硫铝酸盐水泥基高性能混凝土的结构—性能及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着混凝土科学技术的发展和进步,混凝土建筑物的使用范围越来越广,在许多环境恶劣的地方需要建筑混凝土工程,就必须要求所使用的混凝土具有优异的耐久性能,以确保建筑物的工作年限。根据目前普通硅酸盐水泥基混凝土的发展和应用情况,结合许多特殊位置建筑物的性能劣化原因,提出了在工作环境严酷的地方用硫铝酸盐水泥基高性能混凝土(HPC)代替普通硅酸盐水泥基混凝土的发展思路。
     本文旨在利用硫铝酸盐水泥(SAC)的快硬、早强、高强以及抗硫酸盐侵蚀性能好等性能优势,借鉴普通硅酸盐水泥基HPC的应用技术,将硫铝酸盐水泥基混凝土生产技术高性能化。
     本文根据SAC的性能特点,首先对其性能优化研究,以克服存在的性能缺陷。研究了能有效控制SAC快凝的缓凝剂H;能提高SAC的抗压强度,又能和SAC相容的高效减水剂AS;根据超细矿渣和粉煤灰的性能特点,利用性能优势互补原理进行了复合,通过复合掺和料代替20%的SAC,以改善SAC水化放热速度太快的问题;利用增粘剂改善高效减水剂引起的离析、板结和泌水问题。
     研究了水灰比、复合掺和料、引气剂等因素对硫铝酸盐水泥基HPC力学性能的影响,并与普通硅酸盐水泥基HPC进行了性能对比,以证实硫铝酸盐水泥基HPC具有较高的早期强度和稳定增长的后期强度。
     研究了硫铝酸盐水泥基HPC的耐久性能。验证了掺加掺和料的SAC在不同水灰比条件下的抗硫酸盐侵蚀性能:研究了水灰比、复合掺和料、引气剂对硫铝酸盐水泥基HPC抗渗性能、抗冻性能和抗碳化性能的影响;同时与普通硅酸盐水泥基HPC进行了相同条件的性能比较;建立了硫铝酸盐水泥基HPC的碳化速度和保护层的寿命关系预测模型。
     利用SEM观察了硫铝酸盐水泥基HPC的结构形貌和水泥水化产物的结构特征,比较了水灰比和复合掺和料、引气剂对硫铝酸盐水泥基HPC结构及界面的影响,分析了碳化前后硫铝酸盐水泥水化产物的结构特征变化情况,根据能谱结果证明了碳化能引起AFt分解。利用XRD分析了硫铝酸盐水泥的水化产物以及碳化后水化产物的变化情况,证明AFt的特征峰在碳化后消失。利用MIP测定了硫铝酸盐水泥基HPC在加入掺和料和引气剂后的孔隙率和孔结构分布变化情况,分析了引气剂提高混凝土抗冻性能的机理。
     研究了烟台—威海高速公路金山港大桥的病害原理及修补方案,制定了含钡硫铝酸盐水泥水下不分散混凝土和HPC的应用方案,成功将受到海水侵蚀损坏的大桥修补。
     以上研究结果表明:利用高效减水剂AS和缓凝剂H可以有效控制硫铝酸盐水泥的水灰比和凝结时间;水灰比降低,硫铝酸盐水泥基HPC的强度明显提高,控制水灰比0.38以下就具有很好的力学性能;掺加20%掺和料的硫铝酸盐水泥有很好的抗硫酸盐和镁盐侵蚀的能力,加入掺和料可以提高混凝土的抗碳化性能,抗冻性能和抗渗性能下降:引气剂可以大幅提高混凝土的抗冻性能,降低抗渗性能和抗碳化性能。
     根据以上研究结果,可以科学配制性能不同的硫铝酸盐水泥基HPC,保证不同性能需求的工程安全。
     总之,以科学的理论和先进的技术为基础,结合材料的性能特点和优势,从混凝土材料性能劣化的原因着手,通过优化内因的作用改善材料的结构和性能,抵御外因的侵蚀和破坏,科学合理地应用硫铝酸盐水泥基HPC,以期为解决目前的全球性混凝土耐久性危机做出贡献。
With development of concrete science and technology, utilization scopes of concrete buildings become increasingly wide. Building concrete engineering are required in many regions with bad environment conditions, thus, concrete used in these regions should have superior durability to ensure the working life of the buildings. Based on the development and utilization of Portland cement-based concrete, combining with deterioration reason of the concrete performances in many special locations, a developing consideration using sulfoaluminate cement-based high performance concrete(HPC) to replace Portland cement-based concrete is advanced to achieve the goal of adjusting measures to local conditions and scientific development.
