电压门控钠通道亚型Nav1.5在卵巢癌中功能性表达的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在妇女生殖器肿瘤中,卵巢癌是最常见的三大恶性肿瘤之一,其五年生存率较其它妇科肿瘤明显降低。因此寻找有效的治疗方法,是提高卵巢癌患者生存率的关键。
     离子通道是几乎分布于机体每一个细胞膜上的亲水性微孔通道,它能够选择性的允许带电离子通过被动运输或主动扩散参与维持和调节机体的一系列基本活动。随着膜片钳技术和分子生物学的进展,离子通道与肿瘤之间的相关性已成为新的研究热点。目前关于离子通道的研究主要集中在钾离子通道、钙离子通道和氯离子通道等与肿瘤细胞增殖、耐药、转移的关系。最近有学者发现在肿瘤细胞的正常膜电位时存在有“窗口电压”,在此电压范围内由于钠离子通道的不完全失活或部分激活引起了的持续内向钠电流,导致细胞内离子稳态失衡或相关信号传导通路的异常变化。因此,钠离子通道在肿瘤发生发展中的作用也引起了人们的关注。电压门控钠通道(voltage-gate sodium channel,VGSC)是可兴奋组织和细胞产生电冲动的关键离子通道,由起主要功能的α亚单位和附属的β亚单位组成。根据基因结构和分布特点的差异,α亚单位可分为Nav1家族(Nav1.1至Nav1.9)和Nax。由于Nax和Nav1家族的结构相差较远,也没有发现其有实质性的功能,因此目前研究最多的主要是Nav1家族的九个成员。该家族的每个成员都由四个十分相似的结构域组成(D1-D4),每个结构域含有六个跨膜片段(S1-S6)。
     选择性剪接是真核生物调控基因表达的重要方式之一。人类基因通过RNA的选择性剪接所产生的转录本能翻译成具有不同表型效应的蛋白质。但错误的选择性剪接却可能导致肿瘤的发生,甚至有些是肿瘤所特有的,通过剪接产生的变异体本身就可能成为肿瘤的治疗靶点。目前在肿瘤细胞中已发现有VGSC基因剪接变异体的功能性表达,尤其在D1∶S3 5’位置的剪接变异体还赋予肿瘤细胞转移的潜能,并且发现D1∶S35’剪接变异体随着个体的发育而迅速消失。因此,VGSC的D1∶S3 5’剪接变异体可能属于癌胚基因。
     目前已知的多种钠通道阻断剂对VGSC亚型并不是特异性的,在阻断目的亚型的同时也阻断了其他亚型。由于VGSC不同亚型参与不同肿瘤的发生发展,因此通过开发新的靶向VGSC亚型胞外肽段抗体来实现肿瘤的个体化治疗已经成为可能。
     第一部分电压门控钠通道Nav1家族在卵巢癌中表达的初步研究
     目的:通过研究卵巢癌细胞中电压门控钠通道(voltage-gated sodium channel,VGSC)的表达,探讨VGSC Nav1家族在卵巢癌转移过程中的作用。
     方法:以正常卵巢组织为对照,在卵巢癌细胞株Caov-3,SKOV3和Anglne中用RT-PCR检测VGSC Nav1家族mRNA的表达,用SBFI荧光探针法观察卵巢癌细胞内钠离子的分布,用MTT和Transwell小室法分别检测VGSC特异性阻断剂河豚毒素(tetrodotoxin,TTX)对卵巢癌细胞增殖活性、迁移性和侵袭性的影响。
     结果:在卵巢癌细胞中检测到有Nav1.1、Nav1.3、Nav1.4、Nav1.5和Nay1.7 mRNA的异常表达。钠离子主要分布于卵巢癌细胞的胞膜和胞浆中,尤其包膜中比较丰富。30μM TTX对卵巢癌细胞的增值活性没有影响,却能抑制卵巢癌高转移细胞(Caov-3和SKOV3)50%左右体外迁移和侵袭力,与处理前比较差异有统计学意义,P<0.05;而TTX对卵巢癌低转移细胞Anglne的生物学特性没有明显影响。
     结论:电压门控钠通道Nav1家族的异常表达与卵巢癌的体外迁移和侵袭相关,可能成为新的肿瘤治疗靶点。
     第二部分电压门控钠通道亚型SCN5A/Nav1.5在卵巢癌中表达的研究
     目的:电压门控钠通道(voltage-gated sodium channel,VGSC)与多种恶性肿瘤的转移过程密切相关,其不同亚型参与不同肿瘤的发生发展。本研究主要探索VGSC亚型SCN5A/Nav1.5在人卵巢癌细胞和组织中功能性表达的意义。
     方法:以正常卵巢组织为对照,通过Real-time PCR、Western Blot、免疫细胞化学和免疫组织化学方法分别检测卵巢癌细胞Caov-3和上皮性卵巢癌肿瘤组织中SCN5A/Nav1.5在mRNA和蛋白水平的表达及其与卵巢肿瘤发生发展的相关性。
     结果在卵巢癌细胞Caov-3和上皮性卵巢癌组织中存在SCN5A/Nav1.5的异常表达。与正常卵巢组织相比较,Caov-3细胞和卵巢癌组织中Nav1.5 mRNA的相对表达量分别增加13.79±2.78倍和14.57±1.49倍,P<0.05;而在良性卵巢肿瘤组织中没有发现Nav1.5 mRNA表达量的明显增加(1.02±0.26 vs 1.18±0.40)。Caov-3细胞和卵巢肿瘤组织中Nav1.5蛋白水平的表达变化与mRNA的表达变化基本一致。
     结论电压门控钠通道SCN5A/Nav1.5在卵巢癌的发生发展过程中起重要的作用,有可能成为卵巢癌治疗的靶标。
     第三部分电压门控钠通道亚型Nav1.5剪接变异体在卵巢癌中表达的研究
     目的:电压门控钠通道(voltage-gate sodium channel,VGSC)的选择性剪切被认为是钠通道蛋白形成多样性结构和功能的关键。本研究主要探索VGSC亚型Nav1.5剪接变异体在卵巢癌细胞Caov-3中的功能性表达。
     方法:以正常卵巢组织为对照,通过RT-PCR、DNA测序和Western blot分别检测卵巢癌细胞Caov-3中Nav1.5表达的剪接变异体类型。
     结果:Western blot和RT-PCR均检测发现在Caov-3细胞中有Nav1.5剪接变异体的异常表达,而在正常卵巢组织中却没有检测到;DNA测序发现卵巢癌细胞Caov-3中异常表达的Nav1.5主要D1∶S3 5’型剪接变异体。
     结论:在卵巢癌细胞中发挥主要作用的VGSC剪接变异体D1∶S3 5’型Nav1.5可能成为卵巢肿瘤新的标记物和治疗靶点。
     第四部分Nav1.5-E3抗体对卵巢癌细胞Caov-3迁移和侵袭力的抑制效应
     目的:本研究以人卵巢癌细胞Caov-3为研究对象,观察靶向电压门控钠通道(voltage-gated sodium channel,VGSC)亚型Nav1.5细胞外区域E3的特异性抗体(NaV1.5-E3抗体)对其体外迁移和侵袭性的影响。
     方法:通过激光共聚焦检测检Nav1.5-E3-抗体识别卵巢癌细胞Caov-3中Nav1.5的特异性,CCK-8试剂盒和Transwell小室法分别检测Nav1.5-E3抗体阻断Nav1.5活性后,卵巢癌细胞Caov-3的增值活性以及体外迁移和侵袭力的变化。
     结果:Nav1.5-E3抗体能特异性检测出Caov-3细胞上的Nav1.5:Nav1.5-E3抗体(16μg/ml)处理后,Caov-3细胞的增殖活性没有明显变化,但体外迁移和侵袭力减少为处理前的(64.14±8.39)%和(52.80±7.99)%,两组间比较差异有统计学意义,P<0.05。
     结论:Nav1.5-E3抗体能显著抑制卵巢癌细胞Caov-3体外迁移和侵袭力,可能为卵巢肿瘤的治疗提供新的方法指导。
Ovarian cancer is one of the three most common cancers among gynecologicalmalignancies in the world.Because of no significant symptom in the early stage, theoverwhelming majority of patients are found at the advanced stage and its five-year survivalrate is also the lowest in gynecological malignancies.It is necessary to find effective therapymethods to increase its survival rate.
