强震作用下单层网壳结构动力破坏机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单层网壳结构兼具杆系结构与薄壳结构的优点和特性,在我国得到了较为广泛的应用。我国是地震多发国,许多新建和在建的地标性单层网壳建筑建设在强震区。目前对单层网壳结构进行抗震分析时,通常以有限元软件通用梁单元模拟杆件,以刚性连接模拟节点,将高估结构抗震承载力。为此,须建立准确反映单层网壳结构受力特性的结构计算模型,深入研究单层网壳结构在强震作用下的动力破坏机理。本文采取理论分析与数值模拟相结合的方法进行了以下四方面的研究工作。
     (1)以杆件变形后的几何构型为基础建立平衡微分方程,推导了考虑二阶效应的空间梁单元位移插值函数,模拟结构中无轴力杆件;利用Maclaurin级数展开推导了考虑二阶效应、同时适用于受拉受压梁柱单元的统一位移插值函数,模拟结构中有轴力杆件;推导了考虑轴向变形、剪切变形、双向弯曲、扭转及其耦合效应影响的单元切线刚度矩阵,建立了单层网壳结构二阶弹性计算分析方法。
     (2)提出了单层网壳结构杆件的两种失稳类型;引入国际标准化组织推荐的空间受力圆钢管失稳判定准则,采用考虑二阶效应的塑性铰模型模拟失稳前杆件,采用Marshall模型模拟失稳后杆件,建立了考虑失稳效应的杆件弹塑性计算模型,可模拟强震作用下单层网壳结构杆件可能反复经历的失稳—拉直过程与塑性铰形成—消失过程。
     (3)研究了焊接空心球节点在循环荷载作用下荷载—位移曲线的变化规律与塑性变形发展过程,利用回归统计方法,建立了焊接空心球节点力学计算模型,可模拟强震作用下单层网壳结构焊接空心球节点反复经历的加载—卸载过程与破坏过程。
     (4)基于本文提出的杆件弹塑性计算模型与焊接空心球节点力学计算模型建立不同形式单层网壳结构的数值计算模型;以结构承载力与地震作用不再平衡作为结构动态破坏的判定准则,以结构非线性动力平衡方程组不收敛的时刻作为结构破坏时刻,分析了不同形式单层网壳结构破坏时失稳杆件的数量与分布情况、塑性铰的数量与位置、节点的破坏形式,总结了不同形式单层网壳结构在强震作用下的动力破坏机理。
Single layer latticed shell, which has the characteristics and excellences of both member structure and shell structure, is widely used in our country. Our country has a high incidence of earthquake, and a great number of landmark constructions with the structural type of single layer latticed shell locate on the strong earthquake areas. Currently general beam element of finite element analysis program is used to simulate the structural member and rigid connection model is used to simulate the structural joint when study the anti earthquake behaviors of single layer latticed shells. By this method the bearing capacity of the structure is overestimated. Therefore, structural calculation model which can accurately simulate the mechanical hehaviors of single layer latticed shells should be established, and the dynamic damage mechanisms of single layer latticed shells under strong earthquakes should be deep investigated. In this paper some studies are carried out with theoretical analysis and numerical simulation.
     (1) Differential equation is created based on the deformed figuration of the structural member, and displacement interpolation equations of spatial beam element are deduced to model the structural member without axial force. By Maclaurin series expansion, the uniform displacement interpolation equations considering the second order effect for both tension and compression beam-column element are deduced to model the structural member with axial force. The element tangent stiffness matrixes considering axial deformation, shear deformation, two-direction bending, torsional deformation and coupling effects of all the deformations metioned above are deduced and the second order elastic calculation method for single layer latticed shells are established.
     (2) Two buckling types of the member of single layer latticed shells are presented. The plastic hinge member model considering the second order effect are used to simulate the pre-buckling member, and the Marshall model is used to simulate the post-buckling member. The ISO buckling criterion for spatial circular tube is introduced, and the elastic-plastic member model considering the buckling effect is established. By this model, the repeated buckling-straightening processes of the member of single layer latticed shells under strong earthquake and the forming-disappearing processes of plastic hinges can be simulated.
