP carrier. Biochemistry 44, 16310-16320.
    
    Dalbon, P., Brandolin, G., Boulay, F., Hoppe, J., and Vignais, P. V. (1988). Mapping of the nucleotide-binding sites in the ADP/ATP carrier of beef heart mitochondria by photolabeling with 2-azido[alpha-32P]adenosine diphosphate. Biochemistry 27,5141-5149.
    
    Dianoux, A. C, Noel, F., Fiore, C, Trezeguet, V., Kieffer, S., Jaquinod, M., Lauquin,G. J., and Brandolin, G. (2000). Two distinct regions of the yeast mitochondrial ADP/ATP carrier are photolabeled by a new ADP analogue:2-azido-3'-O-naphthoyl-[beta-32P]ADP. Identification of the binding segments by mass spectrometry. Biochemistry 39,11477-11487.
    
    Diederichs, K., and Schulz, G. E. (1990). Three-dimensional structure of the complex between the mitochondrial matrix adenylate kinase and its substrate AMP.Biochemistry 29, 8138-8144.
    
    Diederichs, K., and Schulz, G. E. (1991). The refined structure of the complex between adenylate kinase from beef heart mitochondrial matrix and its substrate AMP at 1.85 A resolution. J Mol Biol 217, 541-549.
    
    Dreusicke, D., Karplus, P. A., and Schulz, G. E. (1988). Refined structure of porcine cytosolic adenylate kinase at 2.1 A resolution. J Mol Biol 199, 359-371.
    Dudkina, N. V., Heinemeyer, J., Sunderhaus, S., Boekema, E. J., and Braun, H. P.(2006a). Respiratory chain supercomplexes in the plant mitochondrial membrane.Trends Plant Sci 11, 232-240.
    
    Dudkina, N. V., Sunderhaus, S., Braun, H. P., and Boekema, E. J. (2006b).Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria. FEBS Lett 580, 3427-3432.
    
    Duee, E. D., and Vignais, P. V. (1965). [Exchange between extra- and intramitochondrial adenine nucleotides]. Biochim Biophys Acta 107,184-188.
    
    Duyckaerts, C, Sluse-Goffart, C. M., Fux, J. P., Sluse, F. E., and Liebecq, C. (1980).Kinetic mechanism of the exchanges catalysed by the adenine-nucleotide carrier. Eur J Biochem 706, 1-6.
    
    Dyall, S. D., Agius, S. C, De Marcos Lousa, C., Trezeguet, V., and Tokatlidis, K.(2003). The dynamic dimerization of the yeast ADP/ATP carrier in the inner mitochondrial membrane is affected by conserved cysteine residues. J Biol Chem 278,26757-26764.
    
    Dzeja, P., Kalvenas, A., Toleikis, A., and Praskevicius, A. (1985). The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase. Biochem Int 10,259-265.
    
    Dzeja, P. P., Bortolon, R., Perez-Terzic, C, Holmuhamedov, E. L., and Terzic, A.(2002). Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci U S A 99, 10156-10161.
    
    Dzeja, P. P., Pucar, D., Redfield, M. M., Burnett, J. C., and Terzic, A. (1999a).Reduced activity of enzymes coupling ATP-generating with ATP-consuming processes in the failing myocardium. Mol Cell Biochem 201, 33-40.
    
    Dzeja, P. P., and Terzic, A. (1998). Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. Faseb J 12, 523-529.
    
    Dzeja, P. P., and Terzic, A. (2003). Phosphotransfer networks and cellular energetics.J Exp Biol 206, 2039-2047.
    
    Dzeja, P. P., Vitkevicius, K. T., Redfield, M. M., Burnett, J. C., and Terzic, A.(1999b). Adenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure. Circ Res 84, 1137-1143.
    
    Dzeja, P. P., Zeleznikar, R. J., and Goldberg, N. D. (1996). Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271, 12847-12851.
    