     Ion channels are functionally expressed in amolst every tissue and cell as the mainsignaling molecules, and they also participate in determining many cellular basic behaviors.With the development of patch clamp technique and molecular biology, many researcheshave revealed that ion channels were associated with different aspects of carcinogenicprocess by involveing in cell proliferation, multidrug resistance, migration and invasion.The functional expression of potassium, calcium and chloride channels have been widelyinvestigated over the past few decades, but little is known about sodium channel intumorigenesis.Recently study have reported that there were a window of voltage at cancercellular normal membrane potential, where there is a little and continuous entry of sodiumbecause of the partial opening or closing of voltage-gated sodium channel (VGSC), and theentry sodium might be responsible for the disrupting intracellulare ion homeostasis andsome signaling pathways.Therefore, it is important to investigat the roles of VGSC incarcinogenic process.VGSC are manly expressed in excitable cells and play importantroles in the initial and propagate of action potentials, which are composed of principalαsubunit and auxiliaryβsubunit.As we have known, based on the differences of phylogeny,αsubunit consists of Nav1 family and Nax.Recently studies have reported that theincreased functional expressions of Nav1 family (Nav1.1-1.9) were involved in thedevelopment and progression of cancer.Nav1 family consists of 4 homologous domains(D1-D4) and every homologous domain having 6 transmembrane segments (S1-S6).
     Alternative splicing is the important and ubiquitous process in regulating multiplicitygene expression of eucaryote.It is important for cell differentiation, so aberrations of alternative splicing are important for tumorigenesis.VGSC genes also code diversity andplasticity functional splice variants protein thought alternative splicing.Among thesesplice variants, the D1:S3 5' genomic splice have been found potentiation of cancermetastasis.In addition the splice variants of D1:S3 5' were also expressed in neonatal orfetal rat, while it rapidly disappeared with the development of organism.Therefore, VGSCmight be embryonic gene, silent in mature cells and re-expressed in cancer cells.
     At present, the majority sodium channel blockers on sodium channel subtypes are notspecific, which not only inhibit the abnormal subtypes but the normal subtypes.Due to thedifferent subtypes of VGSC participating in the development of different cancers, it isnecessary to design new antibodies targeting extracellular peptide of VGSC.
     Part One Functionally Expressed of Voltage-gated SodiumChannel Nav1 Family in Human Ovarian Caner
     Objective: Voltage-gated sodium channel (VGSC) subtypes play important roles in thebionomics of many tumors.This study was to explore the effect of VGSC on metastasisbehaviors of human ovarian cancer cell lines.Methods: RT-PCR and SBFI confacol assayswere respectively used to detect the functional expression of VGSC Nav1 family in ovariancancer cells (Caov-3, SKOV3, Anglne) and normal ovary tissues; MTT and Transwellassays were respectively used to detect the effect of specific VGSC inhibitor tetrodotoxin(TTX) on cell proliferation, migration and invasion of ovarian cancer in vitro.Results: ThemRNA expression levels of Nav1.1, Nav1.3, Nav1.4, Nav1.5 and Nav1.7 wereup-regulation in ovarian cancer cell lines; the distribution of intracellular sodium wasmainly in cell membrane.30μM TTX could decrease the migration and invasion ofstrongly metastatic ovarian cancer cell Caov-3 and SKOV3 to 40%-60%; while TTX hadno obvious effects on weakly metastatic cell Anglne.Conclusion: The functionalup-regulation of Nav1 family in human ovarian cancer might participate in the matastasis of ovarian cancer and be a new therapeutic target.
     Part Two Functional Expressions of Voltage-gated SodiumChannel SCN5A/Nav1.5 in Human Ovarian Caner
     Objective: The different subtypes of voltage-gated sodium channel (VGSC) are known tobe correlated with the initiation and progression of many malignant cancers.This study wasto investigate the functional expressions and roles of SCN5A/Nav1.5 on human ovariancancer.Methods: Real-time PCR, Western Blot, Immunocytochemistry andImmunohistochemistry assays were respectively used to detect the expression ofSCN5A/Nav1.5 in mRNA and protein levels in epithelial ovarian tumor specimens andovarian cancer cells lines Caov-3.Results: SCN5A/Nav1.5 was over-expressed in ovariancancer specimens and ovarian cancer cells lines Caov-3.Compared with normal ovaryspecimens, their relative mRNA expression were increased by 13.79±2.78 fold and14.57±1.49 fold, P<0.05; while the Nav1.5 mRNA in benign ovarian tumor specimens haveno obvious up-regulation than that in normal ovary (1.02±0.26 vs 1.18±0.40).Their proteinlevels differences among Caov-3 cells and ovarian tumor specimens were similar to themRNA expression.Conclusion: SCN5A/Nav1.5 plays important roles in the progression ofovarian cancer, which might be a therapeutic target in anti-ovarian cancer research.
     Part Three Functional Expression of Voltage-gated SodiumChannel Nav1.5 Splice Variants in Ovarian Cancer
     Objective: Aberrations of alternative splicing play important roles in tumorigenesis.Thisstudy was to explore the functional expression of VGSC Nav1.5 splice variants in ovarian cancer cell Caov-3.Methods: RT-PCR, DAN sequencing and Western blot assays wererespectively used to detect the alternative splicing of VGSC Nav1.5 in ovarian cancer cells.Results: DNA sequencing of RT-PCR products revealed that Nav1.5c, the D1:S3 5' spliceform of Nav1.5 was the mainly splice variants existed in Caov-3 cells.Western blot assayrevealed that the Nav1.5 splice variants were up-regulation in Caov-3 cells but absent innormal ovary tissues.Conclusions: D1:S3 5' Nav1.5 might play important roles in themetastatic process of human ovarian cancer and could serve as a therapeutic target incancer research.