     (3) The characteristics of the load-displacement curve and plastic deformation develop process of welded hollow spherical joint under loop loading are studied. Based on the regression statistic method, the mechanical calculation model for welded hollow spherical joint are established by which the repeated loading-unloading processes and the damage processes of the joint under strong earthquakes can be simulated.
     (4) Numerical calculation model of single layer latticed shells based on the elastic-plastic member model and mechanical welded hollow spherical joint model are established. Whether the structural bearing capacity can keep balance with the seismic action is defined to be the dynamic damage criterion of single layer latticed shells, and the time that the structural nonlinear dynamic equilibrium equations do not converge is defined to be the structural damage time. The number and distribution of buckling members, the number and the position of plastic hinges and the damaged joints when the structures damage are studied, and the dynamic damage mechanisms of single layer latticed shells of different types under earthquake are summarized consequently.
引文
[1]董石麟,罗尧治,赵阳.大跨度空间结构的工程实践与学科发展.空间结构,2005,11(4):3~15.
    [2]沈世钊.大跨空间结构的发展—回顾与展望.土木工程学报,1998,31(3):5~14.
    [3]董石麟,姚谏.网壳结构的未来与展望.空间结构,1994,1(1):3~10.
    [4]王国安,高俊超,冯平等.大梅沙酒店大堂网壳结构稳定性分析.建筑结构,2008,24(3):1~8.
    [5]赵阳,陈贤川,董石麟.大跨椭球面圆形钢拱结构的强度及稳定性分析.土木工程学报,2008,35(5):15~23.
    [6]王振华,袁行飞,董石麟.大跨度椭球屋盖结构风压分布的风洞试验和数值模拟.浙江大学学报,2007,41(1):1462~1466.
    [7]杨威,霍文营,张仕通.某招商中心单层球面网壳的设计分析杨.建筑结构,38(12):56~58.
    [8]赵宪忠,沈祖炎,陈以一等.上海东方明珠国际会议中心单层球网壳整体模型试验研究.建筑结构学报,2000,21(3):16~22.
    [9]韩庆华,丁阳,程万海等.河北省科技馆单层球面网壳结构的设计、施工及非线性屈曲分析.建筑结构学报,2001,22(4):27~30.
    [10]蓝天.空间钢结构的应用与发展.建筑结构学报,2001,22(4):2~8.
    [11]董石麟.我国大跨度空间结构的发展与展望.空间结构,2000,6(2):3~15.
    [12]蓝天.空间钢结构的应用与发展.建筑结构学报,2001,22(4):2~8.
    [13]董石麟,姚谏.中国网壳结构的发展与应用.第六届空间结构学术会议论文集,广州:中国土木工程学会,1992,9~22.
    [14]董石麟,钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社,2000.
    [15] Buchert K. P.. Shell and shell-like structures: Guide to Stability Design Criteria for Metal Structures. New York, U. S. A.: John Wiley & Sons Inc., 1976.
    [16] Del. F.F. Pozo, Del. V.F. Pozo. Buckling of Ribbed Spherical Shells. Proceedings of IASS Congress, Madrid, 1979.
    [17] Ghali A., Neville A. M.. Structural Analysis. London, U. K.: Chapuan and Hall, 1983.
    [18] Willian W. J., Paul R. J.. Finite Elements for Structural Analysis. New Jercey, U.S.: Prentice Hall Inc., 1984.
    [19]董石麟.交叉拱系网状扁壳的计算方法.土木工程学报,1985,18(3),3~19.
    [20]胡学仁.网壳结构的力学模型.第二届空间结构学术交流会论文集,太原:中国土木工程学会,1984,1~13.
    [21]董石麟.网状球壳的连续化分析方法.建筑结构学报,1988,18(3),3~16.
    [22] Wright D.T.. Membrance Forces and Buckling in Reticulated Shells. Journal of Structural Division, ASCE, 1965, 91(ST1), 547~565.
    [23]刘开国.空间杆系穹顶结构的几个计算问题.工程力学,1984,1(1):52~64.
