基于第一性原理筛选甲烷重整反应用金属及合金催化剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非均相催化反应发生在微观空间和瞬态时间尺度上,如何获得反应精确信息,掌握并调控反应机理,从而指导催化剂设计,一直是传统实验研究面临的难题。计算催化理论的建立和发展,尤其是密度泛函理论(DFT)的提出,使得捕捉催化剂表面反应过渡态,了解反应瞬间催化体系的能量变化,理清反应路径和决速步骤,最终实现催化剂的理性设计成为可能。
     本文以基于DFT的计算方法为手段,以甲烷水蒸汽重整和甲烷二氧化碳重整为两个模型反应,系统地研究了金属催化剂表面上的微观反应动力学,开发出了为非均相催化反应筛选金属及合金催化剂的通用计算方法。
     本文主要研究内容及结果如下:
     (1)基于金属Ni为催化剂,研究了甲烷解离对于Ni不同表面的结构敏感性。计算并对比了甲烷解离中间产物在平板面Ni(111)和台阶面Ni(211)上的吸附能,以及相关基元反应的活化能;以Ag为表面合金组分,研究了Ag部分覆盖对Ni表面性质和催化作用的影响。计算了Ag单层覆盖率为1/9及1/4时甲烷解离中间产物的吸附能和相关基元反应的活化能,比较了C-C结合和C-O结合两个基元反应的活化能,讨论了添加Ag对甲烷解离导致Ni表面结焦的影响。
     (2)研究了不同金属表面上,甲烷重整反应体系吸附质的吸附能与碳和氧吸附能之间存在的尺度关系,以及过渡态能量与产物能量之间的尺度关系,并将这些尺度关系加入后续微观反应动力学模型中,建立了以碳和氧的吸附能为两个描述符的二维火山形反应速率图。
     (3)研究了吸附质与吸附质之间的相互作用,计算了几种金属(211)表面上,甲烷重整反应体系吸附质在不同吸附位之间的相互作用,及其对吸附能的影响。通过计算吸附质在不同吸附位不同覆盖率下的吸附能,回归参数至分段吸附质相互作用模型中。将吸附质相互作用模型加入微观反应动力学研究,计算了甲烷水蒸汽重整和二氧化碳重整体系中各个吸附质的微分吸附能,得到了合理的中间产物覆盖率。
     (4)建立了以碳、氧吸附能为两个描述符的,基于拟定态假设的微观反应动力学模型,在模型中包含了吸附质与吸附质之间的相互作用,计算了甲烷水蒸汽重整和二氧化碳重整在不同反应条件下的反应速率。
     (5)由甲烷水蒸汽重整和二氧化碳重整的微观反应动力学模型得到的火山形曲线速率图,根据碳、氧吸附能两个描述符,筛选了600多种体相合金催化剂。结合合金催化剂在实际反应条件下的稳定性与当前催化剂材料价格,最后得到了多种同时具有高活性、高选择性、高稳定性且廉价的合金催化剂,其中Ni3Fe和Co3Ni都能用于上述两个重整反应。
The development of catalysis is of fatal importance to modern and future society. It is the foundation of modern chemical industry. Raw materials such as petroleum and natural gas can be readily converted to chemicals by catalysis, supplying daily needs of transportation, food production and medical treatment for the community. Nowadays, the development of catalytic science has become the main power for the improvement of commercialized chemical processes, and it will be, in the future, the base stone of changing energy infrastructure, utilizing sustainable energy sources such as solar, wind and biomass. Some existing technology problems are also closely related to the catalysis science, e.g., energy saving and consumption reduction requirement of hydrogen production in the hydrocarbon steam reforming process for ammonia synthesis; Ni-based catalyst deactivation in the methane dry reforming process for high CO/H2synthesis gas production as the feedstock for further Fisher-Tropsh synthesis. However, due to the complexity of catalytic reaction process, the development of active, selective and stable catalysts still faces many scientific challenges.
     In order to design catalysts rationally, the fundamental understanding of interactions between adsorbates, catalyst surfaces, and the transition states of the elementary reactions are essential. Recent advances in computational chemistry, particularly density functional theory (DFT) made it possible to investigate reactions "in silicd". In this paper, a method based on DFT for screening for active, selective, stable and inexpensive catalyst for a large range of heterogeneous catalyst is presented. Steam and dry reforming of methane reactions were used as two model reactions to demonstrate this method.
