基于声子晶体理论的梁板类周期结构振动带隙特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声子晶体是具有弹性波带隙的周期性复合材料,带隙频率范围内的弹性波不能传播。声子晶体是凝聚态物理领域在研究光子晶体中电磁波传播特性的基础上提出的一个新方向,具有重要的理论和应用价值而受到广泛关注。声子晶体在带隙理论和带隙算法方面均取得重要进展,但在减振降噪领域的应用探索才刚开始。
     长期以来,结构振动控制一直是理论与工程界关注和着力解决的热点问题之一。将声子晶体理论应用到工程结构设计中,使之具有振动带隙,利用带隙特性抑制振动的传播,将会为结构振动控制提供了一种新的原理和技术途径。
     本文以此为背景,在国家重大基础研究项目(973项目)的资助下,提出利用声子晶体理论对周期结构的振动带隙特性进行深入研究。论文是以声子晶体理论和算法为基础,应用理论分析、有限元仿真和实验验证相结合的研究方法,对工程中广泛应用的梁板类周期结构的振动带隙特性展开系统深入的研究。主要研究内容与成果包括:
     1.针对不同梁板类结构,改进和完善了声子晶体的带隙计算方法,为梁板类周期结构的振动带隙计算提供了强有力的计算工具。
     (1)利用传递矩阵法,可以有效计算梁结构的弯扭耦合振动带隙,同时也可以计算各种杆件结构的局域共振带隙。
     (2)在二维周期结构板的带隙计算中,改进的平面波展开法可以计算周期栅格结构的振动带隙,而且通过修改傅立叶级数的展开形式,可以大大提高计算结果的收敛性。
     2.深入系统地研究了梁板类周期结构的布拉格振动带隙特性,深化了对周期结构振动带隙的认识,丰富了周期结构的研究内容。
     (1)证实了一维周期杆结构的纵向振动、轴结构的扭转振动、梁结构的弯曲振动以及二维周期薄板结构、栅格结构的纵向振动和弯曲振动均存在振动带隙。
     (2)揭示了表面局域态是一维杆状周期结构传输特性中带隙内产生共振峰的根本原因。发现当一维杆状周期结构纵向振动时,自由表面材料中的纵波速度比另一种材料中的纵波速度小时,在带隙内可以产生表面局域态。
     (3)深入研究了梁的弯扭耦合振动带隙特性,揭示了弯扭耦合振动对带隙特性的影响规律。特别地,在薄壁梁的弯扭耦合振动中,发现晶格常数是影响薄壁梁耦合振动带隙相对宽度的一个重要几何参数,两种材料的杨氏模量差异是决定带隙相对宽度的另一个关键因素。
     (4)揭示了二维周期结构薄板的纵向振动带隙与二维声子晶体的XY模态带隙之间的差异。对于二维板结构弯曲振动,揭示了转动惯量和剪切变形对带隙的影响规律。
     (5)发现了周期栅格结构的弯曲振动可以存在完全振动带隙,完全带隙内的衰减比方向带隙内的衰减强。
     3.将声子晶体理论中的局域共振带隙思想引入到周期结构中,针对低频、宽带、小尺寸、强衰减等目标,优化设计了不同的局域共振结构,得到了相应的局域共振带隙,揭示了大量有价值的规律,为声子晶体的低频减振降噪应用提供了新的思路和研究方向,拓展了周期结构的研究领域。
     (1)设计了一种环状局域共振结构,得到了扭转振动的低频局域共振带隙,分析了轴的材料属性对带隙内衰减的影响规律。
     (2)设计了一种双自由度的局域共振结构,深入分析了局域共振结构本身的耦合模式对带隙的影响。理论和实验研究均表明,在梁上周期分布这种局域共振结构,可以获得低频、宽带、强衰减的局域共振带隙。这种思想对局域共振带隙的设计以及结构的减振降噪均具有重要意义。
     (3)优化设计了二维局域共振结构板,理论和实验研究表明二维周期结构薄板存在纵向振动的局域共振带隙,但是低频、强衰减带隙特性不可兼得。
     (4)研究表明低频局域共振带隙不仅存在于三组元周期结构薄板弯曲振动中,二维二组元薄板结构也可以产生弯曲振动的局域共振带隙。二组元薄板结构产生的局域共振带隙频率范围比较窄,而三组元薄板结构可以产生低频、宽带、强衰减的局域共振带隙。
     (5)分析了阻尼因素对局域共振带隙宽度和带隙内衰减的影响。发现当阻尼增大时,局域共振带隙频率范围变宽,但是带隙范围内有效衰减减小。这对带隙宽度和带隙内衰减的优化设计具有重要指导意义。
     总之,本文将声子晶体理论和算法引入到周期结构的振动带隙特性研究中,应用理论分析、有限元仿真和实验验证相结合的研究方法,对梁板类周期结构的布拉格带隙和局域共振带隙展开了系统深入的研究。进一步深化了周期结构的振动带隙理论;为周期结构振动带隙计算提供了准确、高效的计算方法,为揭示周期结构新的带隙特性提供了有力工具;拓展了周期结构的研究领域,特别是局域共振带隙思想的引入,为梁板类周期结构的低频减振降噪提供了新的思路和技术途径。这些研究对推动声子晶体理论在减振降噪领域中的工程应用具有重要的理论意义和工程参考价值。
Phononic crystalsare periodic composites with elastic waves band gaps within which the propagation of vibration and sound are forbidden. Phononic crystals are the counterparts of photonic crystals in elasticity. It becomes a hotspot topic in condensed matter physics recently. Phononic crystals exhibit rich new physics and promising potential applications, which have attracted much attention from various disciplines. Many important progresses in formation mechanism and calculation methods have been achieved in last decade. But its application is just to get under the way.
