飞秒激光在固体材料上制作微结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究利用飞秒激光对固体材料进行微细加工及其在微结构制作中的应用。
     1.讨论了飞秒激光在宽带隙透明固体电介质中诱导的多光子电离、隧道电离和碰撞电离过程,以及飞秒激光作用区域产生的局域等离子体密度随时间的变化。理论计算表明雪崩电离导致透明固体电介质破坏所需的时间很短,典型值为几十飞秒至百飞秒。另外讨论了飞秒激光在透明固体电介质内产生的自聚焦、等离子体自散焦及成丝现象等非线性光学效应引起的材料折射率改变。
     2.利用钛宝石飞秒激光放大器(中心波长775 nm、脉宽150 fs、重复频率1 kHz)作为写入光源,分别采用横向扫描模式和纵向扫描模式在熔融石英内直写制作光学波导。比较了横向扫描和纵向扫描两种直写模式的优缺点及各自直写的光波导的形貌,分析了横向扫描直写的光波导的横截面呈现椭圆形的原因,以及采用柱透镜或狭缝对入射光束预先整型的改善方法。实验讨论了飞秒激光的入射平均功率、扫描速度及重复扫描次数等参数对直写结果的影响,确定了直写良好性能光波导的条件,并用搭建的简易测试装置初步测试了直写的光波导的传输性能。
     3.利用近红外飞秒激光聚焦照射光敏玻璃FOTURAN,经热处理及在稀氢氟酸溶液中室温超声腐蚀,制作了竖直微孔、光滑微凹面及微通道等基础微结构。实验探索了飞秒激光入射参数对制作微结构形貌的影响,并确定了制作这些微结构的合适激光入射条件。实验发现飞秒激光曝光区域对激光入射参数(能流和脉冲数)的饱和效应,从充分反应消耗的角度对此进行解释。
     4.采用聚焦的近红外飞秒激光在光纤内逐点直写的方法,在未作增敏处理的光子晶体光纤和单模通信光纤内直接诱导了周期性结构改变。摸索了飞秒激光的入射平均功率及单点曝光时间对诱导结构改变的影响,为进一步利用近红外飞秒激光直写长周期光纤光栅提供指导。
     5.组建了一套基于掺镱(Yb)大模面积光子晶体光纤飞秒激光放大器的微纳加工系统,完善了该系统中三维微位移平台对刻划微图案的运动控制,通过氦氖光同轴监视的方法解决了加工时入射激光聚焦于样品表面的定位问题,并利用组建的加工系统对三类典型材料:半导体、金属薄膜和透明固体电介质进行了微纳加工实验。在硅片及金属薄膜(铬、铝)表面直接刻划方形和圆形等微图案的实验表明:刻划制作的微图案线条具有规整的边缘加工效果,且有效地减少了未加工区域受到的污染和热影响,从而保护了制作衬底。在具有高破坏阈值的熔融石英上的实验显示,若以比刻划硅片大得多的平均功率聚焦入射在其内部扫描,可以观察到激光聚焦点处的诱导成丝现象和伴随的可见光辐射。
     基于以上实验加工结果,分析了组建的飞秒激光加工系统的高重复频率和高平均功率特点为提高微纳加工效率及扩展材料加工能力所带来的优势。通过与典型的千赫兹重复频率的固体飞秒激光放大系统进行比较,阐述了基于光子晶体光纤飞秒激光放大技术的微纳加工系统在整体结构、环境稳定性及操作维护等方面的优点。
Micromachining of solid materials employing near-infrared femtosecond laser and its application in fabricating microstructures is mainly studied in this dissertation.
     1. The multiphoton ionization, tunnelling ionization and collisional ionization induced inside wide-band-gap transparent bulk dielectrics by femtosecond laser are revealed, and evolution of the density of plasma localized in femtosecond laser-matter interaction area is discussed. Theorectical calculation shows that the time for avalanche ionization induced breakdown in transparent bulk dielectrics is very short, typically several tens to hundreds of femtosecond. The refractive-index-change induced by nonlinear optical effects producing in transparent bulk dielectrics by femtosecond laser, such as self-focusing, plasma defocusing and filamentation, are also discussed.