     Part Four E3-targeted anti-Nav1.5 antibody inhibits themigration and invasion of ovarian cancer cells in vitro
     Objective: The purpose of this study was to investigate the effects of the third extracellulartargeted anti-Nav1.5 antibody (Nav1.5-E3 Ab) on in vitro metastatic cascades of ovariancancer cells Caov-3.Methods: Using confocal microscopy detect the specific and sensitiveof Nav1.5-E3-Ab in Nav1.5 expressed in Caov-3 cells; using CCK-8 kit and Transwellassays analyzed the effects of Nav1.5-E3-Ab on the migration and invasion of ovariancancer cell Caov-3 in vitro.Results: Nav1.5-E3-Ab could specific recognize the Nav1.5existed in Caov-3 cells and Nav1.5-E3 Ab (16μg/ml) reduced the migration and invasion ofCaov-3 cells to (64.14±8.39) % and (52.80±7.99) % with the same extent as tetrodotoxin(TTX), a specific blocker of VGSC.Conclusion: Nav1.5-E3-Ab could significantlysuppress the metastasis behaviours of ovarian cancer cell Caov-3 and it might be a newpromise for the treatment of ovarian tumors.
引文
1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71-96.
    2.中华妇产科学(第二版),曹泽毅主编,北京,人民卫生出版社 2004,2153-2162.
    3. Ayhan A, Gultekin M, Dursun P, Dogan NU, Aksan G, Guven S, Velipasaoglu M, d Yuce K. Metastatic lymph node number in epithelial ovarian carcinoma: does it have any clinical significance? Gynecol Oncol 2008; 108: 428-432.
    4. Fraser S, Pardo L. Ion channels: functional expression and therapeutic potential in cancer. Colloquium on Ion Channels and Cancer. EMBO Rep 2008; 9: 512-515.
    5. Fiske JL, Fomin VP, Brown ML, Duncan RL, Sikes RA. Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev 2006; 25: 493-500.
    6. Villalonga N, Ferreres JC, Argil(?)s JM, Condom E, Felipe A. Potassium channels are a new target field in anticancer drug design. Recent Pat Anticancer Drug Discov 2007; 2: 212-223.
    7. Le Guennec JY, Ouadid-Ahidouch H, Soriani O, Besson P, Ahidouch A, Vandier C. Voltage-gated ion channels, new targets in anti-cancer research. Recent Patents Anticancer Drug Discov 2007; 2: 189-202.
    8. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron 2000; 28: 365-368.
    9. Eduardo M, Toshio Y, Gordon FT. Topical review: Structure and function of voltage gated sodium channel. J Physiol 1998; 508: 647-657.
    10. Isom L. Sodium channel beta subunits: anything but auxiliary. Neuroscientist 2001; 7: 42-54.
    11. Daniel M, Schwaetz Z. Experimental study of tetrodotoxin: A long-activating topical anesthetic. A m J Ophthalmol 1998; 125: 481-487.
    12.宋杰军,毛庆武。海洋生物毒素学。北京科学技术出版社 1996;162.
    13. Roger S, Potier M, Vandier C, Besson P, Le Guennec JY. Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des 2006; 12: 3681-3695.
    14.李俊敏,刘朝晖,尚忠林。细胞膜上的离子通道。河北师范大学学报(自然科学版) 2005;9:519-522.
    15. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage gated sodium channels. Neuron 2000; 26: 13-25.
    16. Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family. Genome Biol 2003; 4: 207.
    17. Hatta S, Sakamoto J, Horio Y. Ion channels and diseases. Med Electron Microsc 2002; 35: 117-126.
    18. Cleland JC, Griggs RC. Treatment of neuromuscular channelopathies: current concepts and future prospects. Neurotherapeutics 2008; 5: 607-612.
    19.张宗明,裘法祖。离子通道与疾病。世界华人消化杂志 2005;13:585-587。
    20. Okamoto K, Ikeda Y. Channelopathy Rinsho Shinkeigaku 2001 D; 41: 1226-1228.
    21. Vernino S. Autoimmune and paraneoplastic charmelopathieso Neurotherapeutics 2007; 4: 305-314.
    22. #12
    23. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JA, Sikka SS, Li M. Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 2008; 14: 4984-4991.
    24. Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003;1616:107-111.
    25. Vanoye C G,Lossin C,Rhodes T H, George AL Jr.Single-channel properties of human Nav1.1 and mechanism of channel dysfunction in SCN1IA-associated epilepsy. J Gen Physiol2006;127:1-14.
    26. Van Wart A, Matthews G Expression of sodium channels Nav1.2 and Nav1.6 during postnatal development of the retina. Neurosci Lett 2006;403:315-317.
    27. Thimmapaya R, Neelands T, Niforatos W, Davis-Taber RA, Choi W, Putman CB,Kroeger PE, Packer J, Gopalakrishnan M, Faltynek CR, Surowy CS, Scott VE.Distribution and functional characterization of human Nav1.3 splice variants. Eur J Neurosci 2005;22:1-9.
    28. Henry MA, Freking AR, Johnson LR, Levinson SR. Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury. BMC Neurnsci 2007,8:56-62.
    29. Waxman S G. Nav1.7, its mutations and the syndromes that they cause. Neurology 2007;69 :505-507.
    30. Patrick Harry T, Waxman S G. Inactivation properties of sodium channel Nav1.8 maintain action potential amplitude in small DRG neurons in the context of depolarization. Mol Pain 2007;3:12-21.
    31. Hillsley K, Lin J H,Stanisz A, Grundy D, Aerssens J, Peeters PJ, Moechars D, Coulie B, Stead RH. Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Navl.8 and Nav1.9 null mice. J Physio 2006;576:257-267.
    32. Ferrem L, Moran O.Betal-subunit modulates the Nav1.4 sodium channel by changing the surface charge. Exp Brain Res 2006;172:139-150.
    33. Li Q, Huang H, Liu G,Lam K,Rutberg J, Green MS, BirnieDH, Lemery R, Chahine M,Gollob MH. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem Biophys Res Commun 2009;380:132-137.
    34. Kim D-O,MacKenzie L, Carey B, Pettingell W,. Kovacs D. Presenilin/#####-secretase mediated cleavage of the voltage-gated sodium channels ####_2 subunit regulates cell adhesion and migration. J Biol Chem 2005;14.1-12
    35. Yu F, Westenbroek R, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H,Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 2003;23:7577-7585.
    36. Goldin AL. Evolution of voltage gated Na+ channels. J Exp Biol 2002,205: 575-584.
    37. Black J A, Westenbroek R E, Catterall W A, Waxman SG. Type II brain sodium channel expression in non-neuronal cells: embryonic rat osteoblasts. Brain Res Mol Brain Res 1995;34: 89-98.