    [24]刘开国.空间杆系穹顶结构的能量变分解.第四届空间结构学术交流会论文集,北京:中国土木工程学会,1988,542~545.
    [25]沈小璞.在轴对称荷载作用下扁壳状空间杆系结构的简化计算.建筑技术通讯,1990,5(1):33~36.
    [26] Zienkiewicz O.C.. The Finite Element Method, Third Edition. New Jercey, U.S.: McGraw-Hill Inc., 1997.
    [27] Bathe K. J. and Wilson E. L.. Numerical Method in Finite Element Analysis. New Jercey, U.S.: Prentice-Hall. Inc., 1976.
    [28] Cook R. D.. Concepts and Applications of Finite Element Analysis. New York, U. S.: John Wiley & Sons Inc., 1982.
    [29] Logan D. L.. A First Course in the Finite Element Method, Second Edition. Boston, U. S.: PWS Publishing Company, 1993.
    [30] Hrenikoff A.. Solution of problems in elasticity by the framework method. Journal of Applied Mechanics, 1941, 12(1): 169~175.
    [31] Reddy J. N.. An Introduction to the Finite Element Method, Second Edition. New York, U. S.: McGraw-Hill Inc., 1993.
    [32] Bathe K. J.. Finte Element Procedures in Engineering Analysis. New Jercey, U.S.: Prentice-Hall. Inc., 1982.
    [33] Brenner S. C. and Scott L. R.. The Mathematical Theory of Finite Element Method. Berlin, Germany: Spinger-Verlag, 1993.
    [34] Barsoum R. S, Gallagher R. H.. Finite Element Analysis of Torsional-flexural Stability Problems. International Journal for Numerical Methods in Engineering, 1970, 2(3): 335~352.
    [35] Meek J. L., Tan H. S.. Geometrically Nonlinear Analysis of Space Frames by an Incremental Iterative Technique. Computer Methods in Applied Mechanics andEngineering, 1984, 47(3): 261~282.
    [36] Chan S. L., Kitiporncai S.. Geometric Nonlinear Analysis of Asymmetric Thin-walled Beam-columns. Engineering Structure, 1987, 9(4): 243~254.
    [37] So A. K. W., Chan S. L.. Buckling Analysis of Frames Using 1 Element/ Member[J]. Journal of Constructional Steel Research, 1991, 36(20): 271~289.
    [38] Kondoh K., Atluri S. N.. A Simplified Finite Element Method for Large Deformation, Post-buckling Analysis of Large Frame Structures, Using Explicitly Derived Tangent Stiffness Matrices. Numerical Methods in Engineering, 1986, 23(1): 69~90.
    [39] Chan S. L., Zhou Z. H.. Pointwise Equilibrating Polynomial Element for Nonlinear Analysis of Frames. Structure Engineering, 1994, 120(6): 1703~1717.
    [40] Oran C.. Tangent Stiffness in Plane Frames. Journal of the Structural Division, ASCE, 1973, 99(6): 973~985.
    [41] Oran C.. Tangent Stiffness in Space Frames. Journal of the Structural Division, ASCE, 1973, 99(6): 987~1001.
    [42] Livesley R. K., Chandler D. B.. Stability Functions for Structural Frameworks. Manchester, England: Manchester University Press, 1956.
    [43] Ekhande S. G., Selvappalam M. and Madugula M. K. S.. Stability Functions for Three-dimensional Beam-columns. Structure Engeering, 1989, 115(2): 467~479.
    [44] Chen W. F. and Lui E. M.. Effects of joint flexibility on the behavior of steel frames. Computers and Structures, 1987, 26(5), 719~732.
    [45] Goto Y., Chen W. F.. Second-order Elastic Analysis for Frame Design. Journal of Structural Engineering, 1987, 113(7): 1501~1519.
    [46]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与计算理论.上海:上海科学技术出版社,1998.
    [47] Chen W. F., Kim S. E.. LRFD Steel Design Using Advanced Analysis. New York, U. S.: CRC Press, 1997.
    [48]郑廷银.归纳结构设计方法的研究进展与展望.南京工业大学学报,2003,25(5):101~106.