     Sulfoaluminate cement (SAC) has many superior properties such as rapid hardening, early strength, high strength and resistance of sulphate and chlorine erosion. The purpose of this paper is to improve sulfoaluminate cement-based HPC production technology by learning from the application technology of Portland cement-based HPC.
     First, performance optimization of SAC was investigated based on the advantages of SAC, so as to overcome the existed performance deficiency. Retarder H which could effectively control fast-setting of SAC and high-effective water reducing agent AS that could be compatible with SAC and improve compressive strength of SAC were studied respectively. Superfine slag and fly ash were compounded taking advantage of each of their performance merits. 20% compounded blending was used to replace SAC to solve problems of SAC fast hydration exothermic velocity. Besides, adhesion agent was also used to solve problems of separation, crustification and bleeding.
     Influences of water cement ratio, compounded mixture, air-entraining agent etc on mechanical properties of sulfoaluminate cement-based HPC were studied. Comparing with performance of Portland cement-based HPC, sulfoaluminate cement-based HPC was proved to have characteristic of higher early strength and steady later strength increase.
     The durability of sulfoaluminate cement-based HPC was studied. The sulphate resistance characteristic of sulfoaluminate cement-based HPC with compounded blending was validated under different cement water ratio. The influences of water cement ratio, compounded blending and air-entraining agent on impermeability, frost resistance and carbonation resistance of sulfoaluminate cement-based HPC were also studied, meanwhile by comparision with Portland cement-based HPC under the same conditions and, carbonation and life prediction of protected layer models were also established.
     Structural appearance and character of sulfoaluminate cement-based HPC were observed using SEM. The influences of water cement ratio, compounded lending and air-entraining agent on concrete structure and interface were compared, and the structural character changes of sulfoaluminate cement hydration products before and after carbonation were analyzed. The energy spectra analysis results proved that carbonation could lead to AFt decomposition. The changes of sulfoaluminate cement hydration and carbonation products were also analyzed using XRD. The results proved the disappearance of AFt characteristic peaks after carbonation. Porosity variation and pore structure distribution of sulfoaluminate cement-based HPC after adding blending and air-entraining agent were measured using MIP, meanwhile the mechanism of air-entraining agent on improving frost resistance of concrete was analyzed.
     The disease principle and repairing program of Jinshagang Bridge in Yantai-Weihai highway were studied. Application schemes of sulfoaluminate cement underwater non-dispersed concrete and sulfoaluminate cement-based HPC were established, which was successfully applied to repair the bridge corroded by sea water.
     Analysis above showed that water cement ratio and setting time of sulfoaluminate cement could be effectively controlled by using high-effective water reducing agent AS and retarder H. The strength of sulfoaluminate cement-based HPC could be improved remarkably when decreasing water cement ratio, and superior mechanical properties could also be obtained by controlling water cement ratio less than 0.38. Sulfoaluminate cement by adding 20% blending has good ability to resist erosion from sulphate and magnesium salt. The additive of blending could improve performance of concrete to resist carbonation, while decrease the frost resistance and impermeability of concrete. The frost resistance of concrete could be improved by adding air-entraining agent, however, the impermeability and carbonation resistance would also be decreased.
     Based on above results, different sulfoaluminate cement-based HPC could be fabricated through scientific mixing ratio to promise the engineering safety for different performance requirements.
     In all, based on scientific theory and advanced technology, combining with performance merit of materials, this paper, from the deterioration reason of concrete materials, combining with internal cause effect of optimization, aims to improve structure and performance of materials as well as erosion resistance and destruction from external cause. Besides, this paper also attempts to contribute on solving present durability crisis of concrete by using sulfoaluminate cement-based HPC scientifically and reasonably.
引文
[1]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [2]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.6-10.
    [3]姚燕.新型高性能混凝土耐久性的研究与应用[M].北京:中国建材工业出版社,2004,554-567.
    [4]黄士元,蒋家奋,杨南如.近代混凝土技术[M].西安:陕西科学技术出版社,1998.183-186.
    [5]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004.1-8.
    [6]唐明述.提高重大混凝土工程的耐久性[J].中国化工,1996(3):34-37.
    [7]张重禄,肖秋明 编译.水泥混凝土路面快速修补技术展望[J].国外公路,2000,(1):13-15.
