碳纳米管的结构缺陷与表面修饰的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有许多新颖的物理性质和化学性质,因而是一种有着广泛应用前景的纳米器件材料。然而,实际的碳纳米管上总不可避免地存在着各种结构缺陷。这些缺陷影响了碳纳米管的性质,因而会妨碍碳纳米管将来的应用。因此,提高碳纳米管的质量具有重要的实际意义。本论文基于紧束缚近似和密度泛函理论的计算,系统地研究了碳氢基团对碳纳米管的表面修饰,发现碳氢基团不仅能够修复碳纳米管上的单空位缺陷,还能改变碳纳米管的电子结构。另外,本文还对含有单空位缺陷碳纳米管以及吸附碳氢基团的碳纳米管的振动特性,以及一种新型的低维碳基材料的结构及性质进行了研究。论文共分为五章。
     在第一章中,我们首先回顾了低维碳基材料的发展过程。然后对碳纳米管的结构、主要特性以及碳纳米管在储氢、复合材料、场发射、碳纤维材料方面的应用作了简要的介绍。
     在第二章的开始,我们对目前凝聚态理论计算中常用的经验势方法、紧束缚势方法和第一性原理方法的优劣作了概括性的比较。重点介绍本论文所用到的第一性原理密度泛函理论和经验的紧束缚势方法及其参数化形式。最后,介绍了结构优化算法。
     在论文的第三章,我们系统地研究了碳氢小基团(CH、CH_2、CH_3)对碳纳米管的表面修饰。基于紧束缚势方法的理论计算,我们主要讨论CH、CH_2、CH_3在碳纳米管的单空位缺陷以及无缺陷区域的吸附,发现在较低温度下,吸附在单空位缺陷上的CH、CH_2能修复或改善该缺陷的结构。吸附在无缺陷区域上的CH、CH_2和CH_3室温下能迁移到单空位缺陷附近。其中,CH和CH_2可以修复或改善缺陷结构,但CH_3不能改善碳纳米管上的缺陷结构。我们的结果合理地解释了相关的实验现象。基于密度泛函理论,我们还研究了吸附在碳纳米管上的碳氢基团对碳纳米管的电子结构的影响。
     振动特性是体系的本征属性之一,它与体系的原子化结构密切相关。一般来说,体系结构的变化会在其振动谱上有所表现.因此,振动谱可以充当样品的指纹。论文的第四章主要研究含有单空位缺陷的碳纳米管以及吸附了碳氢基团的碳纳米管的振动性质。我们发现了碳纳米管上单空位缺陷的两种特征振动模式,它们可以看成是单空位缺陷的的指纹。另外,我们还得到了吸附在碳纳米管外壁上的碳氢基团的主要振动特征.根据不同体系的C-H拉伸振动的个数和频率的不同,可以对吸附的碳氢基团进行判别。
     在第五章中,基于实验上发现的一种碳基新材料——碳纳米树芽(它是由碳富勒烯在碳纳米管外壁上共价结合而形成),我们研究了C60和不同尺寸的扶手椅型碳纳米管所构成的碳纳树芽的结构形貌,并讨论了它们的电子结构、光学性质和振动性质。
Carbon nanotubes(CNTs) are promising materials for nanodevices,due to their novel physical and chemical properties.However,a realistic carbon nanotube doubtlessly contains various structural defects which may influence the properties of the tube significantly.Therefore,the defects in the tubes may hinder potential application of CNTs.Thus improving the quality of a CNT is of importance.In this dissertation,based on the tight-binding(TB) potential and density functional theory (DFT) calculations,we systematically study surface decoration of CNTs with the hydrocarbon radicals,and find that the radicals can not only heal the topologic structure of a single vacancy in a CNT,but also modulate the electronic structures of the tube.Meanwhile,we also study the vibrational properties of a carbon nanotube either with a single vacancy or with adsorption of a hydrocarbon radical.In addition, the structures and some typical properties of a novel hybrid carbon material,nanobud, are investigated in this dissertation.This dissertation consists of five chapters.
     In the first chapter,we review the progress of low-dimentional carbon based materials.Then we introduce the structures of the CNTs and give a brief description on their main properties and their potential applications,such as hydrogen storage, carbon compound materials,fields emission,and fibre materials.
     At the beginning of the second chapter,we compare classical potential computational method,tight banding potential method and the first principle DFT computational method with each other,which are commonly used to calculate the systems of condensed matter.Then DFT theory and TB potential method,as well as the parameterized forms for the latter are also illustrated in details.At the end of this chapter,we introduce the algorithms for structural optimization in brief.