     2. Optical waveguide is directly written inside fused silica employing Ti: Sappire femtosecond laser amplifier (775 nm central wavelength, 150 fs pulse duration, 1 kHz repetition rate), by adopting transverse and longitudinal scanning modes, respectively. Merits and defects for two scanning modes (transverse and longitudinal) are both elucidated. The reason for elliptical cross-section of waveguides written by transverse scanning is analyzed and improvements of beam shaping beforehand by cylindrical lens or slit is proposed. The influences of incident average laser power, scanning velocity and iterative scanning times on writing results are experimentally investigated, and condition for writing optical waveguide with good performance is determined. A simple experimental setup is founded to characterize the written optical waveguide.
     3. Fundamental microstructures such as vertical micro-hole, smooth micro-concave surface and micro-channel are fabricated with a photosensitive glass (FOTURAN) employing focused irradiation of near-infrared femtosecond laser, followed by subsequent heat treatment and ultrasonic etching in dilute hydrofluoric acid solution at room temperature. Influences of incident femtosecond laser parameters on morphologies of fabricated microstructures are experimentally investigated, and appropriate condition for fabrication is determined. Saturation of dimensions of irradiated area with incident femtosecond laser paremeters (including fluence and number of pulse shots) is found during experiment, and it is explained based on fully reacting exhaustion.
     4. Employing focused near-infrared femtosecond laser direct writing, periodic structural change is induced inside non-sensitized photonic crystal fiber (PCF) and single mode communication fiber. Influences of incident average power and exposure time on the induced structural change are investigated, which facilitates the direct writing of long-period-fiber-grating by near-infrared femtosecond laser.
     5. Micromachining system based on Yb-doped large-mode-area photonic crystal fiber (PCF) femtosecond laser amplifier is founded. The motion control for fabricaiton of micro-pattern using three-dimensional translation stage in the system is improved and location of laser focus spot on the surface of a sample is solved by co-axial monitoring with helium-neon (He-Ne) laser. Three typical types of material, including semiconductor, metallic thin film and transparent bulk dielectrics, are micromachined by the founded system. Experimental results show that lines contained in the rectangular and circular micro-patterns directly written on the surface of silicon (Si), chromium (Cr) and aluminum (Al) film, own uniform and regular morphology. In addition, contamination and heat effect are effectively reduced during micromachining, which herein, protects the substrate. When femtosecond laser with much higher average power than that of direct writing on silicon is focused and scans inside fused silica, filamentation and concomitant visible radiation are found around the laser focus spot.
     Based on above experimental results, it is revealed that the characteristics of high repetition rate and high average power bring advantages of high efficiency and enhanced capability to the founded system in material processing. Comparing with typical solid kilohertz-repetition-rate femtosecond laser amplifier, the micromachining system based on PCF femtosecond laser amplifier exhibits merits in compact structure, environmental stability and manipulability.
引文
[1] P. F. Moulton. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of Optical Society of America B, 1986, 3(1): 125~132.
    [2] A. Sanchez, A. J. Strauss, R. L. Aggarwal, et al. Crystal growth, spectroscopy and laser characteristics of Ti:Al2O3[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24(6): 995~1002.
    [3] J. M. Eggleston, L. G. Deshazer and K. W. Kangas. Characteristics and kinetics of laser-pumped Ti:sapphire oscillators[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24(6): 1009~1015.
    [4] R. L. Aggarwal, A. Sanchez, M. M. Stuppi, et al. Residual infrared absorption in as Grown and annealed crystals of Ti:Al2O3[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24(6): 1003~1008.
    [5] D. E. Spence, P. N. Kean and W. Sibbett. 60-fs pulse generation from a self-mode-lock Ti:sapphire laser[J]. Optics Letters, 1991, 16(1): 42~45.
    [6] D. Strickland and G. Mourou. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219~221.
    [7] P. Maine, D. Strickland, P. Bado, et al. Generation of ultrahigh peak power pulses by chirped pulseamplification[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24(2): 398~403.
    [8] P. P. Pronko, S. K. Dutta, J. Squier, et al. Machining of sub-micron holes using a femtosecond laser at 800 nm[J]. Optics Communications, 1995, 114(1-2): 106~110.