    38. Gordienko D V, Tsukahara H. Tetrodotoxin blockable depolarization activated Na~+ currents in a cultured endothelial cell line derived from rat interlobar arter and human umbilical vein. Pflugers Arch 1994;428:91-93.
    39. Estacion M. Characterization of ion channels seen in subconfluent human dermal fibroblasts. J Physiol 1991;436:579-601.
    40. Mechaly I, Scamps F, Chabbert C, Sans A, Valmier J. Molecular diversity of voltage-gated sodium channel alpha subunits expressed in neuronal and non-neuronal excitable cells. Neuroscience 2005;130:389-396.
    41. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z,Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H,Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS,Coombes RC, Djamgoz MB. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005;11:5381-5389.
    42. Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, Lei M, Bougnoux P,Gruel Y, Le Guennec JY. Voltage-gated sodium channels activity is involved in the metastatic process of human non-small cell lung cancer. Int J Biochem Cell Biol 2007;39:774-786.
    43. Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni AM, George AJ, Djamgoz MB.T-lymphocyte invasiveness: control by voltage-gated Na~+ channel activity. FEBS Letters 2004;569:191-194.
    44. Diaz D, Delgadillo DM, Hernandez-Gallegos E, Ramirez-Dominguez ME, Hinojosa LM, Ortiz CS, Berumen J, Camacho J, Gomora JC. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 2007;210:469-478.
    45. Diss J, Archer S, Hirano J, Fraser S, Djamgoz M. Expression profile of voltage-gated Na~+ channels a-subunit genes in rat and human prostate cancer cell lines. Prostate 2001;48:165-178.
    46. Fulgenzi G,Graciotti L, Faronato M, Soldovieri MV, Miceli F, Amoroso S, Annunziato L,Procopio A, Taglialatela M. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int J Biochem Cell Biol 2006;38:1146-1159.
    47. Grimes JA, Fraser SP,Stephens GJ, Downing JE, Laniado ME, Foster CS, Abel PD,Djamgoz MB. Differential expression of voltage-activated Na~+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Letters 1995;369:290-294.
    48. Smith P, Rhodes NP, Shortland AP, Fraser SP, Djamgoz MB, Ke Y, Foster CS. Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Letts 1998;423:19-24.
    49. Bennett E, Smith B, Harper J. Voltage-gated Na~+ channels confer invasive properties on human prostate cancer cells. Pfliigers Arch 2004; 447:908-914.
    50. Diss J, Stewart D, Pani F, Foster C, Walker M, Patel A, Djamgoz M. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo.Prostate Cancer Prostatic Dis 2005;8:266-273.
    51.Schrey M, Codina C, Kraft R, Beetz C, Kalff R, Wlfl S, Patt S. Molecular characterization of voltage-gated sodium channels in human gliomas. Neuroreport 2002;13;2493-2498.
    52. Cummins TR, Aglieco F, Renganathan M, Herzog RI,Dib-Hajj SD, Waxman SG.Nav1.3 sodium channels: Rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci 2001;21:5952-5961.
    53. Diss J, Stewart S, Fraser S, Black J, Dib-Hajj S, Waxman S, Archer S, Djamgoz M.Expression of skeletal muscle-type voltage-gated Na+ channel in rat and human prostate cancer cell lines. FEBS Letters 1998; 427:5-10.
    54. Lanadio M, Lalani E, Fraser S, Fraser S, Grimes J, Bhangal G, Djamgoz M, Abel P.Expression and functional analysis of voltage-activated Na~+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 1997;150:1213-1221.
    55. Mycielska M, Djamgoz M. Cellular mechanisms of direct-current electric field effects:galvanotaxis and metastatic disease. J Cell Science 2004;117:1631-1639.
    56. Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MB. Contribution of functional voltage-gated Na~+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer:Ⅱ.Secretory membrane activity. J Cell Physiol 2003;195:461-469.
    57. Fraser S, Salvador V, Manning E, Mizal J, Altun S, Raza M, Berridge R, Djamgoz M.Contribution of functional voltage-gated Na~+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195:479-487.
    58. Gao R, Wang J, Shen Y, Ming Lei, Zehua Wang. Functional expression of voltage-gated sodium channels Nav1.5 in human breast caner cell line MDA-MB-231.J Huazhong Univ Sci Technolog Med Sci. 2009;29:64-67.
    59. Pan H, Djamgoz MB. Biochemical constitution of extracellular medium is critical for control of human breast cancer MDA-MB-231 cell motility.J Membr Biol 2008;223:27-36.
    60. Ding Y, Djamgoz MB. Serum concentration modifies amplitude and kinetics of voltage-gated Na+ current in the Mat-LyLu cell line of rat prostate cancer.Int J Biochem Cell Biol 2004;36:1249-1260.
    1. Eduardo M, Toshio Y, Gordon FT. Topical review: Structure and function of voltage gated sodium channel. J Physiol 1998; 508: 647-657.
    2. Fiske JL, Fomin VP, Brown ML, Duncan RL, Sikes RA. Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev 2006; 25: 493-500.
    3. Roger S, Potier M, Vandier C, Besson P, Le Guennec JY. Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des 2006; 12: 3681-3695.
    4. Ou SW, Kameyama A, Hao LY, Horiuchi M, Minobe E, Wang WY, Makita N, Kameyama M. Tetrodotoxin-resistant Na~+ channels in human neuroblastoma cells are encoded by new variants of Nav1.5/SCN5A. Eur J Neurosci. 2005; 22: 793-801.
    5. Kenneth K J, Thomas TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408.
    6. Hatta S, Sakamoto J, Horio Y. Ion channels and diseases. Med Electron Microsc 2002; 35: 117-126
    7.雷鸣,孙思。钠离子通道病致心律失常的机制研究进展。J Clin Cardiol 2005,4:246-248.
    8. Mohler PJ, Bennett V. Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Curr Opin Cardiol 2005; 20: 189-193.
    9. Li Q, Huang H, Liu G, Lam K, Rutberg J, Green MS, Bimie DH, Lemery R, Chahine M, Gollob MH. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem Biophys Res Commun 2009; 380: 132-137.
    10. Wang J, Ou SW, Wang YJ, Zong ZH, Lin L, Kameyama M, Kameyama A. New variants of Nav1.5/SCN5A encode Na~+ channels in the brain. J Neurogenet 2008; 22: 57-75.
    11. Ou Y, Gibbons S J, Miller SM, Strege PR, Rich A, Distad MA, Ackerman MJ, Rae JL, Szurszewski JH, Farrugia G.. SCN5A is expressed in human jejunal circular smooth muscle cells. Neurogastroenterol Motil 2002;14:477-486.
    12. Roger S, Besson P, Le Guennec J. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003;1616:107-111.
    13. Brackenbury WJ,Isom LL. Voltage-gated Na~+ channels: potential for beta subunits as therapeutic targets. Expert Opin Ther Targets 2008;12:1191-1203.
    14. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z,Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuttirk M, Kaya H,Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS,Coombes RC, Djamgoz MB. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005;11:5381-5389.