     The main content of this thesis is as follows:
     (1) Using Ni catalyst as an example, surface structure sensitivity for methane decomposition was investigated on close packed Ni(111) and stepped Ni(211) facets. The adsorption energies of related adsorbates, the activation energies for all the elementary reactions of methane decomposition were calculated. In order to study the effect of second metal on the catalytic properties of the surface alloy, Ni(111)and Ni(211) surfaces with different silver coverages (1/4monolayer,1/9monolayer) were constructed. The energetics of the intermediates for methane steam reforming were calculated and compared with the ones on pure Ni surfaces. Coking mechanism wasinvestigated by comparing the activation barrier for C-0and C-C on Ni and Ag/Ni systems. Equilibrium shape of the catalyst crystalline was estimated by employing Wulff construction. Proportion of each surface was estimated and the effect of introduced silver was discussed.
     (2) Scaling relations between adsorption energies of the adsorbates and the adsorption energies of carbon and oxygen were investigated. Scaling relations between transition state energies and final state energies were also studied in both methane steam and dry reforming systems. Then the scaling relations were incorporated to a microkinetic model, which results in a two descriptor based volcano shaped rate plot. The volcano plot was further used as the check board for screening for active and selective alloy catalysts.
     (3) Adsorbate-adsorbate interactions were investigated on stepped (211) surfaces premise to mean field theory. Cross interaction parameters between different adsorbates and different adsorption sites were parameterized in a piecewise adsorbate-adsorbate interaction model. The adsorbate-adsorbate model was further incorporated in a microkinetic model to calculate differential adsorption energies to obtain reasonable coverages for the steam and dry methane reforming systems.
     (4) Descriptor-based volcano rate plots for methane steam and dry reforming were constructed that combines a microkinetic model with scaling relations while taking adsorbate-adsorbate interactions into consideration.
     (5) Using rates obtained by the comprehensive microkinetic model for different reaction conditions, screen thousands of transition metal and alloys by using carbon and oxygen as the two descriptors. Combing filters that consider stability and cost enables the screening for novel leads for active, stable, and inexpensive alloy catalysts.
引文
[1]United States Geological Survey publication,2005.
    [2]Pandharipande V R. Recent developments in the nuclear many-body problem[J]. International Journal of Modern Physics B,1999,13(5-6):543-558.
    [3]Kalos M H, Pederiva F. Fermion Monte Carlo[J]. Quantum Monte Carlo Methods in Physics and Chemistry,1999,525:263-286.
    [4]Carlson J, Cowell S, Morales J, Ravenhall D G, Pandharipande V R. The nuclear matter problem[J]. Progress of Theoretical Physics Supplement,2002, (146):363-372.
    [5]Schrodinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules[J]. Physical Review Online Archive (Prola),1926,28(6):1049-1070.
    [6]Born M, Oppenheimer R. Zur Quantentheorie der Molekeln[J]. Ann Phys,1927,389(20): 457-484.
    [7]Kohn W, Becke A D, Parr R G. Density Functional Theory of Electronic Structure[J]. The Journal of Physical Chemistry,1996,100(31):12974-12980.
    [8]Argaman N, Makov G. Density functional theory:An introduction[J]. American Journal of Physics,2000,68(1):69-79.
    [9]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review,1965,140(4A):A1133-A1138.
    [10]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review Online Archive (Prola),1964,136(3B):B864-B871.
    [11]Villasenor E. Introduction to Quantum Mechanics[J].2008.
    [12]Kohn W. Nobel Lecture:Electronic structure of matter wave functions and density functionals[J]. Reviews of Modern Physics,1999,71(5):1253-1266.
    [13]Martin R. Electronic structure:basic theory and practical methods [M]. Cambridge University Press,2004.
    [14]Dirac P A M. Note on Exchange Phenomena in the Thomas Atom[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1930,26(03):376-385.