    [9] C. Momma, S. Nolte, B. N. Chichkov, et al. Precise laser ablation with ultrashort pulses[J]. Applied Surface Science, 1997, 109/110(1): 15~19.
    [10] X. Liu, D. Du and G. Mourou. Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33(10): 1706~1716.
    [11] Y. Li, W. Chingyue, N. Xiaochang, et al. Microdroplet deposition of copper film by femtosecond laser-induced forward transfer[J]. Applied Physics Letters, 2007, 89(161110.
    [12] K. M. Davis, K. Miura, N. Sugimoto, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729~1731.
    [13] K. Miura, Q. Jianrong, H. Inouye, et al. Photowritten optical waveguides invarious glasses with ultrashort pulse laser[J]. Applied Physics Letters, 1997, 71(23): 3329~3331.
    [14] K. Sugioka, C. Ya, K. Midorikawa, et al. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture[J]. Applied Physics A: Materials Science & Processing, 2005, 81(1): 1~10.
    [15]何飞,程亚.飞秒激光微加工:激光精密加工领域的新前沿[J].中国激光, 2007, 34(5): 595~622.
    [16] F. Korte, J. Serbin, J. Koch, et al. Towards nanostructuring with femtosecond laser pulses[J]. Applied Physics A: Materials Science & Processing, 2003, 77(2): 229~235.
    [17] E. N. Glezer, M. MIlosavljevic, L. Huang, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023~2025.
    [18] E. N. Glezer and E. Mazur. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 1997, 71(7): 882~884.
    [19] D. Homoelle, S. Wielandy, A. L. Gaeta, et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Optics Letters, 1999, 24(18): 1311~1313.
    [20] K. Minoshima, A. W. Kowalevicz, I. Hartl, et al. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator[J]. Optics Letters, 2001, 26(19): 1516~1518.
    [21] A. M. Streltsov and N. F. Borrelli. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Optics Letters, 2001, 26(1): 42~43.
    [22] C. B. Schaffer, A. Brodeur, J. F. Garcia, et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy[J]. Optics Letters, 2001, 26(2): 93~95.
    [23] Y. Sikorski, A. A. Said, P. Bado, et al. Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses[J]. Electronics Letters, 2000, 36(3): 226~227.
    [24] M. Will, S. Nolte and A. Tunnermann. Single- and multimode waveguides in glasses manufactured with femtosecond laser pulses[C] //G. S. Edwards, et al. Proceedings of SPIE: Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers. 2002, 4633: 99~106.
    [25] S. Taccheo, G. D. Valle, R. Osellame, et al. Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses[J]. Optics Letters, 2004, 29(22): 2626~2628.
    [26] W. Watanabe, T. Asano, K. Yamada, et al. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laserpulses[J]. Optics Letters, 2003, 28(24): 2491~2493.
    [27] L. Gui, X. Baoxi and T. C. Chong. Microstructure in lithium niobate by use of focused femtosecond laser pulses[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16(5): 1337~1339.
    [28] K. Kawamura, N. Sarukura and M. Hirano. Periodic nanostructure array in crossed holographic gratings in silica glass by two interfered infrared-femtosecond laser pulses[J]. Applied Physics Letters, 2001, 79(9): 1228~1230.
    [29] Y. Shimotsuma, P. G. Kazansky, Q. Jianrong, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405.
    [30] L. Sudrie, M. Franco, B. Prade, et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 1999, 171(4-6): 279~284.
    [31] Y. Kondo, K. Nouchi, T. Mitsuyu, et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters, 1999, 24(10): 646~648.
    [32] S. J. Mihailov, C. W. Smelser, P. Lu, et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation[J]. Optics Letters, 2003, 28(12): 995~997.
    [33] M. Watanabe, S. Hongbo, S. Juodkazis, et al. Three-dimensional optical data storage in vitreous silica[J]. Japanese Journal of Applied Physics: Part 2, 1998, 37(12B): L1527~L1530.
    [34] Q. JianRong, K. Miura and K. Hirao. Three-dimensional optical memory using glasses as a recording medium through a multi-photo absorption process[J]. Japanese Journal of Applied Physics: Part 1, 1998, 37(4B): 2263~2266.