    Egner, U., Tomasselli, A. G., and Schulz, G. E. (1987). Structure of the complex of yeast adenylate kinase with the inhibitor P1,P5-di(adenosine-5'-)pentaphosphate at 2.6 A resolution. J Mol Biol 195, 649-658.
    
    Ekert, P. G., and Vaux, D. L. (2005). The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol 17, 626-630.
    
    Ellington, W. R. (1989). Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol 143, 177-194.
    
    Elvir-Mairena, J. R., Jovanovic, A., Gomez, L. A., Alekseev, A. E., and Terzic, A.(1996). Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity. J Biol Chem 271, 31903-31908.
    Eubel, H., Heinemeyer, J., Sunderhaus, S., and Braun, H. P. (2004). Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42, 937-942.
    
    Eubel, H., Jansch, L., and Braun, H. P. (2003). New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133, 274-286.
    
    Forte, M., and Bernardi, P. (2005). Genetic dissection of the permeability transition pore. J Bioenerg Biomembr 37, 121-128.
    
    Frank, R., Trosin, M., Tomasselli, A. G., Noda, L., Krauth-Siegel, R. L., and Schirmer,R. H. (1986). Mitochondrial adenylate kinase (AK2) from bovine heart. The complete primary structure. Eur J Biochem 154, 205-211.
    
    Frank, R., Trosin, M., Tomasselli, A. G., Schulz, G. E., and Schirmer, R. H. (1984).Mitochondrial adenylate kinase (AK2) from bovine heart. Homology with the cytosolic isoenzyme in the catalytic region. Eur J Biochem 141, 629-636.
    
    Fronzes, R., Weimann, T., Vaillier, J., Velours, J., and Brethes, D. (2006). The peripheral stalk participates in the yeast ATP synthase dimerization independently of e and g subunits. Biochemistry 45, 6715-6723.
    
    Garcia, J. J., Morales-Rios, E., Cortes-Hernandez, P., and Rodriguez-Zavala, J. S.(2006). The inhibitor protein (IF1) promotes dimerization of the mitochondrial F1F0-ATP synthase. Biochemistry 45, 12695-12703.
    
    Garrett, R. H., and Grisham, C. M. (2005). Biochemistry Third Edition edn).Gavin, P. D., Prescott, M,, and Devenish, R. J. (2005). F1F0-ATP synthase complex interactions in vivo can occur in the absence of the dimer specific subunit e. JBioenerg Biomembr 37, 55-66.
    
    Gavin, P. D., Prescott, M., Luff, S. E., and Devenish, R. J. (2004). Cross-linking ATP synthase complexes in vivo eliminates mitochondrial cristae. J Cell Sci 117,2333-2343.
    
    Gerstein, M., Schulz, G., and Chothia, C. (1993). Domain closure in adenylate kinase.Joints on either side of two helices close like neighboring fingers. J Mol Biol 229,494-501.
    
    Gilkerson, R. W., Selker, J. M., and Capaldi, R. A. (2003). The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546,355-358.
    
    Graham, B. H., Waymire, K. G., Cottrell, B., Trounce, I. A., MacGregor, G. R., and Wallace, D. C. (1997). A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16, 226-234.
    
    Griparic, L., van der Wei, N. N., Orozco, I. J., Peters, P. J., and van der Bliek, A. M.(2004). Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279,18792-18798.
    
    Gropp, T., Brustovetsky, N., Klingenberg, M., Muller, V., Fendler, K., and Bamberg,E. (1999). Kinetics of electrogenic transport by the ADP/ATP carrier. Biophys J 77,714-726.
    Hackenberg, H., and Klingenberg, M. (1980). Molecular weight and hydrodynamic parameters of the adenosine 5'-diphosphate~adenosine 5'-triphosphate carrier in Triton X-100. Biochemistry 19, 548-555.
    