     Systematical study on surface decoration of CNTs with the hydrocarbon radicals (CH,CH_2 and CH_3) is presented in chapter 3.Based on the TB potential calcultation, we investigate the adsorption of CH,CH_2,and CH_3 either on a single vacancy or on the defect-free region,and find that the adsorbed CH and CH_2 on the single vacancy can heal or improve the local defective structure at low temperatures.On the other hand,the adsorbed radicals on the defect-free region can diffuse to a single vacancy in the tube at room temperature,and either CH or CH_2 can improve the local structure of this defect,while CH_3 can not anyway.Our results explain well the observation of the related experiment.Moreover,based on the DFT calculation,we also investigate the influence of the adsorbed radicals on the electronic structure of the system.
     Vibration is the fundmental property of a system,which is closely coupled with the atomic structure.Essentially,the changes of the structure must be reflected on the vibrational spectrum of the sample.So vibrational spectrum can be regarded as the fingerprint of a sample.In chapter 4,we mainly study the vibrational properties of the carbon nanotubes with the single vacancies and that with adsorption of a hydrocarbon radical.Our calculations reveal that two kinds of characteristic vibrational modes for a single vacancy can act as the indicators of this defect.In addition,we find the main vibrational features for the adsorbed radicals on a CNT.According to the different number and frequencies of stretching modes for C-H,the adsorbed radicals can be identified from each other.
     A novel hybrid carbon material,nanobud,was discovered in experiment,in which fullerenes are covalently bonded to the outer surface of the single walled carbon nanotubes.In chapter 5,we firstly study the structures for nanobuds,in which C60 covalently connects to a armchair carbon nanotube.Moreover,the electronic, optical and vibrational properties of these nanobuds are discussed in this chapter.
引文
[1]R.Saito,G.Dresselhaus,and M.S.Dresselhaus,Physical properties of carbon nanotubes,Imperial College,Press(2003).
    [2]H.W.Kroto,etal.Nature 318,162(1985).
    [3]R.F.Curl and R.E.Smalley,Science,242,1017(1988).
    [4]R.J.Wragg,Nature(Landon) 348,623(1990).
    [5]V.P.David,X.Lin,H.Zhang,et al.J.Mater.Res.7,2440(1992).
    [6]M.Tomita,T.Hayashi,P.Gaskell,et al,Appl.Phys.Lett.61,1171(1992).
    [7]E.Osawa,M.Yoshida,and M.Fujita,MRS Bull.19,33(1994).
    [8]H.W.Kroto,Nature 329,529(1987).
    [9]Y.Chai,et al.J.Phys.Chem.,95,7564(1991).
    [10]T.Weiske,D.K.Bohme,J.Hrusak,et al.Angew.Chem.,Int.Ed.Engl.30,884(1991).
    [11]K.Komatsu,M.Murata,and Y.Murata,Science,307,238(2005).
    [12]J.H.Weaver,et al.Chem.Phys.Lett.,190,460(1990).
    [13]O.Gunnarsson,Rev.Mod.Phys.69,575(1997).
    [14]A.F.Hebard,M.J.Rosseinsky,R.C.Haddon,D.W.Murphy,S.H.Glarum,T.T.M.Palstra,A.P.Ramirez,and A.R.Kortan,Nature(London) 350,600(1991).
    [15]M.G.Mitch,S.J.Chase,and J.S.Lannin,Phys.Rev.Lett.68,883(1992).
    [16]M.G.Mitch and J.S.Lannin,J.Phys.Chem.Solids 54,1801(1993).
    [17]O.Zhou,G.B.M.Vaughan,Q.Zhu,J.E.Fischer,P.A.Heiney,N.Coustel,J.P.McCauley,and A.B.Smith III,Science 255,833(1992).
    [18]J.Mizuki,M.Takai,H.Takahashi,N.M(?)ri,T.Tanigaki,I.Hirosawa,and K.
    [72]P.Chen,X.Xu,J.Lin,et al.Science,285,91(1999).
    [73]A.G.Lipson,B.F.Lyakhov,E.I.Saunin,and A.Yu Tsivadze,Phys.Rev.B.77,081405(2008).
    [74]E.Durgun,S.Ciraci,and T.Yildirm,Phys.Rev.B.,77,085405(2008).