    [35] K. Yamasaki, S. Juodkazis, M. Watanabe, et al. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films[J]. Applied Physics Letters, 2000, 76(8): 1000~1002.
    [36] E. Bricchi, J. D. Mills, P. G. Kazansky, et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Optics Letters, 2002, 27(24): 2200~2202.
    [37] S. Hongbo, X. Y., S. Juodkazis, et al. Arbitrary-lattice photonic crystals by multiphoton microfabrication[J]. Optics Letters, 2001, 26(6): 325~327.
    [38] N. Takeshima, Y. Narita, T. Nagata, et al. Fabrication of photonic crystals in ZnS-doped glass[J]. Optics Letters, 2005, 30(5): 537~539.
    [39] A. M. Streltsov and N. F. Borrelli. Study of femtosecond-laser-writtenwaveguides in glasses[J]. Journal of Optical Society of America B, 2002, 19(10): 2496~2504.
    [40] C. Hnatovsky, R. S. Taylor, E. Simova, et al. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching[J]. Applied Physics A: Materials Science & Processing, 2006, 84(1-2): 47~61.
    [41] A. Marcinkevicius, S. Juodkazis, M. Watanabe, et al. Femtosecond laser-assisted three-dimensional microfabrication in silica[J]. Optics Letters, 2001, 26(5): 277~279.
    [42] See the series of Proceedings of the Boulder Damage Symposium: Laser Induced Damage in Optical aterials (1969-92), Vols. l-24
    [43] E. Yablonovitch and N. Bloembergen. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media[J]. Physical Review Letters, 1972, 29(14): 907~910.
    [44] N. Bloembergen. Laser-induced electric breakdown in solids[J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1974, 10(3): 375~386.
    [45] D. Du, X. Liu, G. Korn, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 1994, 64(23): 3071~3073.
    [46] W. Kauteka, J. r. Kru¨ger, M. Lenzner, et al. Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps[J]. Applied Physics Letters, 1996, 69(21): 3146~3148.
    [47] C. Momma, B. N. Chichkov, S. Nolte, et al. Short-pulse laser ablation of solid targets[J]. Optics Communications, 1996, 129(1~2): 134~142.
    [48] M. Lenzner, J. Krüger, S. Sartania, et al. Femtosecond Optical Breakdown in Dielectrics[J]. Physical Review Letters, 1998, 80(18): 4076~4079.
    [49] A.-C. Tien, S. Backus, H. Kapteyn, et al. Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration[J]. Physical Review Letters, 1999, 82(19): 3883~3886.
    [50] S. S. Mao, F. Quere, S. Guizard, et al. Dynamics of femtosecond laser interactions with dielectrics[J]. Applied Physics A: Materials Science & Processing, 2004, 79(7): 1695~1709.
    [51] J. R. Bettis, R. A. H. II and A. H. Guenther. Laser Induced Damage in Optical Materials[M]. US GPO, Washington, DC: NBS Spec. Pub. 462, 1976: 338-345.
    [52] L. V. Keldysh. Ionization in the field of a strong electromagnetic field[J]. Sov. Phys. JETP, 1965, 20(1307.
    [53] K. K. Thornber. Applications of scaling to problems in high-field electronic transport[J]. Journal of Applied Physics, 1981, 52(1): 279~290.
    [54] D. J. DiMaria and J. R. Abemathey. Electron heating in silicon nitride and silicon oxynitride films[J]. Journal of Applied Physics, 1986, 60(5): 1727~1729.
    [55] B. C. Stuart, M. D. Feit, S. Herman, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. PHYSICAL REVIEW B, 1996, 53(4): 1749~1761.
    [56] Y. R. Shen. The principles of nonlinear optics [M]. New York: Wiley, 1984:
    [57] S. Tzortzakis, L. Sudrie, M. Franco, et al. Self-guided propagation of ultrashort IR laser pulses in fused silica[J]. Physical Review Letters, 2001, 87(21): 213902.