    15. Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni AM, George AJ, Djamgoz MB.T-lymphocyte invasiveness: control by voltage-gated Na~+channel activity. FEBS Letters 2004;569:191-194.
    16. Brackenbury W, Djamgoz M. Activity-dependent regulation of voltage-gated Na~+ channel expression in Mat-LyLu rat prostate cancer cell line.J Physiol.2006;573:343-356.
    17. Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, Lei M, Bougnoux P,Gruel Y, Le Guennec JY. Voltage-gated sodium channels activity is involved in the metastatic process of human non-small cell lung cancer. Int J Biochem Cell Biol 2007;39:774-786.
    18. Roselli F, Livrea P, Jirillo E. Voltage-gated sodium channel blockers as immunomodulators. Recent Patents CNS Drug Discov 2006;1:83-91.
    19. Schlichter L, Sidell N, Hagiwara S. Potassium channels mediate killing by human natural killer cells. Proc Natl Acad Sci USA 1986; 83:451-455.
    20. Schrey M, Codina C, Kraft R, Beetz C, Kalff R, Wlfl S, Part S. Molecular characterization of voltage-gated sodium channels in human gliomas. Neuroreport 2002; 13; 2493-2498.
    21. Gu XQ, Dib-Hajj S, Rizzo MA, Waxman SG. TTX sensitive and resistant Na~+ currents, and mRNA for the TTX-resistant rH1 channel, are expressed in B104 neuroblastoma cells. J Neurophysiol 1997; 77: 236-246.
    22. Wu WK, Li GR, Wong HP, Hui MK, Tai EK, Lam EK, Shin VY, Ye YN, Li P, Yang YH, Luo JC, Cho CH.. Involvement of Kv1.1 and Nav1.5 in proliferation of gastric epithelial cells. J Cell Physiol 2006; 207: 437-444.
    23.高瑞,沈怡,徐舒翔,雷鸣,王泽华。电压门控钠通道Nav1.5在卵巢癌中的表达及其功能性研究。现代妇产科进展 2009,18:117-120.
    24. Monk M, Holding C. Human embryogenic genes re-expressed in cancer cells. Oncogene 2001; 20: 8085-8091.
    25. Brackenbury WJ, Chioni AM, Diss JK, Djamgoz MB. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 2007; 101: 149-160.
    1. Modrek B, Resch A, Grasso C, Lee C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acid Res 2001;29:2850-2859.
    2. Wang Z, Lo HS, Yang H, Gere S, Hu Y, Buetow KH,Lee MR Computational analysis and experimental validation of tumor associated alternative RNA splicing in human cancer. Cancer Res 2003;63:655-657.
    3. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG,Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN,Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron 2000;28:365-368.
    4. Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, Abel PD,Djamgoz MB. Differential expression of voltage-activated Na~+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995;369:290-294.
    5. Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, Berridge RJ,Djamgoz MB. Contribution of functional voltage-gated Na~+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: I. Lateral motility.J Cell Physiol 2003; 195:479-487.
    6. Fraser SP, Ding Y, Liu A, Foster CS, Djamgoz MB. Tetrodotoxin suppresses morphological enhancement of metastatic Mat-LyLu rat prostate cancer cell line. Cell Tissue Res 1999;295:505-512.
    7. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W. Directional movement of rat prostatic cancer cells in direct-current electric field: involvement of voltage-gated Na~+ channel activity. J Cell Sci 2001; 114:2697-2705.
    8. Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MB. Contribution of functional voltage-gated Na~+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer:Ⅱ.Secretory membrane activity. J Cell Physiol 2003; 195: 461-469.
    9. Brackenbury WJ, Chioni AM, Diss JK, Djamgoz MB. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 2007; 101: 149-160.
    10. Ou SW, Kameyama A, Hao LY, Horiuchi M, Minobe E, Wang WY, Makita N, Kameyama M. Tetrodotoxin-resistant Na+ channels in human neuroblastoma cells are encoded by new variants of Nav1.5/SCN5A. Eur J Neurosci 2005; 22: 793-801.
    11. Yang P, Kuperschmidt S, Roden DM. Cloning and initial characterization of the human cardiac sodium channel (SCN5A) promoter. Cardiovasc Res 2004; 61: 56-65.
    12.田丽媛,赵亚力,韩为东。雌激素受体在卵巢癌发生发展中作用的研究进展。国外医学妇产科学分册 2007:34:254-257.
    13. Min G. Different modulation of ER-mediated transactivation by xenobiotic nuclear receptors depending on the estrogen response elements and estrogen target cell types. Ann N Y Acad Sci 2006; 1091: 244-257.
    14.杨毅,沈铿,郎景和。雌激素对卵巢癌细胞株体外生长的影响。中华妇产科杂志 2000;35:172-174。
    15. Chen WY. Exogenous and endogenous hormones and breast cancer. Best Pract Res Clin Endocrinol Metab 2008; 22: 573-585.
    16. Hayashi S, Yamaguchi Y. Estrogen signaling pathway and hormonal therapy. Breast Cancer 2008; 15: 256-261.
    17. Sharp PA. Split genes and RNA splicing. Cell 1994; 77: 805-815.
    18.张翼。RNA在RNA剪接中的功能:从催化到调控。生命科学 2008,20:202-206.
    19. Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet. 2002; 30: 13-19.
    20. Berget SM. Exon recognition in vertebrate splicing. J Biol Chem 1995; 270: 2411-2414.
    21. Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet 2001; 17: 100-107.
    22. Blencowe B. Alternative splicing: new insights from global analyses. Cell 2006; 126:37-47.
    23. Carninci P. Constructing the landscape of the mammalian transcriptome.J Exp Biol.2007;210:1497-1506.
    24. Pomeranz Krummel DA, Oubridge C, Leung AK, Li J, Nagai K.. Crystal structure of human spliceosomal Ul snRNP at 5.5 A resolution. Nature 2009;458:475-480.
    25. Zhang GW, Song HD, Chen Z. Molecular mechanism of mRNA alternative splicing.Yi ChuanXue Bao 2004;31:102-107.
    26. Stetefeld J, Ruegg MA. Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem Sci 2005;30:515-521.
    27. Lynch KW. Regulation of alternative splicing by signal transduction pathways Adv Exp Med Biol 2007;623:161-174.
    28. Smith CW, Valcarcel J. Alternative pre-mRNA splicing: the logic of combinatorial control.Trends Biochem Sci. 2000;25:381-388.
    29. Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci 2006;119:2635-2641.
    30. Venables JP. Unbalanced alternative splicing and its significance in cancer Bioessays.2006;28:378-386.
    31. Diss J, Fraser S, Djamgoz M. Voltage-gated Na~+ channels: multiplicity of expression,plasticity, functional implications and pathophysiological aspects. Eur Biophys J 2004;33:180-193.
    32. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z,Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H,Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS,Coombes RC, Djamgoz MB. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005;11:5381-5389.