    [8]刘崇熙,汪在芹.论坝工混凝土耐久寿命衰变规律.见:第二届高性能混凝土学术研讨会论文集.潍坊:1999.13-24.
    [9]李金玉,陈改新.我国水工混凝土建筑物耐久性及病害处理调查报告.见:姚燕.新型高性能混凝土耐久性的研究与应用[M].北京:中国建材工业出版社,2004.568-578.
    [10]莫祥银,许仲梓,唐明述.国内外混凝土碱-集料反应研究综述.见:姚燕.新型高性能混凝土耐久性的研究与应用[M].北京:中国建材工业出版社,2004.8-13.
    [11]唐明述.碱-集料反应破坏的典型事例[J].中国建材,2000,5:57-60.
    [12]黄美德.采用JK-24型快速修补剂修补混凝土路面[J].中南公路工程,1998,(4):13-15.
    [13]张勇.铁路混凝土的现状、发展及思考.见:超高耐久性混凝土结构技术国际研讨会.武汉:2007.58-64.
    [14]胡慧文.关于钢筋混凝土结构耐久性的一些探讨[J].科技资讯,2008,(29):63-64.
    [15]胡曙光,钟珞,吕林女.混凝土安全性专家系统[M].北京:科学出版社,2007.1-6.
    [16]吴中伟.高性能混凝土(HPC):的发展趋势与问题[J].建筑技术,1998,(1):8-13.
    [17]冯乃谦,牛全林,李崇智.混凝土耐久性病害综合症及其对策.见:超高耐久性混凝土结构技术国际研讨会.武汉:2007.1-13.
    [18]吴中伟,廉慧珍.水泥基复合材料科学研究中的辩证思维[J].混凝土,2000,(4):1-6.
    [19]吴中伟.绿色高性能混凝土-混凝土的发展方向[J]..混凝土与水泥制品,1998,(1):3-6.
    [20]Karlynska M,Early age properties of high-strength/high-performance concrete.Cement & Concrete Composites[J].2002,2):253-361.
    [21]Miao C W,Mu R.Effect of sulfate solution on the frost resistance of concrete with and without steel fiber reinforcement[J].Cement and Concrete Research.2002,32:31-34.
    [22]Nkinamubanzi P C,Aiticn P C.Cement and superplasticizer combinations:Compatibility and robustness[J],Cement,Concrete and Aggregates,2004,26(2):102-109.
    [23]Massazza F,Daimon M,Chemistry of hydration of cements and cementitious systems[C].In Proceedings of 9th IntemationaI Congress on the Chemistry of Cement,New Delhi,1992,1:275-283.
    [24]Lee S T,Moon H Y,Swamy R N.Sulfate attack and role of silica fume in resisting strength loss[J].Cement and Concrete Composities.2005,27:65-76.
    [25]Prince W,Espagne M,Aitcin P C.Ettringite formation:A crucial step in cement superplastizer compatility[J].Cement and Concrete Research.2003,33(5):635-641.
    [26]冯乃谦,叶浩文.高强度高性能混凝土研发的技术特点与对策.见:超高层混凝土泵送与超高性能混凝土技术的研究与应用国际研讨会论文集.广州:2008.29-36.
    [27]刁江京.硫铝酸盐水泥的生产与应用[M].北京:中国建材工业出版社,2006.68-110.
    [28]胡曙光.特种水泥[M].武汉:武汉工业大学出版社,1999.24-22.
    [29]王燕谋,苏幕珍,张量.硫铝酸盐水泥[M].北京:北京工业大学出版社,1999 149-253
    [30]Glasser F P,Zhang L,et al.High-performance cement matrices based on calcium sulfoaluminate-belite compositions[J].Cement and Concrete Research.2001,31(12):1881-1886.
    [31]Feng X,Wang H.The influence of gypsum on some properties of sulphoaluminate high early strength cement[J],J.Chin.Ceram.Soc.1984,(12):166-178.
    [32]Zhang L,Glasser A.New concretes based on calcium sulfoaluminate cement.In:Dyer R K,Telford T.(Eds.),Proceedings of the Internations Conference on Modern Concrete Materials:Binders,Additions and Adimixers,1999:261-274.
    [33]Odler I.Cements containing calcium sulfoaluminate.In:Bentur A,Mndess S.(Eds.),Special Inorganic cements,E and FN Spon,London and New York,2000:69-87.
    [34]Pera J,Ambroise J.New application of calcium sulfoaluminate cement[J].Cement and Concrete Research,2004,34(4):671-676.