    Halestrap, A. P., and Brennerb, C. (2003). The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10, 1507-1525.
    
    Hamada, M., and Kuby, S. A. (1978). Studies on adenosine triphosphate transphosphorylases. XIII. Kinetic properties of the crystalline rabbit muscle ATP-AMP transphorphorylase (adenylate kinase) and a comparison with the crystalline calf muscle and liver adenylate kinases. Arch Biochem Biophys 190,772-779.
    
    Han, Y., Li, X., and Pan, X. (2002). Native states of adenylate kinase are two active sub-ensembles. FEBS Lett 528, 161-165.
    
    Hatanaka, T., Hashimoto, M., Majima, E., Shinohara, Y., and Terada, H. (1999).Functional expression of the tandem-repeated homodimer of the mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae. Biochem Biophys Res Commun 262,726-730.
    
    Hayward, S. (2004). Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements. J Mol Biol 339, 1001-1021.
    
    Heldt, H. W., and Schwalbach, K. (1967). The participation of GTP-AMP-P transferase in substrate level phosphate transfer of rat liver mitochondria. Eur J Biochem 1, 199-206.
    
    Henderson, P. J., and Lardy, H. A. (1970). Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem 245,1319-1326.
    
    Henzler-Wildman, K. A., Lei, M., Thai, V., Kerns, S. J., Karplus, M., and Kern, D.(2007a). A hierarchy of timescales in protein dynamics is linked to enzyme catalysis.Nature 450, 913-916.
    
    Henzler-Wildman, K. A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T.,Pozharski, E., Wilson, M. A., Petsko, G. A., Karplus, M., et al. (2007b). Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838-844.
    
    Herschlag, D., and Jencks, W. P. (1990). Catalysis of the hydrolysis of phosphorylated pyridines by Mg(OH)+: a possible model for enzymatic phosphoryl transfer. Biochemistry 29, 5172-5179.
    
    Hollfelder, F., and Herschlag, D. (1995). The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase. Biochemistry 34, 12255-12264.
    
    Holmes, R. K., and Singer, M. F. (1973). Purification and characterization of adenylate kinase as an apparent adenosine triphosphate-dependent inhibitor of ribonuclease II in Escherichia coli. J Biol Chem 248, 2014-2021.
    
    Huang, S. G., Odoy, S., and Klingenberg, M. (2001). Chimers of two fused ADP/ATP carrier monomers indicate a single channel for ADP/ATP transport. Arch Biochem Biophys 394, 67-75.
    Hutton, R. L., and Boyer, P. D. (1979). Subunit interaction during catalysis.Alternating site cooperativity of mitochondrial adenosine triphosphatase. J Biol Chem 254, 9990-9993.
    
    Iyengar, M. R. (1984). Creatine kinase as an intracellular regulator. J Muscle Res Cell Motil 5, 527-534.
    
    Janssen, E., Dzeja, P. P., Oerlemans, F., Simonetti, A. W., Heerschap, A., de Haan, A.,Rush, P. S., Terjung, R. R., Wieringa, B., and Terzic, A. (2000). Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement.Embo J 19, 6371-6381.
    
    John, G. B., Shang, Y., Li, L., Renken, C., Mannella, C. A., Selker, J. M., Rangell, L.,Bennett, M. J., and Zha, J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16, 1543-1554.
    
    Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47 (Pt 2), 110-119.
    
    Jordens, E. Z., Palmieri, L., Huizing, M., van den Heuvel, L. P., Sengers, R. C.,Dorner, A., Ruitenbeek, W., Trijbels, F. J., Valsson, J., Sigfusson, G., et al. (2002).Adenine nucleotide translocator 1 deficiency associated with Sengers syndrome. Ann Neurol 52, 95-99.
    
    Kenyon, G. L., and Reed, G. H. (1983). Creatine kinase: structure-activity relationships. Adv Enzymol Relat Areas Mol Biol 54, 367-426.
    