    33. Chioni AM, Fraser SP, Pani F, Foran P, Wilkin GP, Diss JK, Djamgoz MB. A novel polyclonal antibody specific for the Nav1.5 voltage-gated Na~+ channel 'neonatal' splice form. J Neurosci Methods 2005; 147: 88-98.
    34. Zimmer T, Bollensdorff C, Haufe V, Birch-Hirschfeld E, Benndorf K. Mouse heart Na~+ channels: primary structure and function of two isoforms and alternatively spliced variants. Am J Physiol Heart Circ Physiol 2002; 282: H1007-H1017.
    35. Wang J, Ou SW, Wang YJ, Zong ZH, Lin L, Kameyama M, Kameyama A. New variants of Nav1.5/SCN5A encode Na~+ channels in the brain. J Neurogenet 2008; 22: 57-75.
    36.王军,欧绍武,王运杰,宗志红。电压-门控Na~+通道α亚单位Nav1.5。中国生物化学与分子生物学报 2008;24:287-294.
    37. Abriel H, Kass RS. Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins. Trends Cardiovasc Med 2005; 15: 35-40.
    38. Onkal R, Mattis JH, Fraser SP, Diss JK, Shao D, Okuse K, Djamgoz MB. Alternative splicing of Nav1.5: an electrophysiological comparison of 'neonatal' and 'adult' isoforms and critical involvement of a lysine residue. J Cell Physiol 2008; 216: 716-726.
    39. Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene 2001; 20: 8085-8091.
    40. Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, Lei M, Bougnoux P, Gruel Y, Le Guennec JY. Voltage-gated sodium channels activity is involved in the metastatic process of human non-small cell lung cancer. Int J Biochem Cell Biol 2007; 39: 774-786.
    41. Sawyers C. Targeted cancer therapy. Nature 2004; 432: 294-297.
    1. Borini A, Rebellato E. Focus on breast and ovarian cancer. Placenta 2008; 29: 184-90.
    2. Sawyers C. Targeted cancer therapy. Nature 2004; 432: 294-297.
    3. Xu SZ, Zeng F, Lei M, Li J, Gao B, Xiong C, Sivaprasadarao A, Beech DJ. Generation of functional ion channel tools by E3 targeting. Nat Biotechnol. 2005; 23: 1289-1293.
    4. HattaS, SakamotoJ, Horio Y. Ion channels and diseases. Med Electron Microsc 2002; 35: 117-126
    5.王军,宗志红,欧绍武,王运杰,任成涛,林毅,孟晓娜。编码脑组织Nav1.5钠通道新外显子的克隆、鉴定和分布.生物化学与生物物理进展2007;34:255-259.
    6. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG; Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron 2000; 28: 365-368.
    7. Eduardo M, Toshio Y, Gordon FT. Topical review: Structure and function of voltage gated sodium channel. J Physiol 1998; 508: 647-657.
    8. Isom L. Sodium channel beta subunits: anything but auxiliary. Neuroscientist 2001; 7: 42-54.
    9. Motoike HK, Liu H, Glaaser IW, Yang AS, Tateyama M, Kass RS. The Na~+ channel inactivation gate is a molecular complex: a novel role of the COOH-terminal domain. J Gen Physiol 2004; 123: 155-165
    10. Chagot B, Potet F, Balser JR, Chazin WJ. Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel Nav1.5. J Biol Chem 2009; 284: 6436-6445.
    11. Liu CJ, Dib-Hajj SD, Renganathan M, Cummins TR, Waxman SG. Modulation of the cardiac sodium channel Nav1.5 by fibroblast growth factor homologous factor 1B. J Biol Chem 2003; 278: 1029-1036.
    12. Abriel H, Kass R S. Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins. Trends Cardiovasc Med 2005; 15: 35-40.
    13. Young KA, Caldwell JH. Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin. J Physiol 2005; 565: 349-370.
    14. Gavillet B, Rougier JS, Domenighetti AA, Behar R, Boixel C, Ruchat P, Lehr HA, Pedrazzini T, Abriel H. Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ Res. 2006; 99: 407-414.
    15. van Bemmelen MX, Rougier JS, Gavillet B, Apoth(?)loz F, Daidi(?) D, Tateyama M, Rivolta I, Kass RS, Staub O, Abriel H.. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 2004; 95: 284-291.
    16.甄永苏。抗体药物与肿瘤靶向治疗。医学研究杂志 2007:36:1-2.
    17. Utku N, Heinemann T, Tullius SG, Bulwin GC, Beinke S, Blumberg RS, Beato F, Randall J, Kojima R, Busconi L, Robertson ES, Sch(u|¨)lein R, Volk HD, Milford EL, Gullans SR. Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 1998; 9: 509-518.
    18. Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D, Larsson G, Spencer A, Archer DB, Sasse J, Muyldermans S, Wyns L, Redfield C, Matagne A, Robinson CV, Dobson CM. A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 2003; 424: 783-788.
    19. Sanz L, Blanco B, Alvarez-Vallina L. Antibodies and gene therapy: teaching old 'magic bullets' new tricks. Trends Immunol. 2004; 25: 85-91.
    20. Brackenbury W J, Isom LL. Voltage-gated Na~+ channels: potential for beta subunits as therapeutic targets. Expert Opin Ther Targets 2008; 12: 1191-1203.
    21. Zimmer T, Bollensdorff C, Haufe V, Birch-Hirschfeld E, Benndorf K. Mouse heart Na~+ channels: primary structure and function of two isoforms and alternatively spliced variants. Am J Physiol Heart Circ Physiol 2002; 282: H1007-H1017.
    22. Xu SZ, Boulay G, Flemming R, Beech DJ. E3-targeted anti-TRPC5 antibody inhibits store-operated calcium entry in freshly isolated pial arterioles. Am J Physiol Heart Circ Physiol 2006; 291: H2653-H2659.
    1. Jegla TJ, Zmasek CM, Batalov S, Nayak SK. Evolution of the human ion channel set.Comb Chem High Throughput Screen 2009;12:2-23.
    2. Hatta S, Sakamoto J, Horio Y. Ion channels and diseases. Med Electron Microc 2002;35:117-126.
    3. Fiske JL, Fomin VP, Brown ML, Duncan RL, Sikes RA. Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev 2006,25: 493-500.
    4. Le Guennec JY, Ouadid-Ahidouch H, Soriani O, Besson P, Ahidouch A, Vandier C.Voltage-gated ion channels, new targets in anti-cancer research. Recent Patents Anticancer Drug Discov 2007;2:189-202.
    5. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG,Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN,Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron 2000;28:365-368.
    6. Eduardo M, Toshio Y, Gordon FT. Topical review: Structure and function of voltage gated sodium channel. J Physiol 1998,508:647-657.
    7. Isom L. Sodium channel beta subunits: anything but auxiliary. Neuroscientist 2001; 7:42-54.
    8. Kim D-O,MacKenzie L, Carey B, Pettingell W, Kovacs D. Presenilin/γ-secretase mediated cleavage of the voltage-gated sodium channels β_2 subunit regulates cell adhesion and migration. J Biol Chem 2005;14:1-12.