     Controlling vibrations in structures has been one of the pop research topics in academic and engineering for a long time. If the philosophy of Phononic crystals is introduced into their design, engineering structures will exhibit frequency band gaps and attenuate their vibration, which provides a new approach for vibration control. Under this circumstance, funded by the State Key Development Program for Basic Research of China (973 program), this dissertation addresses the vibration band gaps in periodic structures using the Phononic crystals theory. With the calculation methods of Phononic crystals and their extensions, together with finite element method and experimental tests, the vibration band gaps in periodic beams and plates, which are applied widely in engineering, are investigated deeply and systemically. The main work and achievements are as follows:
     1. The calculation methods of Phononic crystals are modified and improved to deal with different periodic beam or plate structures, which are validated by experiments to be powerful numerical tools for investigating vibration band gaps of periodic structures.
     (1) The transfer matrix method is extended to deal with the coupling effects of flexural and torsional vibration in beams. It is illustrated that the extension can calculate locally resonant band structures of shafts or beams effectively.
     (2) The plane wave expansion method is improved to calculate vibration band gaps in the periodic grid structure, as well as by changing the expansion form of Fourier series so that it can handle locally resonant gaps in two-dimensional plate structures with better convergence.
     2. The vibration gaps with Bragg scattering mechanism in periodic beams and plates are studied deeply and systemically, which enrich the elastodynamics of periodic structures.
     (1) Different vibration gaps are found theoretically and experimentally in the different periodic structures, such as longitudinal vibration gap in rods, torsional vibration gap in shafts, flexural vibration gap in beams, longitudinal and flexural vibration gaps in two-dimensional thin plates and grids.
     (2) It is found that surface localized modes are the essential reason for the transmission peaks in one-dimensional periodic rods. It is found that when the longitudinal velocity of the material with free surface is less than that of the other material, there will exist surface localized modes in the free surface of periodic rods.
     (3) The coupled flexural and torsional vibration gaps in periodic beams are studied deeply. Particularly, for the coupled vibration gaps in thin-walled beams, it is found that the lattice constant is an important factor that affects the normalized gap width in addition to the contrast of Young’s modulus.
     (4) The differences between the longitudinal vibration gap in two-dimensional thin plates and the XY mode gaps in two-dimensional Phononic crystals are illustrated. The effects of rotary inertia and shear deformation on gaps in two-dimensional periodic plates are investigated and summarized.
     (5) It is shown that complete flexural vibration gaps exist in periodic grids. The vibration attenuation in the complete gaps is stronger than that in the directional gaps.
     3.The locally resonant gap mechanism of Phononic crystals is introduced in the design of periodic structures. Several small size periodic structures with different locally resonators are designed and tested. Wide gaps in low frequency with strong attenuation are observed in vibration experiments. Further theoretical and experimental studies opened out some valuable phenomena, which provide new idea for the applications of PCs in low-frequency vibration/noise control. All these related works expand the study field of periodic structures.
     (1) It is illustrated that low frequency torsional gap exists in theshaft with periodic cylindrical locally resonators. It is found that torsional stiffness of the shaft has important influence on the propagating attenuation in the frequency ranges of gaps.
     (2) The locally resonator with two-degree-of-freedom, i.e. the resonator with vertical and rotational vibration, is invented to obtain wide gaps in low frequency with strong attenuation in beams. Experimental results confirm the theoretical design reasonably. Such an idea is extremely promising for the design of locally resonant structures, as well as their applications in the vibration/noise control.
     (3) Theoretical and experimental results show there are locally resonant gaps of longitudinal vibration in an optimized periodic plate. But it is impossible to obtain the gaps of longitudinal vibration in low frequency with strong attenuation in such plates.
     (4) It is found that locally resonant gaps of flexural vibration not only exist in the two-dimensional ternary thin plates, but also in binary thin plates. But it is noteworthy that gaps in binary thin plate are much narrower than that in its ternary counterpart, and the attenuation in gaps are much less either.
     (5) The effects of the damping on the width of the locally resonant gap and its attenuation are investigated. It is shown that damping can widen the frequency range while bate its attenuation.
     In summary, the theories and calculation methods of PCs are introduced to the research of vibration gaps in periodic structures. The vibration gaps with Bragg scatter mechanism and locally resonant mechanism in periodic beams and plates are studied theoretically and experimentally. These systematic studies are valuable for periodic structure in deepening the theory, enriching the calculation methods, and expanding the study field. The research results in this dissertation are meaningful in the theory of the PCs as well as its application to vibration/noise control.