    Khoo, J. C, and Russell, P. J., Jr. (1970). Adenylate kinase from bakers' yeast. IV.Substrate and inhibitor structurll requirements. J Biol Chem 245, 4163-4167.
    
    Kihira, Y., Iwahashi, A., Majima, E., Terada, H., and Shinohara, Y. (2004). Twisting of the second transmembrane alpha-helix of the mitochondrial ADP/ATP carrier during the transition between two carrier conformational states. Biochemistry 43,15204-15209.
    
    Kihira, Y., Majima, E., Shinohara, Y., and Terada, H. (2005). Cysteine labeling studies detect conformational changes in region 106-132 of the mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae. Biochemistry 44, 184-192.
    
    Klingenberg, M. (1992). Structure-function of the ADP/ATP carrier. Biochem Soc Trans 20, 547-550.
    
    Klingenberg, M., Mayer, I., and Dahms, A. S. (1984). Interaction of fluorescent adenine nucleotide derivatives with the ADP/ATP carrier in mitochondria. 2.[5-(Dimethylamino)-1-naphthoyl]adenine nucleotides as probes for the transition between c and m states of the ADP/ATP carrier. Biochemistry 23, 2442-2449.
    
    Klingenberg, M., Riccio, P., and Aquila, H. (1978). Isolation of the ADP, ATP carrier as the carboxyatractylate . protein complex from mitochondria. Biochim Biophys Acta 503, 193-210.
    
    Klingenberg, M., Winkler, E., and Huang, S. (1995). ADP/ATP carrier and uncoupling protein. Methods Enzymol 260, 369-389.
    
    Knowles, J. R. (1980). Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49, 877-919.
    Ko, Y. H., Delannoy, M, Hullihen, J., Chiu, W, and Pedersen, P. L. (2003).Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278, 12305-12309.
    
    Kohler, C., Gahm, A., Noma, T., Nakazawa, A., Orrenius, S., and Zhivotovsky, B.(1999). Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett 447,10-12.
    
    Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P.,MacGregor, G. R., and Wallace, D. C. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427,461-465.
    
    Koshland, D. E., Jr., Ray, W. J., Jr., and Erwin, M. J. (1958). Protein structure and enzyme action. Fed Proc 17, 1145-1150.
    
    Krause, F. (2006). Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 27, 2759-2781.
    
    Krause, F., Reifschneider, N. H., Goto, S., and Dencher, N. A. (2005). Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun 329, 583-590.
    
    Krause, F., Reifschneider, N. H., Vocke, D., Seelert, H., Rexroth, S., and Dencher, N.A. (2004). "Respirasome"-like supercomplexes in green leaf mitochondria of spinach.J Biol Chem 279, 48369-48375.
    
    Kremen, A. (1982). Informational aspects of Gibbs function output from nucleotide pools and of the adenylate kinase reaction. J Theor Biol 96, 425-441.
    
    Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87, 99-163.
    
    Lauquin, G. J., Brandolin, G., Lunardi, J., and Vignais, P. V. (1978). Photoaffinity labeling of the adenine nucleotide carrier in heart and yeast mitochondria by an arylazido ADP analog. Biochim Biophys Acta 507, 10-19.
    
    Lee, H. J., Pyo, J. O., Oh, Y., Kim, H. J., Hong, S. H., Jeon, Y. J., Kim, H., Cho, D.H., Woo, H. N., Song, S., et al. (2007). AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol 9,1303-1310.
    
    Lefebvre-Legendre, L., Salin, B., Schaeffer, J., Brethes, D., Dautant, A., Ackerman, S.H., and di Rago, J. P. (2005). Failure to assemble the alpha 3 beta 3 subcomplex of the ATP synthase leads to accumulation of the alpha and beta subunits within inclusion bodies and the loss of mitochondrial cristae in Saccharomyces cerevisiae. J Biol Chem 280, 18386-18392.
    