    [75]P.M.Ajayan,Nature,361 333(1993).
    [76]A.G.Rinzler,Science,269,1550(1995).
    [77]Pilip Ball著,徐俊培译,世界科学,(3):17(1997).
    [78]朱绍文、贾志杰、李钟泽,碳纳米管及其应用前景,科技导报,12期,2(1999).
    [79]Y.J.Li,Z.Sun,S.P.Lau,G.Y.Chen,and B.K.Tay,Appl.Phys.Lett.79,1670(2001).
    [80]顾书英、吴琪琳,同济大学学报,第30卷第2期,213(2002).
    [1]唐景昌,徐伦彪,固体理论导论,浙江大学出版社,(1997).
    [2]J.Kohanoff,and N.I.Gidopoulos,Density Functional Theory:Basics,New trends and Applications,John Wiley & Sons,Ltd,Chichester,(2003).
    [3]D.R.Hartree,Proc.Cambridge.Philos,Soc,24,111(1928).
    [4]V.Fock,Z.Phys.61,126(1930).
    [5]J.C.Slater,Phys.Rev.35(1930).
    [6]R.McWeeny.Methods of Molecular Quantum Mechanics.Academic Press,London,(1989).
    [7]H.Thomas,Proc.Camb.Phil.Soc.23,542(1927).
    [8]E.Fermi,Accad.Naz.Lincei,7,602(1927).
    [9]P.A.M.Dirac,Rend.Phil.Roy.Soc.26,376(1930)
    [10]P.Hohenberg and W.Kohn.Phys.Rev.136,B864(1964).
    [11]W.Kohn and L.J.Sham.Phys.Rev.140,A1133(1965).
    [12]W.Kohn,Rev.Mod.Phys.71,1253(1999).
    [13]J.P.Perdew,and K.Burke,Int.J.Quant.Chem.57,767(1996).
    [14]J.P.Perdew,and Y.Wang,Phys.Rev.B 45,13244(1992).
    [15]J.P.Perdew,and Y.Wang,Phys.Rev.B 48,14944(1993).
    [16]J.P.Perdew,S.Burke,and M.Ernzerhof,Phys.Rev.Lett.77,3865(1996).
    [17]D.Sanehez-Portal,P.Ordejon,E.Artacho,J.M.Soler,Int.J.Quantum Chem,65,453(1997).
    [18]N.Troullier,J.L.Martins,Phys.Rev.B.,43,1993(1991).
    [19]J.M.Soler,E.Artacho,J.D.Gale,A.Garcia,J.Junquera,P.Ordejon,D.Sanchez-Portal,J.Phys.:Condens.Matter 14,2745(2002),and reference therein.
    [20]李正中,固体理论,高等教育出版社,1985。
    [21]阎守胜,固体物理基础,北京大学出版社,2000。
    [22]C.H.Xu,C.Z.Wang,C.T.Chan,and K.M.Ho,J.Phys.Condens.Matter 4,6047(1992).
    [23]M.S.Tang,C.Z.Wang,C.T.Chan,and K.M.Ho,Phys.Rev.B.,53,977(1996).
    [24]B.C.Pan,Phys.Rev.B.,64,155408(2001).
    [25]陆爱江,中国科技大学硕士学位论文,(2004)。
    [26]L.Verlet,Phys.Rev.159,98(1967).
    [1]Miroslav Hodak,and L.A.Girifalco,Phys.Rev.B 68,085404(2003).
    [2]D.Golberg,F.F.Xu,Y.Bando,Appl.Phys.A 76,479(2003).
    [3]F.F.Xu,Y.Bando,D.Golberg,M.Hasegawa,M.Mitome,Acta Mater.52,601(2004).
    [4]D.Golberg,Y.Bando,Y.B.Li,J.Q.Hu,Y.C.Zhu,Y.H.Gao,C.C.Tang,Electronic Properties of Synthetic Nanostructures,edited by H.Kuzmany et al.,pp.229(2004).
    [5]Y.B.Li,Y.Bando,D.Golberg,and Z.W.Liu,Appl.Phys.Lett.83,999(2003).
    [6]Zongwen Liu,Yoshio Bando,Masanori Mitome,and Jinhua Zhan,Phys.Rev.Lett.93,095504(2004).
    [7]A.Wadhawan,R.E.Stallcup II,K.F.Stephens II,and J.M.Perez,L.A.Akwani,Appl.Phys.Lett.79,1867(2001).