引文
[1] 丁文镜.减振理论.北京:清华大学出版社,1988
    [2] 顾仲全,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997
    [3] 李春祥,张丽卿.基于任意整数的多重调谐质量阻尼器.振动与冲击,2005,24(4):56-58
    [4] Li T Y, Zhang X M, Zuo Y T and Xu M B. Structural power flow analysis for a floating raft isolation system consisting of constrained damped beams. J. Sound and Vib., 1997, 202(1): 47-54
    [5] 巫影.浮筏减振降噪理论研究及仿真[博士学位论文].武汉:理工大学,2002
    [6] 程远胜,韩彬,张维衡.基于动力吸振器的结构声传递抑制.噪声与振动控制,2005,(1):1-4
    [7] Zuo L, Nayfeh S A. Optimization of the individual stiffness and damping parameters of multiple-tuned-mass-damper systems. J. Vibration and Acoustics, 2005, 127: 77-83
    [8] 刘棣华.粘弹性阻尼减振降噪应用技术.北京:宇航出版社,1990
    [9] 戴德沛.阻尼减振降噪技术.西安:西安交通大学出版社,1986
    [10] 欧进萍.结构振动控制——主动、半主动和智能控制.北京:科学出版社,2003
    [11] Hu Y R, Ng Alfred. Active robust vibration control of flexible structures. J. Sound and Vib., 2005, 288: 43-56
    [12] Niu J C, Song K J, Lim C W. On active vibration isolation of floating raft system. J. Sound and Vib., 2005, 285: 391-406
    [13] 黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展. 力学进展,1997,27(1):5-18
    [14] 王翔.用 Lanczos 算法进行周期结构固有特性分析的研究.数值计算与计算机应用,2000,(2):143-154
    [15] Hussein M I. Dynamics of Banded Materials and Structures: Analysis, Design and Computation in Multiple Scales[PhD thesis]. The University of Michigan, 2004
    [16] Brillouin L. Wave Propagation in Periodic Structures, 2nd edition. New York: Dover Publications, 1953
    [17] Cremer L, Hekl M and Petersson B A T. Structure-Borne Sound, 3rd edition. Berlin: Springer, 2005
    [18] Mead D J. Free wave propagation in periodically-supported, infinite beams. J.Sound Vib., 1970, 11: 181-197
    [19] Mead D J, Parthan S. Free wave propagation in two-dimensional periodic plates. J. Sound Vib., 1979, 64(3): 325-346
    [20] Heckl M A. Coupled waves on a periodically supported Timoshenko beam. J. Sound Vib., 2002, 252(5): 849-882
    [21] Mangaraju V, Sonti V R. Wave attenuation in periodic three-layered beams: analytical and FEM study. J. Sound Vib., 2004, 276: 541-570
    [22] Mei C. Vibration suppression through tunable periodic structures. Twelfth International Congress on Sound and vibration, 2005
    [23] Mead D J and Markus S. Coupled flexural-longitudinal wave motion in a periodic beam. J. Sound Vib., 1983, 90(1): 1-24
    [24] Mead D J. A new method of analyzing wave propagation in periodic structures; applications to periodic Timoshenko beams and stiffened plates. J. Sound Vib., 1986, 104(1): 9-27
    [25] Mead D J and Bardell N S. Free vibration of a thin cylindrical shell with discrete axial stiffeners. J. Sound Vib., 1986, 111(2): 229-250
    [26] Mead D J and Bardell N S. Free vibration of a thin cylindrical shell with periodic circumferential stiffeners. J. Sound Vib., 1987, 111(2): 499-520
    [27] Langley R S and Smith J R D. Statistical energy analysis of periodically stiffened damped plate structures. J. Sound Vib., 1997, 208(3): 407-526
    [28] Richards D, Pines D J. Passive reduction of gear mesh vibration using a periodic drive shaft. J. Sound Vib., 2003, 264: 317-342
    [29] Diaz-de-Anda A, Pimentel A, Flores J, Morales A, Gutierrez L, and Mendez-sanchez RA. Locally periodic Timoshenko rod: experiment and theory. J. Acoust. Soc. Am., 2005, 117(5): 2814-2819
    [30] Tawfik M, Chung J, Baz A. Wave attenuation in periodic helicopter blade. 5th Jordan International Mechanical Engineering Conference, Amman, Jordan, 2004
    [31] Alakebanga T N T. Finite element and experimental analysis of wave propagation in conical periodic structures[PhD thesis]. The Catholic Univerisity of America, 2003
    [32] Toso M. Wave propagation in rods shell and rotating shafts with non-uniform geometry[PhD thesis]. University of Maryland, 2004
    [33] Jeong S M. Analysis of vibration of 2-D periodic cellular structures[PhD thesis]. Georgia Institute of Technology, 2005
    [34] Jensen J S, Sigmund O, Thomsen J J and Bendsoe M P. Design of multi-phase structures with optimized vibrational and wave-transmitting properties. 15th Nordic Seminar on Computational Mechanics, 2002: 63-66
    [35] Asiri S. Isolation of Helicopter Gearbox Vibration Using Periodic Support Struts[PhD thesis]. University of Maryland, 2003
    [36] Szefi J T. Helicopter Gearbox Isolation Using Periodically Layered Fluidic Isolators[PhD thesis]. The Pennsylvania State University, 2003
    [37] Yong Y and Lin Y K. Propagation of decaying waves in periodic and piecewise periodic structures of finite length. J. Sound Vib., 1989, 129(2): 99-118
    [38] Bondaryk J E. Vibration of truss structures. J. Acoust. Soc. Am., 1997, 102(4): 2167-2175
    [39] Langley R S. Wave transmission through one-dimensional near periodic structures: optimum and random disorder. J. Sound Vib., 1995, 188(5): 717-743