    Levin, R. M., Longhurst, P. A., Levin, S. S., Haugaard, N., and Wein, A. J. (1990).Creatine kinase activity of urinary bladder and skeletal muscle from control and streptozotocin-diabetic rats. Mol Cell Biochem 97, 153-159.
    
    Li, X., Han, Y., and Pan, X. M. (2001). Cysteine-25 of adenylate kinase reacts with dithiothreitol to form an adduct upon aging of the enzyme. FEBS Lett 507, 169-173.
    
    Lin, C. S., and Klingenberg, M. (1980). Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett 113, 299-303.
    Ma, C., Kotaria, R., Mayor, J. A., Remani, S., Walters, D. E., and Kaplan, R. S.(2005). The yeast mitochondrial citrate transport protein: characterization of transmembrane domain III residue involvement in substrate translocation. J Biol Chem 280, 2331-2340.
    
    Majima, E., Ikawa, K., Takeda, M., Hashimoto, M., Shinohara, Y., and Terada, H.(1995). Translocation of loops regulates transport activity of mitochondrial ADP/ATP carrier deduced from formation of a specific intermolecular disulfide bridge catalyzed by copper-o-phenanthroline. J Biol Chem 270, 29548-29554.
    
    Majima, E., Yamaguchi, N., Chuman, H., Shinohara, Y., Ishida, M., Goto, S., and Terada, H. (1998). Binding of the fluorescein derivative eosin Y to the mitochondrial ADP/ATP carrier: characterization of the adenine nucleotide binding site.Biochemistry 37, 424-432.
    
    Markland, F. S., and Wadkins, C. L. (1966). Adenosine triphosphate-adenosine 5'-monophosphate phosphotransferase of bovine liver mitochondria. II. General kinetic and structural properties. J Biol Chem 241, 4136-4145.
    
    Mayinger, P., Winkler, E., and Klingenberg, M. (1989). The ADP/ATP carrier from yeast (AAC-2) is uniquely suited for the assignment of the binding center by photoaffinity labeling. FEBS Lett 244, 421-426.
    
    McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. (1992).Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A 89, 3170-3174.
    
    McGilvery, R. W., and Murray, T. W. (1974). Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle. J Biol Chem 249, 5845-5850.
    
    Meyer, B., Wittig, L, Trifilieff, E., Karas, M., and Schagger, H. (2007). Identification of two proteins associated with mammalian ATP synthase. Mol Cell Proteomics 6,1690-1699.
    
    Meyer, R. A. (1988). A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 254, C548-553.
    
    Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005). Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc Natl Acad Sci U S A 102, 12356-12358.
    
    Miron, S., Munier-Lehmann, H., and Craescu, C. T. (2004). Structural and dynamic studies on ligand-free adenylate kinase from Mycobacterium tuberculosis revealed a closed conformation that can be related to the reduced catalytic activity. Biochemistry 43, 67-77.
    
    Muller, C. W., and Schulz, G. E. (1988). Structure of the complex of adenylate kinase from Escherichia coli with the inhibitor P1,P5-di(adenosine-5'-)pentaphosphate. J Mol Biol 202, 909-912.
    
    Muller, C. W., and Schulz, G. E. (1992). Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol 224, 159-177.
    Nachury, M. V., and Weis, K. (1999). The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 96, 9622-9627.
    
    Noda, L. (1958). Adenosine triphosphate-adenosine monophosphate transphosphorylase. III. Kinetic studies. J Biol Chem 232, 237-250.
    
    Noma, T., Fujisawa, K., Yamashiro, Y., Shinohara, M., Nakazawa, A., Gondo, T.,Ishihara, T., and Yoshinobu, K. (2001). Structure and expression of human mitochondrial adenylate kinase targeted to the mitochondrial matrix. Biochem J 358,225-232.
    