    [15]Staroverov V, Scuseria G, Tao J, Perdew J. Comparative assessment of a new nonempirical density functional:Molecules and hydrogen-bonded complexes[J]. The Journal of Chemical Physics,2003,119(23):12129-12137.
    [16]Car R. Unified Approach for Molecular Dynamics and Density-Functional Theory [J]. Physical Review Letters,1985,55(22):2471-2474.
    [17]Perdew J. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B,1986,33(12):8822-8824.
    [18]Perdew J, Kurth S. Density Functionals for Non-relativistic Coulomb Systems in the New Century A Primer in Density Functional Theory [M]. Springer Berlin/Heidelberg, 2003:1-55.
    [19]Perdew J, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters,1996,77(18):3865-3868.
    [20]Perdew J, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Physical Review B,1996,54(23): 16533-16539.
    [21]Zhang Y, Yang W. Comment on "Generalized Gradient Approximation Made Simple"[J]. Physical Review Letters,1998,80(4):890-890.
    [22]Hammer B, Hansen L, Norskov J. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B,1999,59(11):7413-7421.
    [23]Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B,1993,47(1):558-561.
    [24]Kresse G, Hafner J. Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury [J]. Physical Review B,1997,55(12):7539-7548.
    [25]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B,1996,54(16):11169-11186.
    [26]Blochl P E. Projector augmented-wave method[J]. Physical Review B,1994,50(24): 17953-17979.
    [27]Levy O, Chepulskii R V, Hart G L, Curtarolo S. The new face of rhodium alloys: revealing ordered structures from first principles[J]. J Am Chem Soc,2010,132(2): 833-837.
    [28]Kittel C. Introduction to Solid State Physics [M]. Wiley,1995.
    [29]Monkhorst H, Pack J. Special points for Brillouin-zone integrations [J]. Physical Review B,1976,13(12):5188-5192.
    [30]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B,1990,41(11):7892-7895.
    [31]ScienceDirect, Pettersson L, Nilsson A, Narskov J K. Chemical bonding at surfaces and interfaces [M]. Amsterdam; Oxford:Elsevier,2008.
    [32]Chorkendorff I, Niemantsverdriet J W. Concepts of Modern Catalysis and Kinetics [M]. Wiley-VCH,2007.
    [33]Hammer B, Norskov J K. Theoretical surface science and catalysis—calculations and concepts [M]. Elsevier.2000:71-129.
    [34]Norskov J K, Bligaard T, Logadottir A, Bahn S, Hansen L B, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen C J H. Universality in heterogeneous catalysis[J]. Journal of Catalysis,2002,209(2):275-278.
    [35]Hammer B, Narskov J K. Why gold is the noblest of all the metals[J]. Nature,1995, 376(6537):238-240.
    [36]Anders Nilsson L G M P, Jens K. Narskov. Chemical Bonding at Surfaces and Interfaces [M]. Elsevier Science Ltd.2007:520.
    [37]Khan T S. NOx removal and Effect of Adsorbate-Adsorbate Interactions [D]. Denmark: DTU,2013.
    [38]Jiang T, Mowbray D J, Dobrin S, Falsig H, Hvolbaek B, Bligaard T, Norskov J K. Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces[J]. The Journal of Physical Chemistry C,2009,113(24):10548-10553.
    [39]Hammer B, Nielsen O H, Nrskov J K. Structure sensitivity in adsorption:CO interaction with stepped and reconstructed Pt surfaces[J]. Catalysis Letters,1997,46(1-2):31-35.
    [40]Falsig H. Understanding Catalytic Activity Trends for NO Decomposition and CO oxidation using Density Functional Theory and Microkinetic Modeling [D]. Denmark: DTU,2010.
    [41]Fahlbusch K-G, Hammerschmidt F-J, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Garbe D, Surburg H. Flavors and Fragrances [J]. Ullmann's Encyclopedia of Industrial Chemistry,2000.
    [42]Nijhuis T A, Koten G, Kapteijn F, Moulijn J A. Separation of kinetics and mass-transport effects for a fast reaction:the selective hydrogenation of functionalized alkynes[J]. Today, 2003,79:315-321.
    [43]Wilhelm D J, Simbeck D R, Karp A D, Dickenson R L. Syngas production for gas-to-liquids applications:technologies, issues and outlook[J]. Fuel Processing Technology,2001,71(1-3):139-148.