    9. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H,Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R. Sodium channel beta4, a new disulfide linked auxiliary subunit with similarity to beta2. J Neurosci 2003; 23:7577-7585.
    10. Isom LL.β subunits: players in neuronal hyperexcitability? Novart Fdn Symp 2002:124-143.
    11.Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K,Goldin AL, Catterall WA. Primary structure and functional expression of the betal subunit of the rat-brain sodium-channel. Science 1992,256:839-842.
    12. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA. Structure and function of the beta-2 subunit of brain sodium-channels, a transmembrane glycoprotein with a CAM motif. Cell 1995, 83:433-442.
    13. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG. A novel persistent tetrodotoxin resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 1999,19:RC43.
    14. Smith RD, Goldin AL. Functional analysis of the rat I sodium channel in Xenopus oocytes. J Neurosci 1998,18:811-820.
    15. Cummins TR, Howe JR, Waxman SG Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PNl sodium channel.J Neurosci 1998,18:9607-9619.
    16. Burgess DL, Kohrman DC, Galt J, Plummer NW, Jones JM, Spear B, Meisler MH.Mutation of a new sodium-channel gene, scn8a, in the mouse mutant motor end-plate disease. Nat Genet 1995,10:461-465
    17. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ,McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN. The tetrodotoxin resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 1999b, 2:541-548.
    18. Akopian AN, Souslova V, Sivilotti L, Wood JN. Structure and distribution of a broadly expressed atypical sodium channel. FEBS Lett 1997,400:183-187.
    19. Bennett ES. Channel cytoplasmic loops alter voltage dependent sodium channel activation in an isoform-specific manner. J Physiol (London) 2001,535:371-381.
    20. Deschenes I, Trottier E, Chahine M. Implication of the C-terminal region of the alpha-subunit of voltage-gated sodium channels in fast inactivation. J Membr Biol 2001,183:103-114.
    21. Vilin YY, Fujimoto E, Ruben PC. A single residue differentiates between human cardiac and skeletal muscle Na~+ channel slow inactivation. Biophys J 2001, 80:2221-2230.
    22. Hilber K, Sandtner W, Kudlacek O, Glaaser IW, Weisz E, Kyle JW, French RJ, Fozzard HA, Dudley SC, Todt H. The selectivity filter of the voltage-gated sodium channel is involved in channel activation. J Biol Chem 2001,276:27831-27839.
    23. Sontheimer H, Waxman S G. Expression of voltage activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice. J Neurophysiol 1993, 70: 1863-1873.
    24. Lai ZF, Chen YZ, Nishimura Y, Nishi K. An amiloride-sensitive and voltage-dependent Na~+ channel in an HLA-DR-restricted human T cell clone. J Immunol 2000;165:83-90.
    25. Black JA, Westenbroek RE, Catterall WA, Waxman SG. Type II brain sodium channel expression in non-neuronal cells : embryonic rat osteoblasts. Brain Res Mol Brain Res1995,4:89-98.
    26. Gordienko D V, Tsukahara H. Tetrodotoxin blockable depolarization activated Na~+ currents in a cultured endothelial cell line derived from rat interlobar arter and human umbilical vein. Pflugers Arch 1994,428: 91-93.
    27. Estacion M. Characterization of ion channels seen in subconfluent human dermal fibroblasts. J Physiol 1991,436: 579-601.
    28. Mechaly I, Scamps F, Chabbert C, Sans A, Valmier J. Molecular diversity of voltage-gated sodium channel alpha subunits expressed in neuronal and non-neuronal excitable cells. Neuroscience 2005;130:389-396.
    29. Roger S, Potier M, Vandier C, Besson P, Le Guennec JY.Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des 2006; 12:3681-3695.
    30. Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, Djamgoz MB. A potential novel marker for human prostate cancer: voltage gated sodium channel expression in vivo. Prostate Cancer Prostatic Disease 2005; 8:266-273.
    31. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z,Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H,Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS,Coombes RC, Djamgoz MB. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005; 11: 5381-5389.
    32. Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, Lei M, Bougnoux P,Gruel Y, Le Guennec JY. Voltage-gated sodium channels activity is involved in the metastatic process of human non-small cell lung cancer. Int J Biochem Cell Biol 2007;39:774-786.
    33. Diaz D, Delgadillo D, Hernandez E, et al. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 2007;210:469-478.
    34. Eccles S A, Box C, Court W. Cell migration/ invasion assays and their application in cancer drug discovery. Biotechnol Annu Rev 2005,11:391-421.
    35. Grimes JA, Fraser SP,Stephens GJ, Downing JE, Laniado ME, Foster CS, Abel PD,Djamgoz MB. Differential expression of voltage-activated Na~+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Letters 1995;369:290-294.
    36. Lanadio M, Lalani E, Fraser S, Fraser S, Grimes J, Bhangal G, Djamgoz M, Abel, P.Expression and functional analysis of voltage-activated Na~+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 1997;150:1213-1221.
    37. Mycielska M, Djamgoz M. Cellular mechanisms of direct-current electric field effects:galvanotaxis and metastatic disease. J Cell Science 2004;l 17: 1631-1639.
    38. Mycielska M, Djamgoz M. Citrate transport in the human prostate epithelial PNT2-C2 cell line: electrophysiological analyses. J Physiol 2004;559.3:821-833.
    39. Fraser S, Salvador V, Manning E, Mizal J, Altun S, Raza M, Berridge R, Djamgoz M.Contribution of functional voltage-gated Na~+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195: 479-487.
    40. Bennett E, Smith B, Harper J. Voltage-gated Na~+ channels confer invasive properties on human prostate cancer cells. Pflugers Arch 2004; 447: 908-914.
    41. Diss J, Archer S, Hirano J, Fraser S,Djamgoz M. Expression profile of voltage-gated Na~+ channels a-subunit genes in rat and human prostate cancer cell lines. Prostate 2001;48:165-178.
    42. Fraser SP, Ding Y, Liu A, Foster CS, Djamgoz MB. Tetrodotoxin suppresses morphological enhancement of metastatic Mat-LyLu rat prostate cancer cell line. Cell Tissue Res 1999;295:505-512.
    43. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W. Directional movement of rat prostatic cancer cells in direct-current electric field: involvement of voltage-gated Na~+ channel activity. J Cell Sci 2001; 114:2697-2705.
    44. Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MB. Contribution of functional voltage-gated Na~+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer:Ⅱ. Secretory membrane activity. J Cell Physiol 2003;195:461-469.
    45. Ouadid-Ahidouch H, Chaussade F, Roudbaraki M, Slomianny C, Dewailly E, Delcourt P, Prevarskaya N. Kv1.1 K~+ channels identification in human breast carcinoma cells:involvement in cell proliferation. Biochem Biophys Res Comm 2000; 278: 272-277.
    46. Gruber A, Pauli B. Tumorigenicity of human breast cancer is associated with loss of the Ca~(2+)-activated chloride channel CLCA2. Cancer Res 1999;59: 5488-5891.