    Nury, H., Dahout-Gonzalez, C, Trezeguet, V., Lauquin, G., Brandolin, G., and Pebay-Peyroula, E. (2005). Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 579, 6031-6036.
    
    Nury, H., Dahout-Gonzalez, C, Trezeguet, V., Lauquin, G. J., Brandolin, G., and Pebay-Peyroula, E. (2006). Relations between structure and function of the mitochondrial ADP/ATP carrier. Annu Rev Biochem 75, 713-741.
    
    O'Sullivan, W. J., and Cohn, M. (1968). Magnetic resonance studies on inactivated forms of creatine kinase. J Biol Chem 243, 2737-2744.
    
    Okajima, T., Tanizawa, K., and Fukui, T. (1993). Site-directed random mutagenesis of AMP-binding residues in adenylate kinase. J Biochem (Tokyo) 114, 627-633.
    
    Olson, L. K., Schroeder, W., Robertson, R. P., Goldberg, N. D., and Walseth, T. F.(1996). Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-T15 cells. J Biol Chem 277, 16544-16552.
    
    Ono, H., and Tuboi, S. (1987). Integration of porin synthesized in vitro into outer mitochondrial membranes. Eur J Biochem 168, 509-514.
    
    Parsons, D. F. (1963). Mitochondrial Structure: Two Types of Subunits on Negatively Stained Mitochondrial Membranes/Science 140, 985-987.
    
    Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D. M.,Brethes, D., di Rago, J. P., and Velours, J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. Embo J 21, 221-230.
    
    Pebay-Peyroula, E., Dahout-Gonzalez, C, Kahn, R., Trezeguet, V., Lauquin, G. J.,and Brandolin, G. (2003). Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39-44.
    
    Pfeiffer, K., Gohil, V., Stuart, R. A., Hunte, C, Brandt, U., Greenberg, M. L., and Schagger, H. (2003). Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278, 52873-52880.
    
    Phelps, A., and Wohlrab, H. (2004). Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A. Biochemistry 43, 6200-6207.
    
    Pressman, B. C. (1958). Intramitochondrial nucleotides. I. Some factors affecting net interconversions of adenine nucleotides. J Biol Chem 232, 967-978.
    
    Rasola, A., and Bernardi, P. (2007). The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12, 815-833.
    Reinstein, J., Schlichting, I., and Wittinghofer, A. (1990). Structurally and catalytically important residues in the phosphate binding loop of adenylate kinase of Escherichia coli. Biochemistry 29, 7451-7459.
    
    Ren, H., Wang, L., Bennett, M., Liang, Y., Zheng, X., Lu, F., Li, L., Nan, J., Luo, M.,Eriksson, S., et al. (2005). The crystal structure of human adenylate kinase 6: An adenylate kinase localized to the cell nucleus. Proc Natl Acad Sci U S A 102,303-308.
    
    Rhoads, D. G., and Lowenstein, J. M. (1968). Initial velocity and equilibrium kinetics of myokinase. J Biol Chem 243, 3963-3972.
    
    Riccio, P., Aquila, H., and Klingenberg, M. (1975). Purification of the carboxy-atractylate binding protein from mitochondria. FEBS Lett 56, 133-138.
    
    Schagger, H., and Pfeiffer, K. (2000). Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. Embo J 19, 1777-1783.
    
    Schlauderer, G. J., and Schulz, G. E. (1996). The structure of bovine mitochondrial adenylate kinase: comparison with isoenzymes in other compartments. Protein Sci J,434-441.
    
    Schricker, R., Magdolen, V., Strobel, G., Bogengruber, E., Breitenbach, M., and Bandlow, W. (1995). Strain-dependent occurrence of functional GTP:AMP phosphotransferase (AK3) in Saccharomyces cerevisiae. J Biol Chem 270,31103-31110.
    
    Schubert, A., and Grimm, S. (2004). Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor. Cancer Res 64, 85-93.
    