    [35]苏幕珍.硫铝酸盐水泥耐久性的分析[J].中国建材报[N],2004-9-2.
    [36]Cheng X,Chang J,Lu L C.Study of Ba-bearing calcium sulphoaluminate minerals and cement[J].Cement and Concrete Research,30(2000):77-81.
    [37]Chang J.Study on new type Ba-bearing cement,Master's degree thesis,Wuhan Uni.Techn.Wuhan,China,1998.
    [38]Cheng X,Chang J,Lu L C.Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum[J].Cement and Concrete Research,2004,(34):2009-2013.
    [39]Chang J,Cheng X,Liu F T.Influence of fluorite on the Ba-bearing sulphoaluminate cement[J].Cement and Concrete Research,2001,31(3):213-216.
    [40]常钧,芦令超,程新等.含钡硫铝酸盐水泥混凝土界面结构与性能研究.硅酸盐通报[J],2004(5):45-47.
    [41]杨克锐,张彩文.延缓硫铝酸盐水泥凝结的研究.硅酸盐学报[J],2002(2):155-160.
    [42]许仲梓,周伟玲,邓敏.硫铝酸盐水泥体系高温稳定性研究,硅酸盐学报[J],2001,29(2):104-108.
    [43]徐莉,王新友等.超早强硫铝酸盐水泥流动性和耐磨性的研究[J].广东建材,2001(1):54-56.
    [44]杨荣俊,李彦昌等.钢纤维快硬硫铝酸盐水泥混凝土性能研究及在桥梁伸缩缝改造工程中的应用[J].混凝土,2003(11):54-56.
    [45]李学新,硫铝酸盐水泥混凝土用于抢修铁路桥墩[J].铁道建筑1997(3):21-23.
    [46]鲁春江,硫铝酸盐水泥在冬期施工中的应用[J].山西建材,2003(5):23-25.
    [47]李清海,湿热养护硫铝酸盐水泥混凝土的强度及微结构[J].建筑材料学报,2004(1):28-31.
    [48]张巨松,周立新.掺矿渣的硫铝酸盐水泥混凝土的试验研究[J].混凝土,2003(4):40-41.
    [49]Ramachandran V S.Interaction of chemical admixtures in the cement-water syetem[J].Cement,1986,(83):671-676.
    [50]Yamada K,Ogawa S,Hanehara S.Controlling of the adsorption and dispersing force of polyccarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase[J].Cement and Concrete Research,2001,31(3):375-383.
    [51]Dutta D K.Interaction of superplasticizer with C_3A and cement clinker in presence or absence of gypsum or hymihydrate or anhydrite[J],Indian Cement Review,2005,(5):17-22.
    [52]李清富,赵国潘,王恒栋.混凝土结构的耐久性预评估[J].混凝土,1995,(1):22-24.
    [53]贺传卿.硫酸盐对水泥混凝土的侵蚀及防治措施[J].混凝土,2003,(3):56-57.
    [54]覃维祖.水泥-高效减水剂相容性及其检测研究[J].混凝土,1996,(2):11-20.
    [55]王宏伟,王善拨.水泥与减水剂相容性问题雏议[J].混凝土与水泥制品,2001,(2):9-11.
    [56]孙振平,蒋正武.水泥与减水剂相容性问题的探讨[J].广东建材,1999,(10):10-14.
    [57]覃维祖.外加剂对混凝土技术发展的影响与存在问题[J].施工技术,2003,(24):7-10.
    [58]Teoreanu I,Muntean M.Expensive sulphate aluminate cement[J].Cement and Concrete Research.1983,13(5):711-720.
    [59]王善拔.关于水泥与超塑化剂相适应性的几个问题[J].水泥.2000,(1):7-12.
    [60]吴宗道.钙矾石的显微结构[J].中国建材科技,1995.8,4(4):9-15.
    [61]薛君仠,吴中伟.膨胀和自应力水泥及其应用[M].北京:中国建筑工业出版社,1985:1-14.
    [62]覃维祖.混凝土组分的复合与相容性[J].1998,(5):1-4.
    [63]杨芳.高性能外加剂和水泥相容性的试验研究[J],温州大学学报,2003,(1):88-92.