    [40] Bouzit D, Pierre C. Localization of vibration in disordered multi-span beams with damping. J. Sound Vib., 1995, 187(4): 625-648
    [41] Langley R S. The statistics of wave transmission through disordered periodic waveguides. J. Sound Vib., 1996, 189(4): 421-441
    [42] Sorokin S V. Analysis of wave propagation in sandwich plates with and without heavy fluid loading. J. Sound Vib., 2004, 271: 1039-1062
    [43] Zhang W, Vlahopoulos N, Wu K. An energy finite element formulation for high-frequency vibration analysis of externally fluid-loaded cylindrical shells with periodic circumferential stiffeners subjected to axi-symmetric excitation. J. Sound Vib., 2005, 282: 679-700
    [44] Zhang W. Energy finite element method for vibration analysis of stiffened plates under fluid loading[PhD thesis]. University of Michigan, 2003
    [45] Ruzzene M, Baz A. Control of wave propagation in periodic composite rods using shape memory inserts. J. Vibration and Acoustics, 2000, 122: 151-159
    [46] Baz A. Active control of periodic structures. J. Vibration and Acoustics, 2001, 123: 472-479
    [47] Singh A, Pines D J and Baz A. Active/passive reduction of vibration of periodic one-dimensional structures using piezoelectric actuators. Smart Mater. Struct., 2003, 13: 698-711
    [48] Kim Y, Baz A. Active control of a two-dimensional periodic structure. Proc. of SPIE, Smart Structures and Materials: Damping and Isolation, 2004, 5386:329-339
    [49] Thorp O, Ruzzene M and Baz A. Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings. Smart Mater. Struct., 2005, 14: 594-604
    [50] 李凤明,胡超,黄文虎 .周期波导中弹性波局部化问题的研究. 应用力学学报,2002,19(4):47-51
    [51] Li F M, Hu C, Huang W H. One-dimensional localization of elastic waves in rib-stiffened plates. Chinese Journal of Aeronautics, 2002, 15(4): 208-212
    [52] Li F M, Wang Y S. Study on wave localization in disordered periodic layered piezoelectric composite structures. International Journal of Solids and Structures, 2005, 42: 6457-6474
    [53] 张小铭,张维衡.周期减支梁的振动功率流.振动与冲击,1990,35:28-34
    [54] 刘见华,金咸定.周期加筋板中的弯曲波传播.振动与噪声控制,2003,(5): 22-26
    [55] 姚本炎,黄其柏.加筋薄板结构振动与声辐射特性研究.华中科技大学学报,2001,29(2):90-92
    [56] 程伟,诸德超.周期性加筋板中的波传播特性.力学学报,1994,26(3):297-302
    [57] 黎胜,赵德有.加筋板结构声传输研究.船舶力学,2001,5(4):61-66
    [58] Mead D J. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995. J. Sound Vib., 1996, 190(3): 495-524
    [59] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059-2062
    [60] John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486-2489
    [61] Sigalas M M and Economou E N. Elastic and acoustic wave band structure. J. Sound Vib., 1992, 158(2): 377-382
    [62] Kushwaha M S, Halevi P, Dobrzynski L et al. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett., 1993, 71(13): 2022-2025
    [63] Martínez-Sala R, Sancho J, Sánchez J V et al. Sound attenuation by sculpture. Nature (London), 1995, 378: 241
    [64] 赵宏刚.固/固和固/气二维声子晶体的声波禁带研究[硕士学位论文].长沙:国防科技大学,2003
    [65] 温激鸿.声子晶体振动带隙及减振特性研究[博士学位论文].长沙:国防科技大学,2005
    [66] Kushwaha M S, Halevi P, Martínez G et al. Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B, 1994, 49(4): 2313-2322
    [67] Dowling J P. Sonic Band Structure In Fluids Exhibiting Periodic Density Variations. J. Acoust. Soc. Am., 1992, 91(5): 2539-2543
    [68] Economou B N and Sigalas M M. Classical wave propagation in periodic structures: Cermet versus network topology. Phys. Rev. B, 1993, 48(18): 13434-13438
    [69] Sigalas M M and Economou E N. Band structure of elastic waves in two dimensional systems. Solid State Commun., 1993, 86(3): 141-143
    [70] Kushwaha M S and Halevi P. Band-Gap Engineering in Periodic Elastic Composites. Appl. Phys. Lett., 1994, 64(9): 1085-1087
    [71] Vasseur J O, Djafari-Rouhani B, Dobrzynski L et al. Complete acoustic band gaps in periodic fiber reinforced composite materials: the carbon/epoxy composite and some metallic systems. J. Phys.: Condens. Matter, 1994, 6(42): 8759-8770
    [72] Sigalas M M and Economou E N. Elastic waves in plates with periodically placed inclusions. J. Appl. Phys., 1994, 75(6): 2845-2850
    [73] Sigalas M M and Soukoulis C M. Elastic-wave propagation through disordered and/or absorptive layered systems. Phys. Rev. B, 1995, 51(5): 2780-2789
    [74] Kafesaki M, Sigalas M M, andEconomou E N. Elastic Wave Band Gaps In 3-D Periodic Polymer Matrix Composites. Solid State Commun., 1995, 96(5): 285-289
    [75] Kushwaha M S and Halevi P. Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders. Appl. Phys. Lett., 1996, 69(1): 31-33
    [76] Kushwaha M S and Djafari-Rouhani B. Complete acoustic stop bands for cubic arrays of spherical liquid balloons. J. Appl. Phys., 1996, 80(6): 3191-3195