    [58] S. Henz and J. Herrmann. Self-channeling and pulse shortening of femtosecond pulses in multiphoton-ionized dispersive dielectric solids[J]. Physical Review A, 1999, 59(3): 2528-2531.
    [59]黄章勇,等.光纤通信用新型光无源器件[M].北京:北京邮电大学出版社, 2003: 190.
    [60] A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, et al. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses[J]. Optics Letters, 2005, 30(9): 964~966.
    [61] K. Suzuki, V. Sharma, J. G. Fujimoto, et al. Characterization of symmetric [3 x 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator[J]. Optics Express, 2006, 14(6): 2335~2343.
    [62] R. An, Y. Li, D. Liu, et al. Optical waveguide writing inside Foturan glass with femtosecond laser pulses[J]. Applied Physics A: Materials Science & Processing, 2007, 86(3): 343~346.
    [63] V. R. Bhardwaj, E. Simova, P. B. Corkum, et al. Femtosecond laser-induced refractive index modification in multicomponent glasses[J]. Journal of Applied Physics, 2005, 97(8): 0831021.
    [64] C. B. Schaffer, J. F. GarcI'a and E. Mazur. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser[J]. Applied Physics A: Materials Science & Processing, 2003, 76(3): 351~354.
    [65] J. W. Chan, T. Huser, S. Risbud, et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Optics Letters, 2001, 26(21): 1726~1728.
    [66] M. Will, S. Nolte, B. N. Chichkov, et al. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses[J]. Applied Optics, 2002, 41(21): 4360~4364.
    [67] J. E. Shelby. Introduction to Glass Science and Technology [M]. Cambridge, UK: The Royal Society of Chemistry, 1997:
    [68] K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiberwaveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647~649.
    [69] J. Nishii, N. Kitamura, H. Yamanaka, et al. Ultraviolet-radiation-induced chemical reactions through one- and two-photon absorption processes in GeO2-SiO2 glasses[J]. Optics Letters, 1995, 20(10): 1184.
    [70] A. Zoubir, M. Richardson, L. Canioni, et al. Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication[J]. Journal of Optical Society of America B, 2005, 22(10): 2138~2143.
    [71] C. Florea and K. A. Winick. Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses[J]. Journal of Lightwave Technology, 2003, 21(1): 246~253.
    [72] G. Cerullo, R. Osellame, S. Taccheo, et al. Femtosecond micromachining of symmetric waveguides at 1.5 mm by astigmatic beam focusing[J]. Optics Letters, 2002, 27(21): 1938~1940.
    [73] C. Ya, K. Sugioka, K. Midorikawa, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 2003, 28(1): 55~57.
    [74] M. Ams, G. D. Marshall, D. J. Spence, et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses[J]. Optics Express, 2005, 13(15): 5676~5681.
    [75] K. J. Moh, Y. Y. Tan, X. C. Yuan, et al. Influence of diffraction by a rectangular aperture on the aspect ratio of femtosecond direct-write waveguides[J]. Optics Express, 2005, 13(19): 7288~7297.
    [76] B. C. Stuart, M. D. Feit, S. Herman, et al. Optical ablation by high-power short-pulse lasers[J]. Journal of Optical Society of America B, 1996, 13(2): 459~468.
    [77] M. Lenzner, J. Krueger, S. Sartania, et al. Femtosecond optical breakdown in dielectrics[J]. Physical Review Letters, 1998, 80(18): 4076~4079.
    [78] K. Yamada, W. Watanabe, T. Toma, et al. In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses[J]. Optics Letters, 2001, 26(1): 19~21.
    [79] S.-H. Cho, H. Kumagai and K. Midorikawa. Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser[J]. Applied Physics A: Materials Science & Processing, 2003, 77(3-4): 359~362.
    [80] R. Osellame, N. Chiodo, V. Maselli, et al. Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator[J].Optics Express, 2005, 13(2): 612~620.
    [81] T. Nagata, M. Kamata and M. Obara. Optical waveguide fabrication with double pulse femtosecond lasers [J]. Applied Physics Letters, 2005, 86(25): 251103.
    [82] R. Osellame, V. Maselli, N. Chiodo, et al. Fabrication of 3D photonic devices at 1.55μm wavelength by femtosecond Ti:Sapphire oscillator[J]. Electronics Letters, 2005, 41(6): 315~317.