    47. Roger S, Besson P, Le Guennec J. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003;1616:107-111.
    48. Pancrazio JJ, Viglione MP, Tabbara IA, Kim YI.Voltage-dependent ion channels in small-cell lung cancer cells. Cancer Res 1989; 49:5901-5906.
    49. Blandino JK, Viglione MP, Bradley WA, Oie HK, Kim YL. Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome IgG. J Membrane Biol 1995; 143:153-163.
    50. Onganer P, Djamgoz M. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na~+ channel expression in vitro. J Membrane Biol 2005;204: 67-75.
    51. Schlichter L, Sidell N, Hagiwara S. Potassium channels mediate killing by human natural killer cells. Proc. Natl. Acad. Sci USA 1986; 83:451-455.
    52. Yamashita N, Hamada H, Tsuruo T, Ogata E. Enhancement of voltage-gated Na~+ channel current associated with multidrug resistance in human leukemia cells. Cancer Res 1987;47:3736-3741.
    53. Lee S, Deutsch C, Beck W. Comparison of ion channels in multidrug-resistant and -sensitive human leukemic cells. Proc. Natl. Acad. Sci USA 1988; 85: 2019-2023.
    54. Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni AM, George AJ, Djamgoz MB. T-lymphocyte invasiveness: control by voltage-gated Na~+ channel activity. FEBS Letters 2004;569:191-194.
    55. Farias LM, Ocaiia DB, Diaz L, Larrea F, Avila-Chavez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernandez-Gallegos E, Camacho-Arroyo I, Duenas-Gonzalez A, Pere cells. J Neurophysiol 1997;77:236-246.
    56. Fulgenzi G, Graciotti L, Faronato M, Soldovieri MV, Miceli F, Amoroso S, Annunziato L, Procopio A, Taglialatela M. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int J Biochem Cell Biol 2006;38:1146-1159
    57. Catterall W. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000; 26:13-25.
    58. Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK, Lee K, Pinnock RD, Hughes J, Richardson PJ, Mizuguchi K, Jackson AP. Beta 3: an additional auxiliary subunit of the voltagesensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 2000; 97:2308-2313.
    59. Diss JK, Fraser SP, Walker MM, Patel A, Latchman DS, Djamgoz MB. Beta-Subunits of voltage-gated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression. Prostate Cancer Prostatic Dis 200811:325-333.
    60. Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. A novel adhesion molecule in human breast cancer cells: voltage-gated Na~+ channel betal subunit. Int J Biochem Cell Biol 2009;41:1216-1227.
    61. Lemos VS, Poburko D, Liao CH, Cole WC, van Breemen C. Na~+ entry via TRPC6 causes Ca~(2+) entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun 2007;352:130-134.
    62. Liu F, Verin AD, Borbiev T, Garcia JG. Role of cAMP dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am J Physiol 2001;280: L1309-L1317.
    63. Brackenbury W, Djamgoz M. Activity-dependent regulation of voltage-gated Na~+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol 2006; 573:343-356.
    64. Gatenby R, Gilles R. A microenvironmental model of carcinogenesis. Nat Rev Cancer z-Cardenas E, Pardo LA, Morales A, Taja-Chayeb L, Escamilla J, Sanchez-Pena C, Camacho J. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res 2004;64:6996-7001.
    65. Schrey M, Codina C, Kraft R, Beetz C, Kalff R, Wlfl S, Part S. Molecular characterization of voltage-gated sodium channels in human gliomas. Neuroreport 2002; 13:2493-2498.
    66. Gu XQ, Dib-Hajj S, Rizzo MA, Waxman SG. TTX sensitive and resistant Na~+ currents, and mRNA for the TTX-resistant rH1 channel, are expressed in B104 neuroblastoma 2008; 8:56-61.
    67. Pan H, Djamgoz M. Biochemical Constitution of Extracellular Medium is Critical for Control of Human Breast Cancer MDA-MB-231 Cell Motility. J Membr Biol 2008;223:27-36.
    68. Page MJ, Di Cera E. Role of Na~+ and K~+ in enzyme function. Physiol Rev 2006,86:1049-1092
    69. Brackenbury WJ, Djamgoz MB. Nerve growth factor enhances voltage-gated Na+ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line.J Cell Physiol 2007;210:602-608.
    70. Uysal-O, Djamgoz M. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel. Mol Cancer 2007,24;6:76.
    71. Ding Y, Brackenbury WJ, Onganer PU, Montano X, Porter LM, Bates LF, Djamgoz MB.. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na~+ channel activity. J Cell Physiol 2008;215:77-81.
    72. Kedrin D, van Rheenen J, Hernandez L, Condeelis J, Segall JE. Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia. 2007;12:143-152.
    73. Mattei C, Dechraoui MY, Molgo J, Meunier FA, Legrand AM, Benoit E. Neurotoxins targetting receptor site 5 of voltage-dependent sodium channels increase the nodal volume of myelinated axons. J Neurosci Res 1999,55: 666-673.
    74. Lencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006; 126: 37-47.
    75. Pomeranz Krummel DA, Oubridge C, Leung AK, Li J, Nagai K. Crystal structure of human spliceosomal U1 snRNP at 5.5Aresolution. Nature 2009;458:475-480.
    76. Zhang GW, Song HD, Chen Z. Molecular mechanism of mRNA alternative splicing. Yi Chuan Xue Bao 2004;31:102-107.
    77. Tan J, Liu Z, Nomura Y, Goldin AL, Dong K. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci 2002;22:5300-5309.
    78. Diss J, Fraser S, Djamgoz M. Voltage-gated Na~+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 2004; 33: 180-193.
    79. Gustafson TA, Clevinger EC, O'Neill TJ, Yarowsky PJ, Krueger BK. Mutually exclusive exon splicing of type-Ⅲ brain sodium channel-alpha subunit RNA generates developmentally regulated isoforms in rat-brain. J Biol Chem 1993 ;268:18648-1865 3.
    80. Lu CM, Brown GB. Isolation of a human-brain sodiumchannel gene encoding two isoforms of the subtype Ⅲ alphasubunit. J Mol Neurosci 1998,10:67-70.
    81. Brackenbury WJ, Chioni AM, Diss JK, Djamgoz MB. The neonatal splice variant of Navl.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 2007;101:149-160.
    82. Kazen-Gillespie KA, Ragsdale DS, D'Andrea MR, Mattei LN, Rogers KE, Isom LL. Cloning, localization, and functional expression of sodium channel beta 1A subunits. J Biol Chem 2000;275:1079-1088.
    83. Waxman SG, Dib-Hajj S, Cummins TR, Black JA. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states. Brain Res 2000;886:5-14.
    84. Stetefeld J, Ruegg MA. Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem Sci 2005;30:515-521.
    85. Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 2001;277:31-47.
    86. Elliott DJ, Grellscheid SN. Alternative RNA splicing regulation in the testis. Reproduction 2006;132:811 -819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700