    Schulz, G. E., Biedermann, K., Kabsch, W., and Schirmer, R. H. (1973). Low resolution structure of adenylate kinase. J Mol Biol 80, 857-864.
    
    Schulz, G. E., Elzinga, M., Marx, F., and Schrimer, R. H. (1974) Three dimensional structure of adenyl kinase.
    
    Schulz, G. E., Muller, C. W.,and Diederichs, K. (1990). Induced-fit movements in adenylate kinases. J Mol Biol 213, 627-630.
    
    Shapiro, Y. E., Kahana, E., Tugarinov, V., Liang, Z., Freed, J. H., and Meirovitch, E.(2002). Domain flexibility in ligand-free and inhibitor-bound Escherichia coli adenylate kinase based on a mode-coupling analysis of 15N spin relaxation. Biochemistry 41, 6271-6281.
    
    Sheng, X. R., Li, X., and Pan, X. M. (1999). An iso-random Bi Bi mechanism for adenylate kinase. J Biol Chem 274, 22238-22242.
    
    Siekevitz, P., and Potter, V. R. (1955). Biochemical structure of mitochondria. II.Radioactive labeling of intra-mitochondrial nucleotides during oxidative phosphorylation. J Biol Chem 215, 237-255.
    
    Snow, C, Qi, G., and Hayward, S. (2007). Essential dynamics sampling study of adenylate kinase: comparison to citrate synthase and implication for the hinge and shear mechanisms of domain motions. Proteins 67, 325-337.
    
    Soubannier, V., Vaillier, J., Paumard, P., Coulary, B., Schaeffer, J., and Velours, J.(2002). In the absence of the first membrane-spanning segment of subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerize. J Biol Chem 277, 10739-10745.
    Souverijn, J. H., Weijers, P. J., Groot, G. S., and Kemp, A., Jr. (1970). The adenine nucleotide translocator and the nucleotide specificity of oxidative phosphorylation.Biochim Biophys Acta 223, 31-35.
    
    Stepien, G., Torroni, A., Chung, A. B., Hodge, J. A., and Wallace, D. C. (1992).Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267, 14592-14597.
    
    Su, S., and Russell, P. J., Jr. (1968). Adenylate kinase from bakers' yeast. 3. Equilibria:equilibrium exchange and mechanism. J Biol Chem 243, 3826-3833.
    
    Tanabe, T., Yamada, M., Noma, T., Kajii, T., and Nakazawa, A. (1993).
    
    Tissue-specific and developmentally regulated expression of the genes encoding adenylate kinase isozymes. J Biochem (Tokyo) 113, 200-207.
    
    Terwilliger, T. C. (2000). Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr 56, 965-972.
    
    Terwilliger, T. C., and Berendzen, J. (1996). Correlated phasing of multiple isomorphous replacement data. Acta Crystallogr D Biol Crystallogr 52, 749-757.
    
    Terwilliger, T. C., and Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55, 849-861.
    
    Tomasselli, A. G., Frank, R., and Schiltz, E. (1986a). The complete primary structure of GTP:AMP phosphotransferase from beef heart mitochondria. FEBS Lett 202,303-308.
    
    Tomasselli, A. G., Frank, R., and Schiltz, E. (1986b) The complete primary structure of GTP:AMP phosphotransferase from beef heart mitochondria.
    
    Tomasselli, A. G., and Noda, L. H. (1979). Mitochondrial GTP-AMP phosphotransferase. 2. Kinetic and equilibrium dialysis studies. Eur J Biochem 93,263-267.
    
    Tomasselli, A. G., Schirmer, R. H., and Noda, L. H. (1979). Mitochondrial GTP-AMP phosphotransferase. 1. Purification and properties. Eur J Biochem 93, 257-262.
    
    Toren, A., Brok-Simoni, F., Ben-Bassat, I., Holtzman, F., Mandel, M., Neumann, Y.,Ramot, B., Rechavi, G., and Kende, G. (1994). Congenital haemolytic anaemia associated with adenylate kinase deficiency. Br J Haematol 87, 376-380.
    