    [49] Liew J. Y. R., Chen H., Shanmugam N. E., et al.. Improved Nonlinear Plastic Hinge Analysis of Space Frame Structures. Engineering Structure, 2000, 22(10): 1324~1338.
    [50] White D. W., Chen W. F.. Plastic Hinge Based Method for Advanced Analysis and Design of Steel Frames. Bethlehem, PA: Structural Stability ResearchCouncil, Lehigh University, 1993.
    [51] Chen W. F., Goto Y, Liew J. Y. R.. Stability Design of Semi-rigid Frames. New York, U. S.: John Wiley & Sons, 1996.
    [52]沈祖炎,陈扬骥,陈学潮.钢管结构极限承载力的力学模型.同济大学学报,1988,16(3):279~292.
    [53]吕烈武,沈祖炎.钢结构构件稳定理论.北京:中国建筑工业出版社,1983.
    [54] Liew J. Y. R., Punniyakotty N. M. and Shanmugam N. E.. Advanced Analysis and Sesign of Spatial Structures. Journal of Constructional Steel Research, 1997, 42(1): 21~48.
    [55] Papadrakakis M.. Inelastic Post-buckling Analysis of Trusses: Review. Journal of Structural Engineering, 1983, 109(9): 2129~2147.
    [56] Maheeb M. E.. Post-failure Analysis of Steel Structures. West Lafayette, U. S. A.: Purdue University, 1992.
    [57] Liew J. Y. R., Tang L. K.. Advanced Plastic Hinge Analysis for the Design of Tubular Space Frames. Engineering Structures, 2000, 22(7): 769~783.
    [58] Nilforoushan R. Seismic Behavior of Multistory K-braced Frame Structures. Ann Arbor, U. S. A.: University of Michigan, 1973.
    [59] Singh P.. Seismic Behavior of Braces and Braced Steel Frames. Ann Arbor, U. S. A.: University of Michigan, UMEE 77R1, 1977.
    [60] Jain A. K., Goel S. C.. Hysteresis Models for Steel Members Subjected to Cyclic Buckling or Cyclic End Moments and Buckling. Ann Arbor, U. S. A.: University of Michigan, UMEE 78R6, 1978.
    [61] Marshall P. W., Gates W. E., Anagnostopoulos S.. Inelastic dynamic analysis of tubular offshore structures. Proceedings of ninth annual offshore technology conference. Houston, U S A: 1977, 235~246.
    [62] Han Q. H., Liu X. L.. Ultimate Bearing Capacity of the Welded Hollow Spherical Joints in Spatial Reticulated Structures. Engineering Structures, 2004, 26(1): 73~82.
    [63] Han Q. H., Zhou Q. Z., Chen Y. et al.. Ultimate Bearing Capacity of Hollow Spherical Joints Welded with Circular Pipes under Eccentric Loads. Transactions of Tianjin University, 2007, 13(1): 28~34.
    [64]刘锡良,陈志华.网架焊接空心球节点破坏机理分析及承载能力试验研究.建筑结构学报,1994,15(3):38~44.
    [65]陈志华.空间网架结构焊接球节点破坏机理分析及承载能力试验研究.硕士学位论文,天津:天津大学,1990.
    [66]薛万里,张其林.圆钢管焊接空心球节点受压破坏机理与试验研究.建筑结构学报,2009,30(5):155~161.
    [67]姚念亮,董明,杨联萍等.焊接空心球节点的承载能力分析.建筑结构,2000,30(4):36~45.
    [68]袁行飞,彭张立,董石麟.平面内三向轴压和弯矩共同作用下焊接空心球节点承载力.浙江大学学报,2007,41(9):1436~1442.
    [69]董石麟,唐海军,赵阳等.轴力和弯矩共同作用下焊接空心球节点承载力研究与实用计算方法.土木工程学报,2005,38(1):21~30.
    [70] JGJ 7-2010,空间网格结构技术规程.北京:中国建筑工业出版社,2010.