    [83] M. Kamata and M. Obara. Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser[J]. Applied Physics A: Materials Science & Processing, 2004, 78(1): 85~88.
    [84] C. W. Carr, M. D. Feit, A. M. Rubenchik, et al. Radiation produced by femtosecond laser-plasma interaction during dielectric breakdown[J]. Optics Letters, 2005, 30(6): 661~663.
    [85] P. Oberson, B. Gisin, B. Huttner, et al. Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides[J]. Applied Optics, 1998, 37(31): 7268~7272.
    [86] S. D. Stookey. J. Phot. Soc. Am, 1948, 41(399.
    [87] S. D. Stookey. Chemical machining of photosensitive glass[J]. Industrial and Engineering Chemistry, 1953, 45(1): 115.
    [88] See:. http://www.design.caltech.edu/micropropulsion/foturane.html (Last updated: Fri Apr 1 12:28:02 PST 2000 ).
    [89] T. R. Dietrich, W. Ehrfeld, M. Lacher, et al. Fabrication technologies for microsystems utilizing photoetchable glass[J]. Microelectronic Engineering, 1996, 30(4): 497~504.
    [90] W. W. Hansen, S. J. Janson, H. Helvajian, et al. Direct-write UV-laser microfabrication of 3D structures in lithium-aluminosilicate glass[C] //J. J. Dubowski. Laser Applications in Microelectronic and Optoelectronic Manufacturing II. SPIE, 1997, 2991: 104~112.
    [91] P. D. Fuqua, S. J. Janson, W. W. Hansen, et al. Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques[C] //J. J. Dubowski, et al. Laser Applications in Microelectronic and Optoelectronic Manufacturing IV. SPIE, 1999, 3618: 213~220.
    [92] H. Helvajian, P. D. Fuqua, W. W. Hansen, et al. Laser microprocessing for nanosatellite microthruster applications[J]. RIKEN Review, 2001, 32(1): 57~63.
    [93] D. Corio, P. R. Herman, K. P. Chen, et al. Contrasts in writing photonic structures with ultrafast and ultraviolet lasers[C], SPIE, 2002, 4638: 77~84.
    [94] M. Masuda, K. Sugioka, C. Ya, et al. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation[J]. Applied Physics A: Materials Science& Processing, 2003, 76(5): 857~860.
    [95] H. Hongo, K. Sugioka, H. Niino, et al. Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser[J]. Journal of Applied Physics, 2005, 97(6): 063517.
    [96] Y. Kondo, K. Miura, T. Suzuki, et al. Three-dimensional arrays of crystallites within glass by using non-resonant femtosecond pulses[J]. Journal of Non-Crystalline Solids, 1999, 253(143~156.
    [97] Y. Kondo, H. Inouye, S. Fujiwara, et al. Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process[J]. Journal of Applied Physics, 2000, 88(3): 1244~1250.
    [98] B. Fisette and M. Meunier. Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser[J]. Journal of Laser Micro/Nanoengineering, 2006, 1(1): 7~11.
    [99] B. Fisette, F. Busque, J. Y. Degorce, et al. Three-dimensional crystallization inside photosensitive glasses by focused femtosecond laser[J]. Applied Physics Letters, 2006, 88(9): 091104.
    [100] Y. Kondo, Q. Jianrong, T. Mitsuyu, et al. Three-dimensional microdrilling of glass by multiphoton process and chemical etching[J]. Japanese Journal of Applied Physics: Part 2, 1999, 38(10A): L1146~L1148.
    [101] Y. Kondo, T. Suzuki, H. Inouye, et al. Three-Dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength[J]. Japanese Journal of Applied Physics: Part 2, 1998, 37(1A/B): L94~L96.
    [102] C. Ya, K. Sugioka, M. masuda, et al. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser[J]. Optics Letters, 2003, 28(13): 1144~1146.
    [103] C. Ya, K. Sugioka, K. Midorikawa, et al. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing[J]. Optics Letters, 2004, 29(17): 2007~2009.