    Trezeguet, V., Le Saux, A., David, C, Gourdet, C, Fiore, C, Dianoux, A., Brandolin,G., and Lauquin, G. J. (2000). A covalent tandem dimer of the mitochondrial ADP/ATP carrier is functional in vivo. Biochim Biophys Acta 1457, 81-93.
    
    Tugarinov, V., Shapiro, Y. E., Liang, Z., Freed, J. H., and Meirovitch, E. (2002). Anovel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation. J Mol Biol 315,155-170.
    
    Van Rompay, A. R., Johansson, M., and Karlsson, A. (1999). Identification of a novel human adenylate kinase. cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. Eur J Biochem 261,509-517.
    
    Veuthey, A. L., and Stucki, J. (1987). The adenylate kinase reaction acts as a frequency filter towards fluctuations of ATP utilization in the cell. Biophys Chem 26,19-28.
    Vignais, P. V., and Lunardi, J. (1985). Chemical probes of the mitochondrial ATP synthesis and translocation. Annu Rev Biochem 54, 977-1014.
    
    Vignais, P. V., Vignais, P. M., and Stanislas, E. (1962). Action of potassium atractylate on oxidative phosphorylation in mitochondria and in submitochondrial particles. Biochim Biophys Acta 60, 284-300.
    
    Wallimann, T. (1994). Bioenergetics. Dissecting the role of creatine kinase. Curr Biol 4, 42-46.
    
    Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H. M. (1992).Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 281 (Pt 1), 21-40.
    
    Wieckowski, M. R. (2008). [The role of mitochondrial permeability transition pore in physiology and pathology of the cell]. Postepy Biochem 54, 71-81.
    
    Wild, K., Grafmuller, R., Wagner, E., and Schulz, G. E. (1997). Structure, catalysis and supramolecular assembly of adenylate kinase from maize. Eur J Biochem 250,326-331.
    
    Wittig, I., and Schagger, H. (2007). Electrophoretic methods to isolate protein complexes from mitochondria. Methods Cell Biol 80, 723-741.
    
    Wurm, C. A., and Jakobs, S. (2006). Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett 580,5628-5634.
    
    Yamada, T., and Sugi, H. (1989). Regulation of glycogenolysis in contracting frog skeletal muscle studied by 31P nuclear magnetic resonance. Prog Clin Biol Res 315,149-157.
    
    Yamamoto, T., Kikkawa, R., Yamada, H., and Horii, I. (2006). Investigation of proteomic biomarkers in in vivo hepatotoxicity study of rat liver: toxicity differentiation in hepatotoxicants. J Toxicol Sci 31, 49-60.
    
    Yan, H. G., Shi, Z. T., and Tsai, M. D. (1990). Mechanism of adenylate kinase.Structural and functional demonstration of arginine-138 as a key catalytic residue that cannot be replaced by lysine. Biochemistry 29, 6385-6392.
    
    Yoneda, T., Sato, M., Maeda, M., and Takagi, H. (1998). Identification of a novel adenylate kinase system in the brain: cloning of the fourth adenylate kinase. Brain Res Mol Brain Res 62, 187-195.
    
    Zeleznikar, R. J., Dzeja, P. P., and Goldberg, N. D. (1995). Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J Biol Chem 270, 7311-7319.
    
    Zhang, H. J., Sheng, X. R., Niu, W. D., Pan, X. M., and Zhou, J. M. (1998). Evidence for at least two native forms of rabbit muscle adenylate kinase in equilibrium in aqueous solution. J Biol Chem 273, 7448-7456.
    
    Zoratti, M., and Szabo, I. (1995). The mitochondrial permeability transition. Biochim Biophys Acta 1241, 139-176.
    
    王镜岩 (2002). 生物化学,第3版.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700