    [64]陈建奎.混凝土外加剂原理与应用[M].北京:中国计划出版社,1997:43-55
    [65]Nkinamubanal P C,Kim B G,Aitcin P C,Some key cement factors that control the compatibility between naphthalene-Base superplasticizers and ordinary Portland cement[C].Pro(?)eedings of 6th CANMET/ACI Intemational Conference on Superplasticizers and Other Chemical Admixture in Concrete.2000,19-26.
    [66]吴笑梅,文梓云,樊粤明.Marsh简法量化评价水泥与外加剂流变学相容性的探讨[C].九届全国水泥和混凝土化学及应用技术年会论文汇编,华南理工大学出版社,2005:648-655.
    [67]吴笑梅,樊粤明,文梓云.水泥与外加剂相容性之流变学研究[C].九届全国水泥和混凝土化学及应用技术年会论文汇编,华南理工大学出版社,2005:360-368.
    [68]梁松,杨医博等.潮汐环境下大掺量矿渣微粉抗海水腐蚀混凝土的野外实验[J].华南理工大学学报,2005,(7):23-25
    [69]施惠生,王琼.掺复合胶凝材料混凝土的抗氯离子侵蚀性能[J].同济大学学报,2004,(4):17-20
    [70]覃立香,胡曙光,马保国.粉煤灰对混凝土抗硫酸盐侵蚀性能的影响[J].混凝土与水泥制品,1997(5):15-20
    [71]唐光强,代勤,楚建疆.硫铝酸盐水泥的性能及在新疆应用的展望[J].四川水泥,2003,(3):34-37
    [72]Wang A Q,The theoretic analysis of the influence of the particle size distribution of cement system on the property of cement[J].Cement and Concrete Research,1999,(24):1721-1726.
    [73]Hanehaara S,Yamada K.Interaction between Cement and Chemical admixture from the point of Cement Hydration,adsorption behavior of admixture and paste rheology[J].Cement and Concrete Research,1999(29):1159-1165.
    [74]胡志清,寇海平,郑祚建,施志勇.高效减水剂与高标号水泥之间的适应性探讨[J].国外桥梁,2001(2):72-73.
    [75]袁庆莲,周士琼,陈瑜.水泥-粉煤灰-高效减本剂的相容性研究[J].广东建材,1999,13(3):20-27.
    [76]周锡玲,谢友均,张旭.低水胶比下矿物掺合料对水泥与减水剂相容性的影响[J].混凝土,2003,(9):37-39.
    [77]陈建兵,董杰,康惠荣.水泥及粉煤灰与塑化剂的适应性研究水泥[J].2004,(1):1-3.
    [78]Xi X G,Xu Z Z,Chen J H.The present and future development of environmentally friendly concrete[J].Concrete,China Building Science Core Periodical,2002,(8):6-8.
    [79]Khayat K H,Sariccoric M.Effect on cement paste of Welan with super plastic sizers[J].Proceedings of 6th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixture in Concrete.2000,1367-1371.
    [80]李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究[J].混凝土与水泥制品,200,4(2):6-8.
    [81]贺传卿.硫酸盐对水泥混凝土的侵蚀及防治措施[J].混凝土,2003,(3):56-57.
    [82]Nawa T,Efhect of alkali sulfate on the rheological behavior of cement paste containing superplasticizer[C].In proceedings of 3 CANMENT/ACT International Conference on Superplasticiz- ers and Other Chemical Admixture in Concrete.1989:93-101.
    [83]Bakharev T,Sanjayan J G,Cheng Y B.Sulfate attack on alkali-activated slag concrete[J].Cement and Concrete Research.2002(32):211-216.
    [84]Yamada K.,Ogawa S,Hanehara S.Controlling of the adsorption and dispersing force of polyccarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase[J].Cement and Concrete Research,2001,31(3):375-383.
    [85]曹芳,马保国等.混凝土的渗透性能及测试方法的对比分析[J].混凝土,2002,(10):15-17.
    [86]赵铁军,李淑进.混凝土的强度与渗透性[J].建筑技术,2002,(1):16-18.
    [87]陈薇凡.盐泽地区混凝土建筑物的耐久性问题[C].混凝土结构耐久性及耐久性设计会议文集,北京:2002.128-136
    [88]秦鸿根,潘钢华,孙伟等.掺粉煤灰高性能混凝土耐久性研究[J].混凝土与水泥制品,2005,(5):11-13.
    [89]冯乃谦.高性能混凝土的发展与应用[J].施工技术,2003,32(4):1-6.
    [90]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):4-7.
    [91]李清富,赵国潘,王恒栋.混凝土结构的耐久性预评估[J].混凝土,1995,(1):22-24.