    [104] M. Masuda, K. Sugioka, Y. Cheng, et al. Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application[J]. Applied Physics A: Materials Science & Processing, 2004, 78(7): 1029~1032
    [105] C. Ya, K. Sugioka, K. midorikawa, et al. Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications[J]. Applied Surface Science, 2005, 248(1-4): 172~176.
    [106] C. Ya, T. H. L., K. Sugioka, et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. AppliedPhysics A: Materials Science & Processing, 2006, 85(1): 11~14.
    [107] L. Yan, K. Itoh, W. Watanabe, et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 2001, 26(23): 1912~1914.
    [108] Y. Bellouard, A. Said, M. Dugan, et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching[J]. Optics Express, 2004, 12(10): 2120~2129.
    [109] Z. Wang, K. Sugioka, Y. Hanada, et al. Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing [J]. Applied Physics A: Materials Science & Processing, 2007, 88(4): 699~704.
    [110] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, et al. An integrated nanoliter DNA analysis device[J]. Science, 1998, 282(5388): 484-487.
    [111] V. Maselli, R. Osellame, G. Cerullo, et al. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching[J]. Applied Physics Letters, 2006, 88(19): 191107.
    [112] R. D. Reyes, D. Iossifidis, P. A. Auroux, et al. Micro total analysis systems. 1. Introduction, theory, and technology [J]. Analytical Chemistry, 2002, 74(12): 2623~2636.
    [113] S. C. Jakeway, A. J. d. Mello and E. L. Russell. Miniaturized total analysis systems for biological analysis[J]. Fresenius' Journal of Analytical Chemistry, 2000, 366(6-7): 525~539.
    [114] K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguide: application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647~649.
    [115] B. S. Kawasaki, K. O. Hill, D. C. Johnson, et al. Narrow-band Bragg reflectors in optical fibers[J]. Optics Letters, 1978, 3(2): 66~68.
    [116] G. Meltz, W. W. Morey and W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(5): 823~825.
    [117] K. O. Hill, B. Malo, F. Bilodeau, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10): 1035~1037.
    [118] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al. Long-period fiber gratings as band-rejection filters[J]. Journal of Lightwave Technology, 1996, 14(1): 58~65.
    [119] V. Bhatia and A. M. Vengsarkar. Optical fiber long-period grating sensors[J]. Optics Letters, 1996, 21(9): 692~694.
    [120] T. Erdogan. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277~1294.
    [121] T. Erdogan. Cladding-mode resonances in short- and long-period fiber grating filters[J]. Journal of Optical Society of America A, 1997, 14(8): 1760~1773.
    [122] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, et al. Long-period fiber-grating-based gain equalizers[J]. Optics Letters, 1996, 21(5): 336~338.
    [123] C. R. Giles. Lightwave application of fiber Bragg gratings[J]. Journal of Lightwave Technology, 1997, 15(8): 1391~1404.
    [124] Y. J. Rao. In-fiber Bragg grating sensors[J]. Meas. Sci. Technol., 1997, 8(4): 355~375.
    [125] S. Li and K. T. Chan. Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10(6): 799~801.
    [126]何谨琳,孙小菡,张明德等.相移长周期光纤光栅的光谱特性及其在光分插复用中的应用[J].光学学报, 2000, 20(8): 1106~1111.
    [127] I. Sohn, J. Kim, N. Lee, et al. Tunable gain-flattening filter using long-period fiber grating based on periodic core deformation. in Design, Fabrication and Characterization of Photonic DevicesⅡ[C] International Conference on APOC 2001. 2001,
    [128] C. L. Zhao, X. F. Yang, C. Lu, et al. Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber[J]. Optics Communications, 2004, 230(4-6): 313~317.
    [129] X. Xu, Y. Dai, X. Chen, et al. Chirped and phase-sampled fiber Bragg grating for tunable DBR fiber laser[J]. Optics Express, 2006, 13(10): 3877~3882.
    [130]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社, 2006:
    [131] S. J. Russell and e. al. Optically-induced creation, transformation and organization of defects and colour-center in optical fibers[C] International Workshop on Photoinduced Self-Organization Effect in Optical Fiber. Proceedings of SPIE, 1991, 15: 47~54.