    [71] Shen S.Z., Xing J. H. and Fan F.. Dynamic behavior of single-layer latticed cylindrical shells subjected to seismic loading. Earthquake Engineering and Engineering Vibration, 2003, 2(2): 269~279.
    [72] Kato S., Nakasa S. Seismic design method to reduce the responses of single layer reticular domes by means of yielding of substructure under severe earthquake motions. International Symposium on Theory, Design and Realization of Shell and Spatial Structures, Nagoya, Japan: 2001, 178~179.
    [73] Blandfor G. E.. Progressive failure analysis of inelastic space truss structures. Composition and Structure, 1996, 58(5), 981~990.
    [74] Blandford. G. E., Wang, S. T.. Response of space trusses during progressive failure. R. B. Malla, ed., Dynamic response and progressive failure of special structures, ASCE, New York: 1996, 1~16.
    [75] Kato S., Ueki T. and Mukaiyama Y.. Study of Dynamic Collapse of Single Layer Reticular Domes Subjected to Earthquake Motion and the Estimation of Statically Equivalent Seismic Forces. International Journal of Space Structures, 1997, 12(3~4): 191~204.
    [76] Ishikawa, K. and Kato, S., Elastic-plastic Buckling Analysis of Reticular Domes Subjected to Earthquake Motion[J]. International Journal of Space Structures, 1997, 12(3~4): 205~215.
    [77] Kumagai T., Ogawa T.. Dynamic buckling behavior of single layer lattice domes subjected to horizontal step wake. Journal of the International Association for Shell and Spatial Structures, 2003, 44(3): 167~174.
    [78] Holzer S. M. Static and dynamic stability of reticulated shells. International Colloquium on Stability of Structures under Static and Dynamic loads,Washington D.C., U. S.: 1977, 27~39.
    [79] Coan C. H., Plaut R. H.. Dynamic stability of a lattice dome. Earthquake Engineering and Structure Dynamic, 1983, 11(3): 269~274.
    [80] Kassimal A., Bidhendi E. Stability of trusses under dynamic loads. Computer and Structures, 1988, 29(3): 381~392.
    [81] Li Z. X., Shen Z. Y.. Shaking Table Test of Two Shallow Reticulated Shells. International Journal of Solids and Structures, 2001, 38(44~45): 7875~7884.
    [82]邢佶慧,柳旭东,范峰等.单层柱面网壳结构地震模拟振动台试验研究.建筑结构学报,2004(12):1~8.
    [83]刘英亮,邢佶慧.基于能量的单层球面网壳强震响应规律研究.建筑结构学报,2010,增刊第2卷:30~33.
    [84]杨飚,支旭东,范峰等.短程线网壳结构强震作用下的动力强度破坏.哈尔滨工业大学学报,2008,40(12):1878~1882.
    [85]杨飚,支旭东,范峰等.施威德勒网壳结构的动力强度破坏.东北大学学报,2007,28(1):125~128.
    [86]杨飚,范峰,沈世钊等. Schwedler网壳结构强震作用下的动力强度破坏研究.振动与冲击,2007,26(8):27~31.
    [87]支旭东,范峰,沈世钊等.凯威特型单层球面网壳在强震下的失效研究.工程力学,2008,25(9):7~12.
    [88]邢佶慧,栗荣刚,吕晓寅等.单层鞍形网壳强动力荷载作用下的破坏模式.空间结构,2010,16(1):19~23.
    [89] Zhi X. D., Fan F., Shen S. Z. et al.. Single-layer Saddle-curve Earthquake Dynamic Strength Failure Damage Accumulation. Proceedings of the International Association for Shell and Spatial Structures Symposium, Valencia, Spain: 2009, 345~354.
    [90]王策,沈世钊.单层球面网壳结构动力稳定分析.土木工程学报,2000,33(6):17~24.
    [91]范峰,钱宏亮,邢佶慧等.强震作用下球面网壳动力强度破坏研究.哈尔滨工业大学学报,2004,36(6):722~725.
    [92] Fan F, Shen S. Z.. Study on the dynamic strength failure of reticulated domes under severe earthquakes. International Association for Shell and Spatial Structures Symposium. Montpellier, France: 2004: 140~141.