    [92]田倩,孙伟.高性能水泥基复合材料抗冻性能的研究[J].混凝土与水泥制品,1997.(1):12-15
    [93]赵霄龙,卫军,黄玉盈.混凝土冻融耐久性劣化与孔结构变化的关系[J].武汉理工大学学报,2002,24(12):14-17.
    [94]姜双伦,姬立德,吴会强.混凝土的冻融破坏与外加剂[J].混凝土,2001,(2):54-55.
    [95]赵霄龙,卫军,巴恒静.高性能混凝土在盐溶液中的抗冻性[J].建筑材料学报,2004,7(1):85-88.
    [96]王春芬,牛荻涛.钢筋混凝土铁路桥梁碳化寿命预测[J].四川建筑科学研究,2006,32(3):61-64.
    [97]张令茂.表面覆盖对混凝土碳化的影响[J].混凝土及水泥制品,1989,(4):18-19.
    [98]赵明辉.浅析混凝上碳化机理及其碳化因素[J].吉林水利,2004,(8):17-18.
    [99]朱茂根,田芝龙,李建民.混凝土碳化机理及处理措施[J].江苏水利,200,1(5):25-26.
    [100]王博,杨玉法,刘长利.混凝土碳化机理及其影响因案[J].水利水电技术,199,5(11):22-25.
    [101]谢东升,高伟,陈宇峰.外加剂和粉煤灰对混凝土碳化性能影响的试验研究[J].南通大学学报,2006,5(2):51-54.
    [102]杜晋军,金祖权,蒋金洋.粉煤灰混凝土的碳化研究[J].粉煤灰,2005,(6):9-11.
    [103]郭院成,霍达等.混凝土碳化深度模糊预测[J].河南科学,1998,16(4):432-439.
    [104]曾学艺,夏日威.混凝土的碳化及耐久性预测[J].湖南交通科技,2006,32(2):121-125
    [105]Frearson J P H.Sulphate resistance of combination of Portland cement and ground granulated blast furnance slag[C].Proceedings,2nd International Conference on Fly Ash,Silica Fume,Slag and Natural Pozzolans in Concrete,Madrid,Spain,ACI,SP-91,Detroit,MI,USA,1986:1495-1524.
    [106]Hibino,M.Slump loss of concrete with diferent superplasticizer[C].Proceedings of 6~(th) CANMET/A-CI International Conference on Superplasticizers and Other Chemical Admixture in Concrete.2000:1112-1120.
    [107]Nkinamubanal P C,Kim B G,Aitcin P C.Some key cement factors that control the compatibility between naphthalene-Base superplasticizers and ordinary Portland cement[C].Proceedings of 6th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixture in Concrete.2000:19-26.
    [108]Vovk A L,Vovk G A,Usherov-Marshak A V.Regularities of Hydration and Structure Formation of Cement Chemical Admixtures in Concrete[C].Fifth CANMET/ACI International Conference,Rome,Italy,1997:763-780.
    [109]Tanaka S,Suzuki N,et al.A comparison of the fluidity of spherical cement with that of broad cement and a study of the properties of fresh concrete using spherical[J].Cement and Concrete Research,1999,29:553-560.
    [110]Nawa T.Effiect on fluidity of cement paste with superplasticizers of temperate [C].Proceedings of 6th CANMET/ACI Intemational Conference on Superplasticizers and Other Chemical Admixture in Concrete.2000:271-283.
    [111]Fu X H,Yang C X,Liu Z M.Studies on effects of activators on properties and mechanism of hydration of sulphoaluminate cement[J].Cement and Concrete Research,33(2003):317-324.
    [112]唐明,李晓.多种因素对混凝土孔结构分形特征的影响研究[J].沈阳建筑工程学院学报,2005,(3):232-238.
    [113]唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究[J].沈阳建筑工程学院学报,2001,17(4):271-275.
    [114]赵霄龙,卫军,巴恒静.高性能混凝土抗冻性与孔结构的关系[J].工业建筑,2003,(3):23-25.
    [115]Cheng X,Chang J,Lu L C.Study of Ba-bearing calcium sulphoaluminate minerals and cement[J].Cement and Concrete Research,30(2000):77-81.
    [116]Cheng X,Chang J,Lu L C.Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum[J].Cement and Concrete Research,2004,(34):2009-2013.
    [117]常均,程新.含钡硫铝酸盐水泥矿物的研究[J].硅酸盐学报,1999,27(6):644-650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700