    [8]Anastasios L.Skoulidus,David S.Sholl,J.Karl Johnson,J.Chem.Phys.124,054708(2006).
    [9]V.P.Sokhan,D.Nicholson,and Quirke,J.Chem.Phys.120,3855(2004).
    [10]M.W.Zhao,Y.Y.Xiao,and L.M.Mei,Phys.Rev.B.71,165413(2005).
    [11]Carolina Garan,Antonio Frontera,et al.Chem.Phys.Lett.374,548(2003).
    [12]G.Chen,and Y.Kawazoe,Phys.Rev.B.73,125410(2006).
    [13]S.Lee,H.J.Kim,J.E.Fischer,A.Thess,R.E.Smalley,Nature(London) 388,
    [1]H.Dai,J.H.Hafner,A.G.Rinzler,D.T.Colbert,and R.E.Smalley,Nature (London) 384,147(1996).
    [2]P.Kim and C.M.Lieber,Science 286,2148(1999).
    [3]P.Pancharal,Z.L.,Wang,D.Ugarte,and W.de Heer,Science 283,1513(1999).
    [4]S.J.Tans,R.M.Verschueren,and C.Dekker,Nature(London) 393,49(1999).
    [5]R.S.Friedman,N.C.McAlpine,D.S.Ricketts,D.Ham,and C.M.Lieber,Nature(London) 434,1085(2005).
    [6]M.S.Dresselhaus and P.C.Eklund,Adv.Phys.49,705(2000).
    [7]A.M.Rao,E.Richter,S.Bandow,B.Chase,P.C.Eklund,K.W.Williams,M.Menon,K.R.Subbaswamy,A.Thess,R.E.Smalley,G.Dresselhaus,and M.S.Dresselhaus,Science 275,187(1997)
    [8]A.Kasuya,Y.Sasaki,Y.Saito,K.Tohji,and Y.Nishina,Phys.Rev.Lett.78,4434
    [1]M.S.Dresselhaus,G.Dresselhaus,and P.C.Eklund,Science of Fullerenes and Carbon Nanotubes(Academic Press,San Diego,1996).
    [2]H.W.Kroto,et al.Nature 318,162(1985).
    [3]S.Iijima.Nature(London) 354,56(1991).
    [4]B.W.Smith,M.Monthioux,and D.E.Luzzi,Nature 369,323(1998).
    [5]K.Hirahara,K.Suenaga,et al.Phys.Rev.Lett.85,5384(2000).
    [6]B.W.Smith,and D.E.Luzzi,Chem.Phys.Lett.321,169(2000).
    [7]S.Okada,S.Saita,A.Oshiyama,Phys.Rev.Lett.86,3835(2001).
    [8]S.Bandow,M.Takizawa,K.Hirahara,M.Yudasaka,S.Iijima,Chem.Phys.Lett.337,48(2001).
    [9]D.J.Hornbaker,S.J.Kahng,et al.Science 295,828(2002).
    [10]K.Y.Urita,et al.Nano Lett.4,2451(2004).
    [11]Albert G.Nasibulin,Peter V.Pikhitsa,Hua Jiang,et al.Nature 2,156(2007).
    [12]Tiezhu Meng,Chong-Yu Wang,and Shan-Ying Wang,Phys.Rev.B 77,033415(2008).
    [13]D.Sanchez-Portzl,P.Ordejon,E.Artacho,and J.M Soler,Int.J.Quantum Chem.65,453(1997);N.Troullier and J.L.Martins,Phys.Rev.B 43,1993(1991).
    [14]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev.Lett.77,3865(1996).
    [15]J.M.Soler,E.Artacho,J.D.Gale,A.Garcia,J.Junquera,P.Ordejon,and D.Sanchez-Portal,J.Phys.:Condens.Matter 14,2745(2002),and references therein.
    [16]Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 13,5188(1976).
    [17]方俊鑫,陆栋,固体物理学,上海科技出版社(1983).
    [18]H.Ehrenreich and H.R.Philips,Phys.Rev.B 128,1622(1962).
    [19]L.C.Lew Yan Voon and L.R.Ram-Mohan,Phys.Rev.B 47,15500(1993).
    [20]Z.Q Yang,and Z.Z.Xu.Phys.Rev.B 54 17577(1996).
    [21]S.Z.Karazhanov,P.Ravindran,A.Kjekshus,H.Fjellvag,and B.G.Sevnsson,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700