    [93]沈世钊,支旭东.球面网壳结构在强震下的失效机理.土木工程学报,2005,38(1):11~20.
    [94] Shen S. Z., Zhi X. D.. Failure Mechanism of Reticular Shells Subjected to Dynamic Actions. Advances in steel structures: proceedings of the fourth International Conference on Advances in Steel Structures, Shanghai, China: 2005, 69~82.
    [95]史义博,支旭东,范峰等.单层球面网壳在强震作用下的损伤模型.哈尔滨工业大学学报,2008,40(12):1874~1877.
    [96]杜文风,高博青,董石麟.单层球面网壳结构动力强度破坏的双控准则.浙江大学学报,2007,41(11):1916~1926.
    [97] Zhi X.D., Fan F. and Shen S. Z. Failure mechanisms of single-layer reticulated domes subjected to earthquakes. Journal of the International Association for Shell and Spatial Structures, 2007, 48(1):29~44.
    [98]支旭东,聂桂波,范峰.大跨度单层球面网壳的损伤模型及强震失效.哈尔滨工业大学学报,2009,41(8):6~11.
    [99] Yu X. Y., Fan F., Zhi X. D. et al. Damage mechanism of single-layer reticulated domes under severe earthquakes. Journal of Harbin Institute of Technology, 2009, 16(1): 121~130.
    [100]王晓可,范峰,支旭东等.单层柱面网壳在强震作用下的破坏机理研究.土木工程学报,2006,39(11):26~32.
    [101]吴金妹.大跨度柱面网壳在强震下的失效研究.低温建筑技术,2009,6:74~76.
    [102]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究.土木工程学报,2007,40(8):29~34.
    [103]支旭东,吴金妹,范峰等.考虑材料损伤积累单层柱面网壳在强震下的失效研究.计算力学学报,2008,25(6):770~775.
    [104]范峰,支旭东,沈世钊.大跨度网壳结构强震失效机理研究.建筑结构学报,2010,31(6):153~159.
    [105]杜文风,高博青,董石麟.单层网壳结构的动力破坏指数研究.西安建筑科技大学学报,2009,41(2):154~160.
    [106]支旭东,范峰,沈世钊.基于模糊综合判定的网壳结构强震失效模式研究.工程力学,2010,27(1):63~68.
    [107]支旭东,范峰,沈世钊.材料损伤累积在网壳强震失效中的应用.哈尔滨工业大学学报,2008,40(2):169~173.
    [108] Vamvatasikos D., Coenell C. A.. Incremental dynamic analysis. Earthquake Engineering and Structure Dynamic, 2002, 31(3): 491~514.
    [109] Timoshenko S P. Theory of Elastic Stability. New York, U. S.: Mc-Graw Hill Book Company, 1936.
    [110]高永辉.三向单层球形扁网壳结构计算与试验研究.硕士学位论文,天津:天津大学,1987.
    [111]郑廷银,赵惠麟.空间钢框架结构的改进双重非线性分析.工程力学, 2003, 20(6): 202~208.
    [112]范峰.大跨度空间结构强震灾变行为精细化研究2009年度进展报告.大连:国家自然科学基金重大研究计划项目交流会,2009.
    [113]Chen W F, Sugimoto H. Stability and strength of fabricated tubular columns used in offshore structures. West Lafayette: Purdue University, 1984.
    [114] ISO 10721-1. Steel structures: materials and design. 1997.
    [115]沈世钊,陈昕.网壳结构稳定性.北京:科学出版社,1999.
    [116]欧俊豪,王家生,徐漪萍等.应用概率统计.天津:天津大学出版社,1999.
    [117] CHI W. M., Deierlein G. G. and Ingraffea A.. Fracture Toughness Demands in Welded Bean-column Moment Connections. Journal of Structural Engineering, 2000, 126(1): 88~97.
    [118]薛万里.圆钢管焊接空心球节点承载力与实用设计方法研究.博士学位论文,上海:同济大学,2008.
    [119]GB50011-2010,建筑抗震设计规范.中国建筑工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700