    [132] D. P. Hand and S. J. Russell. Photoinduced refractive-index changes in germanosilicate fibers[J]. Optics Letters, 1990, 15(2): 102~104.
    [133] D. D. Davis, T. K. Gaylord, E. N. Glytsis, et al. Long-period fibre grating fabrication with focused CO2 laser pulses[J]. Electronic Letters, 1998, 34(3): 302~303.
    [134] I. K. Hwang, S. H. Yun and B. Y. Kim. Long period fiber gratings based on period microbends[J]. Optics Letters, 1999, 24(18): 1263~1265.
    [135] S. Savin, M. J. F. Digonnet, G. S. Kino, et al. Tunable mechanically induced long-period fiber gratings[J]. Optics Letters, 2000, 25(10): 710~712.
    [136] C. Y. Lin and L. A. Wang. Loss-tunable long period fiber grating made from etched corrugation structure[J]. Electronic Letters, 1999, 35(21): 1872~1873.
    [137] M. Bernier, D. Faucher, R. Vallée, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 2007, 32(5): 454~456.
    [138] D. Grobnic, S. J. Mihailov, R. B. Walker, et al. Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19(12): 943~945.
    [139] D. Grobnic, S. J. Mihailov, C. W. Smelser, et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16(11): 2505~2507.
    [140] D. Grobnic, S. J. Mihailov and C. W. Smelser. Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18(24): 2686~2688.
    [141] S. J. Mihailov, C. W. Smelser, P. Lu, et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation[J]. Optics Letters, 2003, 28(12): 995~997.
    [142] E. Wikszak, J. Thomas, J. Burghoff, et al. Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating[J]. Optics Letters, 2006, 31(16): 2390~2392.
    [143] J. C. Knight, T. A. Birks, P. S. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547~1549.
    [144] N. G. R. Broderick, T. M. Monro, P. J. Bennett, et al. Nonlinearity in holey optical fibers: measurement and future opportunities[J]. Optics Letters, 1999, 24(20): 1395~1397.
    [145] J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersion in photonic crystal fiber[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12(7): 807~809.
    [146] T. A. Birks, D. Mogilevtsev, J. C. Knight, et al. Dispersion compensation using single-material fibers[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11(6): 674~676.
    [147] T. A. Birks, J. C. Knight and P. S. J. Russell. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961~963.
    [148] J. C. Knight, T. A. Birks, R. F. Cregan, et al. Large mode area photonic crystal fibre[J]. Electronics Letters, 1998, 34(13): 1347~1348.
    [149] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al. Grating resonances inair–silica microstructured optical fibers[J]. Optics Letters, 1999, 24(21): 1460~1462.
    [150] Y. Zhu, P. Shum, J.-H. Chong, et al. Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber[J]. Optics Letters, 2003, 28(24): 2467~2469.
    [151] G. Humbert, A. Malki, S. Fhvrier, et al. Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres[J]. Electronics Letters, 2003, 39(4): 349~350.
    [152] J. H. Lim, K. S. Lee, J. C. Kim, et al. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure[J]. Optics Letters, 2004, 29(4): 331~333.
    [153] S. J. Mihailov, D. Grobnic, H. Ding, et al. Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers[J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18(17): 1837~1839.
    [154] A. M. Kowalevicz, V. Sharma, E. P. Ippen, et al. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator[J]. Optics Letters, 2005, 30(9): 1060~1062.
    [155]王清月,胡明列,宋有建等.用大模场光子晶体光纤获得高功率飞秒激光[J].中国激光, 2007, 34(12): 1603~1606.
    [156]刘博文,胡明列,宋有建等. 39 fs, 16 W全光子晶体光纤飞秒激光放大系统[J].中国激光, 2008, 35(6): 811~814.
    [157]宋有建,胡明列,刘博文等.高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器[J].物理学报, 2008, (待发表).
    [158] T. Schreiber, F. Roser, O. Schmidt, et al. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity[J]. Optics Express, 2005, 13(19): 7621~7630.
    [159] R. Osellame, S. Taccheo, M. Marangoni, et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. Journal of Optical Society of America B, 2003, 20(7): 1559~1567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700