    [77] Kushwaha M S. Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Appl. Phys. Lett., 1997, 70(24): 3218-3220
    [78] Vasseur J O, Djafari-Rouhani B, Dobrzynski L et al. Acoustic band gaps in fibre composite materials of boron nitride structure. J. Phys.: Condens. Matter, 1997, 9(35): 7327-7341
    [79] Kushwaha M S and Halevi P. Stop bands for cubic arrays of spherical balloons. J. Acoust. Soc. Am., 1997, 101(1): 619-622
    [80] Kushwaha M S, Djafari-Rouhani B, Dobrzynski L et al. Sonic stop-bands for cubic arrays of rigid inclusions in air. Eur. Phys. J. B, 1998, 3(2): 155-161
    [81] Kushwaha M S, Djafari-Rouhani B, and Dobrzynski L. Sound isolation from cubic arrays of air bubbles in water. Phys. Lett. A, 1998, 248(2-4): 252-256
    [82] Vasseur J O, Deymier P A, Frantziskonis G et al. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. J. Phys.: Condens. Matter, 1998, 10(27): 6051-6064
    [83] Robertson W M and Rudy W F. Measurement of acoustic stop bands in two-dimensional periodic scattering arrays. J. Acoust. Soc. Am., 1998, 104(2): 694-699
    [84] Sánchez-Pérez J V, Caballero D, Mártinez-Sala R et al. Sound attenuation by two dimensional array of rigid cylinders. Phys. Rev. Lett., 1998, 80(24): 5325-5328
    [85] Montero de Espinosa F R, Jiménez E, and Torres M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett., 1998, 80(6): 1208-1211
    [86] Klironomos A D and Economou E N. Elastic wave band gaps and single scattering. Solid State Commun., 1998, 105(5): 327-332
    [87] Sprik R and Wegdam G H. Acoustic band gaps in composites of solids and viscous liquids. Solid State Commun., 1998, 106(2): 77-81
    [88] Kushwaha M S and Djafari-Rouhani B. Giant sonic stop bands in two-dimensional periodic system of fluids. J. Appl. Phys., 1998, 84(9): 4677-4683
    [89] Caballero D, Sánchez-Dehesa J, Rubio C et al. Large two-dimensional sonic band gaps. Phys. Rev. E, 1999, 60(6): 6316-6319
    [90] Kee C S, Kim J E, Park H Y et al. Essential role of impedance in the formation of acoustic band gaps. J. Appl. Phys., 2000, 87(4): 1593-1596
    [91] García-Pablos D, Sigalas M, Montero de Espinosa F R et al. Theory and experiments on elastic band gaps. Phys. Rev. Lett., 2000, 84(19): 4349-4352
    [92] Dhar L and Rogers J A . High frequency one-dimensional phononic crystal characterized with a picosecond transient grating photoacoustic technique. Appl. Phys. Lett., 2000, 77(9): 1402-1404
    [93] Sigalas M M and García N. Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys., 2000, 87(6): 3122-3125
    [94] Tanaka Y, Tomoyasu Y, and Tamura S I. Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch. Phys. Rev. B, 2000, 62(6): 7387-7392
    [95] Goffaux C and Vigneron J P. Theoretical study of a tunable phononic band gapsystem. Phys. Rev. B, 2001, 64(7): 075118
    [96] Caballero D, Sánchez-Dehesa J, Martínez-Sala R et al. Suzuki phase in two-dimensional sonic crystals. Phys. Rev. B, 2001, 64(6): 064303
    [97] Vasseur J O, Deymier P A, Chenni B et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett., 2001, 86(14): 3012-3015
    [98] 吴福根,刘正猷,刘有延. 二维周期性复合介质中弹性波的能带结构. 声学学报, 2001, 26(4): 319-323
    [99] Lambin P, Khelif A, Vasseur J O et al. Stopping of acoustic waves by sonic polymer-fluid composites. Phys. Rev. E, 2001, 63(6): 066605
    [100] Lai Y, Zhang X, and Zhang Z Q. Engineering acoustic band gaps. Appl. Phys. Lett., 2001, 79(20): 3224-3226
    [101] Wu F, Liu Z, and Liu Y. Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. J. Phys. D: Appl. Phys., 2002, 35(2): 162-165
    [102] Psarobas I E, Sainidou R, Stefanou N et al. Acoustic properties of colloidal crystals. Phys. Rev. B, 2002, 65(6): 064307
    [103] Vasseur J O, Deymier P A, Khelif A et al. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study. Phys. Rev. E, 2002, 65(5): 056608
    [104] Wu F, Hou Z, Liu Z et al. Acoustic band gaps in two-dimensional rectangular arrays of liquid cylinders. Solid State Commun., 2002, 123(1): 239-242
    [105] Sainidou R, Stefanou N, Psarobas I E et al. Scattering of elastic waves by a periodic monolayer of spheres. Phys. Rev. B, 2002, 66(2): 024303
    [106] Lai Y, Zhang X D, and Zhang Z Q. Large sonic band gaps in 12-fold quasicrystals. J. Appl. Phys., 2002, 91(9): 6191-6193
    [107] Psarobas I E and Sigalas M M. Elastic band gaps in a fcc lattice of mercury spheres in aluminum. Phys. Rev. B, 2002, 66(5): 052302
    [108] Wu F, Liu Z, and Liu Y. Acoustic band gaps created by rotating square rods in a two-dimensional lattice. Phys. Rev. E, 2002, 66(4): 046628
    [109] Li X, Wu F, Hu H et al. Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites. J. Phys. D: Appl. Phys., 2002, 36(1): L15-L17
    [110] Goffaux C, Maseri F, Vasseur J O et al. Measurements and calculations of the sound attenuation by a phononic band gap structure suitable for an insulatingpartition application. Appl. Phys. Lett., 2003, 83(2): 281-283
    [111] Zhang X, Liu Z, Liu Y et al. Elastic wave band gaps for three-dimensional phononic crystals with two structural units. Phys. Lett. A, 2003, 313(5-6): 455-460
    [112] Lai Y and Zhang Z Q. Large band gaps in elastic phononic crystals with air inclusions. Appl. Phys. Lett., 2003, 83(19): 3900-3902
    [113] Hou Z, Fu X, and Liu Y. Acoustic wave in a two-dimensional composite medium with anisotropic inclusions. Phys. Lett. A, 2003, 317(1): 127-134
    [114] Zhang X, Liu Z, Mei J et al. Acoustic band gaps for a two-dimensional periodic array of solid cylinders in viscous liquid. J. Phys.: Condens. Matter, 2003, 15(49): 8207-8212
    [115] Wilim M, Khelif A, Ballandras S et al. Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Phys. Rev. E, 2003, 67(6): 065602
    [116] Hou Z, Wu F, and Liu Y. Phononic crystals containing piezoelectric material. Solid State Commun., 2004, 130(1): 745-749
    [117] Kuang W, Hou Z, and Liu Y. The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals. Phys. Lett. A, 2004, 332(5-6): 481-490
    [118] Ni Q, Cheng J C. Anisotropy of effective velocity for elastic wave propagation in two-dimensional phononic crystals at low frequencies. Phys. Rev. B, 2005, 72(1): 014305
    [119] Sainidou R, Stefanou N, and Modinos A. Formation of absolute frequency gaps in three-dimensional solid phononic crystals. Phys. Rev. B, 2002, 66(21): 212301
    [120] Zhao H G, Liu Y Z, Wang G et al. Resonance modes and gap formation in a two-dimensional solid phononic crystal. Phys. Rev. B, 2005, 72(1): 012301
    [121] Mei J, Liu Y Z, Wen W J and Sheng P. Effective mass density of fluid-solid composites. Phys. Rev. Lett., 2006, 96(2): 024301
    [122] Tanaka Y and Tamura S. Surface acoustic waves in two-dimensional periodic elastic structures. Phys. Rev. B, 1998, 58(12): 7958-7965
    [123] Vines R E and Wolfe J P. Scanning phononic lattices with surface acoustic waves. Physica B, 1999, 263-264(1): 567-570
    [124] Meseguer F, Holgado M, Caballero D et al. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Phys. Rev. B, 1999, 59(19): 12169-12172
    [125] Tanaka Y and Tamura S. Two-dimensional phononic crystals: surface acoustic waves. Physica B, 1999, 263-264(1): 77-80
    [126] Aono T, Tanaka Y, and Tamura S. Surface phonons in one-dimensional periodic superlattices. Physica B, 1999, 263-264(1): 98-101
    [127] Tartakovskaya E V. Surface waves in elastic band-gap composites. Phys. Rev. B, 2000, 62(16): 11225-11229
    [128] Wu T T, Huang Z G, Lin S. Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Phys. Rev. B, 2004, 69(9):094301
    [129] Laude V, Wilm M, Benchabane S, Khelif A. Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Phys. Rev. E, 2005, 71(3): 036607
    [130] Zhang X, Jackson T, and Lafond E. Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates. Appl. Phys. Lett., 2006, 88(4): 041911
    [131] Chen J J, Qin B, Cheng J C. Complete band gaps for Lamb waves in cubic thin plates with periodically placed inclusions. Chin.Phys.Lett., 2005, 22(7): 1706- 1708
    [132] Liu Z Y, Zhang X, Mao Y et al. Locally resonant sonic materials. Science, 2000, 289: 1734-1736
    [133] Liu Z, Chan C T, and Sheng P. Three-component elastic wave band-gap material. Phys. Rev. B, 2002, 65(16): 165116
    [134] Zhang X, Liu Y, Wu F, Liu Z. Large two-dimensional band gaps in three component phononic crystals. Phys. Lett. A, 2003, 317: 144-149
    [135] Liu Z, Chan C T, and Sheng P. Analytic model of phononic crystals with local resonances. Phys. Rev. B, 2005, 71(1): 014103
    [136] Goffaux C and Sánchez-Dehesa J. Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials. Phys. Rev. B, 2003, 67(14): 144301
    [137] Goffaux C, Sánchez-Dehesa J, Yeyati A L et al. Evidence of fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett., 2002, 88(22): 225502
    [138] Goffaux C, Sanchez-Dehesa J, and Lambin P. Comparison of the sound attenuation efficiency of locally resonant materials and elastic band-gap structures. Phys. Rev. B, 2004, 70(18): 184302
    [139] Ho K M, Cheng C K, Yang Z et al. Broadband locally resonant sonic shields. Appl. Phys. Lett., 2003, 83(26): 5566-5568
    [140] Zhang S, Hua J, Cheng J C. Experimental and theoretical evidence for the existence of broad forbidden gaps in the three-component composite. Chin.Phys.Lett., 2003, 20(8):1303-1305
    [141] Zhang S, Cheng J. Existence of broad acoustic bandgaps in three-component composite. Phys. Rev. B, 2003, 68(24), 245101
    [142] Hirsekorn M. Small-size sonic crystals with strong attenuation bands in the audible frequency range. Appl. Phys. Lett., 2004, 84(17): 3364-3366
    [143] Hirsekorn M, Delsanto P P, Batra N Ket al. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials. Ultrasonics, 2004, 42(1-9): 231-235
    [144] Liu Y Z, Shao L H, Wang G et al. A heuristic model for estimating the lowest gap of locally resonant phononic crystals. ASME, Noise Control and Acoustics Division, NCA, 2005, 32: 149-153
    [145] 王刚.声子晶体局域共振带隙机理及减振特性研究[博士学位论文].长沙:国防科技大学,2006
    [146] 邵丽晖.基于多散射理论的三维局域共振声子晶体禁带特性研究[硕士学位论文].长沙:国防科技大学,2004
    [147] Wang G, Wen X S, Wen J H et al. Two dimensional locally resonant phononic crystals with binary structures. Phys. Rev. Lett., 2004, 93(15): 154302
    [148] Wang G, Liu Y Z, Wen J H and Yu D L. Formation mechanism of the low-frequency locally resonant band gaps in the two-dimensional ternary phononic crystals. Chinese Physics.2006, 15(2): 407-411
    [149] Camley R E, Djafari-Rouhani B, and Dobrzynski L. Transverse elastic waves in periodically layered infinite and semi-infinite media. Phys. Rev. B, 1983, 27(12): 7318-7329
    [150] Djafari-Rouhani B, Dobrzynski L, Hardouin Duparc O et al. Sagittal elastic waves in infinite and semi-infinite superlattices. Phys. Rev. B, 1983, 28(4): 1711-1720
    [151] Hou Z, Fu X, Liu Y. Singularity of the Bloch theorem in the fluid/solid phononic crystal. Phys. Rev. B, 2006, 73(2): 024304
    [152] Cao Y, Hou Z, Liu Y. Convergence problem of plane-wave expansion method for phononic crystals. Phys. Lett. A, 2004, 327: 247-253
    [153] Cao Y, Hou Z, and Liu Y. Finite difference time domain method for band-structurecalculations of two-dimensional phononic crystals. Solid State Commun., 2004, 132(8): 539-543
    [154] 王刚,温激鸿,韩小云,赵宏刚.二维声子晶体带隙计算中的时域有限差分方法.物理学报,2003,52(8):1943-1947
    [155] Liu Z, Chan C T, Sheng P et al. Elastic wave scattering by periodic structures of spherical objects: Theory and experiment. Phys. Rev. B, 2000, 62(4): 2446-2457
    [156] Kafesaki M and Economou E N. Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B, 1999, 60(17): 11993-12001
    [157] Psarobas I E, Stefanou N, and Modinos A. Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B, 2000, 62(1): 278-291
    [158] Mei J, Liu Z, Shi J et al. Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band-structure calculations. Phys. Rev. B, 2003, 67(24): 245107
    [159] Qiu C, Liu Z, Mei J, Ke M. The layer multiple-scattering method for calculating transmission. Solid State Commun., 2005, 134:765–770
    [160] Sainidou R, Stefanou N, Psarobas I E, Modinos A. A layer-multiple-scattering method for phononic crystals and heterostructures of such. Computer Physics Communications, 2005, 166:197–240
    [161] 谢希德,陆栋.固体能带理论.上海:复旦大学出版社,1998
    [162] Modinos A, Stefanou N, and Yannopapas V. Applications of the layer-KKR method to photonic crystals. Optics Express, 2001, 8(3): 197-229
    [163] 温激鸿,王刚,刘耀宗,郁殿龙.基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388
    [164] Wang G, Wen J H, Liu Y Z. Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Phys. Rev. B, 2004, 69(18): 184302
    [165] Wang G, Wen J H, and Wen X S. Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: Application to locally resonant beams with flexural wave band gap. Phys. Rev. B, 2005, 71(10), 104302
    [166] 雷晓燕.有限元法.北京:中国铁道出版社,2000
    [167] James R, Woodley S M, Dyer C M et al. Sonic bands, bandgaps, and defect states in layered structures - theory and experiment. J. Acoust. Soc. Am., 1995, 97(4): 2041-2047
    [168] Munday J N, Bennett C B, and Robertson W M. Band gaps and defect modes in periodically structured waveguides. J. Acoust. Soc. Am., 2002, 112(4): 1353-1358
    [169] Robertson W M, Baker C, and Bennett C B. Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array. Am. J. Phys., 2004, 72(2): 255-257
    [170] Sigalas M M. Elastic wave band gaps and defect states in two-dimensional composites. J. Acoust. Soc. Am., 1997, 101(3): 1256-1261
    [171] Sigalas M M. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. J. Appl. Phys., 1998, 84(6): 3026-3030
    [172] Kafesaki M, Sigalas M M, and García N. Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials. Phys. Rev. Lett., 2000, 85(19): 4044-4047
    [173] Kafesaki M, Sigalas M M, and García N.Wave guides in two-dimensional elastic wave band gap materials. Physica B, 2001, 296(1-3): 190-194
    [174] Torres M, Montero de Espinosa F R, García-Pablos D et al. Sonic band gaps in finite elastic media: Surface states and localization phenomena in linear and point defects. Phys. Rev. Lett., 1999, 82(15): 3054-3057
    [175]Wu F, Hou Z, Liu Z et al. Point defect states in two-dimensional phononic crystals. Phys. Lett. A, 2001, 292(3): 198-202
    [176] Wu F, Liu Z, and Liu Y. Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals. Phys. Rev. E, 2004, 69(6): 066608
    [177] Psarobas I E, Stefanou N, and Modinos A. Phononic crystals with planar defects. Phys. Rev. B, 2000, 62(9): 5536-5540
    [178] Chandra H, Deymier P A and Vasseur J O. Elastic wave propagation along waveguides in three-dimensional phononic crystals. Phys. Rev. B, 2004, 70(5): 054302
    [179] Zhang X and Liu Z. Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett., 2004, 85(2): 341-343
    [180] Li J, Liu Z, and Qiu C. Negative refraction imaging of acoustic waves by a two-dimensional three-component. Phys. Rev. B, 2006, 73(5): 054302
    [181] Hu X, Shen Y, Liu X et al. Superlensing effect in liquid surface waves. Phys. Rev. E, 2004, 69(3): 030201
    [182] Qiu C, Zhang X, and Liu Z. Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Phys. Rev. B, 2005, 71(5): 054302
    [183] Gupta B C and Ye Z. Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals. Phys. Rev. E, 2003, 67(3): 036603
    [184] Cervera F, Sanchis L, Sánchez-Pérez J Vet al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett., 2002, 88(2): 023902
    [185] Krokhin A A, Arriaga J, and Gumen L N. Speed of Sound in Periodic Elastic Composites. Phys. Rev. Lett., 2003, 91(26): 264302
    [186] Yang S, Page J H, Liu Z et al. Ultrasound Tunneling through 3D Phononic Crystals Phys. Rev. Lett., 2002, 88(10): 104301
    [187] Tourin A, Van Der Biest F, and Fink M. Time Reversal of Ultrasound through a Phononic Crystal. Phys. Rev. Lett., 2006, 96(10): 104301
    [188] 方俊鑫,陆栋.固体物理学.上海:上海科学技术出版社,1980
    [189] Nougaoui A and Djafari Rouhani B. Complex band structure of acoustic waves in superlattices. Surface Science, 1998, 199: 623-637
    [190] 范钦珊.材料力学.北京:高等教育出版社,2000
    [191] 佩因.振动与波动物理学.北京:人民教育出版社,1980
    [192] Jensen J S. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound and Vibration, 2003, 266(5): 1053-1078
    [193] Ken-ya Hashimoto. 声表面波器件模拟与仿真.北京:国防工业出版社,2002
    [194] Mizuno S and Tamura S. Resonant interaction of phonons with surface vibrational modes in a finite-size superlattice. Phys. Rev. B, 1996, 53 (8): 4549-4552
    [195] Mizuno S and Tamura S. Anomalous delay of phonons reflected from the surface of a superlattice. Applied Surface Science, 2002, 190: 200–204
    [196] Mizuno S. Phonon propagation through a superlattice-solid interface: localized vibrational modes and resonant transmission. Physica E, 2003, 17: 318–319
    [197] 中国金属学会,中国有色金属学会编.金属材料物理性能手册,第一册.北京:冶金工业出版社,1987
    [198] Banerjee, J R. Coupled bending-torsional dynamic stiffness matrix for beam elements. International Journal for Numerical Methods in Engineering, 1989, 28: 1283-1298
    [199] Hallauer W L, Jr and Liu R Y L. Beam bending-torsion dynamic stiffenss method for calculation of exact vibration modes. J. Sound Vib., 1982, 85(1): 105-113
    [200] Timoshenko S P, Young D H and Weaver W, Jr. Vibration Problems in Engineering. New York: Wiley, 1974
    [201] Yaman Y. Vibrations of open-section channels: a coupled flexural and torsional wave analysis. J. Sound Vib., 1997, 204: 131-158
    [202] Gere J M and Lin Y K. Coupled vibrations of thin-walled beams of open section.ASME, Journal of Applied Mechanics, 1958, 80: 373-378
    [203] 王刚,温激鸿,刘耀宗,郁殿龙,赵宏刚.一维粘弹材料周期结构的振动带隙研究,机械工程学报,2004, 40(7): 47-50
    [204] Gang Wang, Xisen Wen, Jihong Wen and Yaozong Liu. Quasi one-dimensional periodic structure with locally resonant band gap, ASME Journal of Applied Mechanics,2006,73(1): 167-169
    [205] 沈荣瀛,黄幸霞.橡胶弹性联轴节的扭转刚度分段计算模型及应用.噪声与振动控制, 1997, 4: 13-16
    [206] Qiao H, Li Q S, Li G Q. Vibratory characteristics of flexural non-uniform Euler-Bernoulli beams carring an arbitrary number of spring-mass systems. International Journal of Mechanical Sciences, 2002, 44: 725-743
    [207] Wu J J, Whittaker A R. The natural frequencies and mode shapes of a uniform cantilever beam with multiple two-dof spring-mass systems. J. Sound Vib., 1999, 227(2): 361-381
    [208] 赵存生,朱石坚.橡胶金属环静刚度特性研究.中国机械工程,2004,15(11): 962-964
    [209] 熊伟.考虑材料阻尼的声子晶体仿真算法研究[硕士学位论文].长沙:国防科技大学,2006
    [210] 隋允康,杜家政,彭细荣.MSC.Nastran 有限元动力分析与优化设计实用教程.北京:科学出版社,2004
    [211] Landau L D, Lifshitz E M. Theory of Elasticity (3rd edition). New York: Pergamon Press, 1986
    [212] 阿斯尼基福罗夫.船体结构声学设计.北京:国防工业出版社,1998
    [213] 清华大学工程力学系固体力学教研组振动组.机械振动(上).北京:机械工业出版社,1980
    [214] 曹志远,杨昇.厚板动力学理论及其应用.北京:科学出版社,1983
    [215] 杨乃宾,章怡宁.复合材料飞机结构设计.北京:航空工业出版社,2002
    [216] Martinsson P G and Movchan A B. Vibraitons of lattice structures and phononic band gaps. Q. J. Mech. Appl. Math., 2003, 56: 45-64
    [217] Li L. Use of Fourier series in the analysis of discontinuous periodic structure. J. Opt. Soc. Am., 1996, 13(9): 1870-1876
    [218] 温熙森.光子/声子晶体理论与技术.北京:科学技术出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700