    [44]Moulijn J A, Makkee M, Diepen. A v. Chemical process technology [M] COMYNS A E. Applied Organometallic Chemistry. Chichester; John Wiley & Sons, Ltd.2001:956-956.
    [45]Aasberg-Petersen K, Hansen J H B, Christensen T S, Dybkjaer I, Christensen P S, Nielsen C S, Madsen S E L W, Rostrup-Nielsen J R. Technologies for large-scale gas conversion[J]. Applied Catalysis A-General,2001,221(1-2):379-387.
    [46]Dybkjaer I. Tubular reforming and autothermal reforming of natural gas — an overview of available processes [J]. Fuel Processing Technology,1995,42(2-3):85-107.
    [47]Iglesia E, Wei J M. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium[J]. Journal of Catalysis,2004,225(1): 116-127.
    [48]Iglesia E, Wei J M. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts [J]. Journal of Catalysis,2004,224(2):370-383.
    [49]Rostrup-Nielsen J R, Hansen J H B. CO2-Reforming of Methane over Transition Metals[J]. Journal of Catalysis,1993,144(1):38-49.
    [50]Qin D, Lapszewicz J. Study of Mixed Steam and CO2 Reforming of CH4 to Syngas on Mgo-Supported Metals[J]. Catalysis Today,1994,21(2-3):551-560.
    [51]Shishido T, Sukenobu M, Morioka H, Kondo M, Wang Y, Takaki K, Takehira K. Partial oxidation of methane over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors [J]. Applied Catalysis A: General,2002,223(1-2):35-42.
    [52]Nikolla E, Schwank J, Linic S. Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts:The impact of the formation of Ni alloy on chemistry [J]. Journal of Catalysis,2009,263(2):220-227.
    [53]Besenbacher F, Chorkendorff I, Clausen B S, Hammer B, Molenbroek A M, Nerskov J K, Stensgaard I. Design of a Surface Alloy Catalyst for Steam Reforming[J]. Science,1998, 279:1913-1915.
    [54]Chin Y-H, King D L, Roh H-S, Wang Y, Heald S M. Structure and reactivity investigations on supported bimetallic AuNi catalysts used for hydrocarbon steam reforming[J]. Journal of Catalysis,2006,244(2):153-162.
    [55]Parizotto N V, Rocha K O, Damyanova S, Passos F B, Zanchet D, Marques C M P, Bueno J M C. Alumina-supported Ni catalysts modified with silver for the steam reforming of methane:Effect of Ag on the control of coke formation[J]. Applied Catalysis A-General,2007,330:12-22.
    [56]Guo Y, Thou L, Kameyama H. Steam reforming reactions over a metal-monolithic anodic alumina-supported Ni catalyst with trace amounts of noble metal[J]. International Journal of Hydrogen Energy,2011,36(9):5321-5333.
    [57]Li D L, Nishida K, Zhan Y Y, Shishido T, Oumi Y, Sano T, Takehira K. Sustainable Ru-doped Ni catalyst derived from hydrotalcite in propane reforming[J]. Applied Clay Science,2009,43(1):49-56.
    [58]Jones G, Jakobsen J G, Shim S S, Kleis J, Andersson M P, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen J R, Chorkendorff I, Sehested J, Norskov J K. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts[J]. Journal of Catalysis,2008,259(1):147-160.
    [59]Haryanto A, Fernando S, Murali N, Adhikari S. Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:A Review[J]. Energy & Fuels,2005,19(5): 2098-2106.
    [60]Rostrup-Nielsen J R. Surface Science and Catalysis [M] Bartholomew C H, Butt J B. Catalysts Deactivation. Amsterdam; Elsevier Science Publishers B.V.1991.
    [61]Mieville R L. Coking characteristics of reforming catalysts[J]. Journal of Catalysis,1986, 100(2):482-488.
    [62]Robertson S D. Graphite Formation from Low Temperature Pyrolysis of Methane over some Transition Metal Surfaces[J]. Nature,1969,221(5185):1044-1046.
    [63]Rostrup-Nielsen J R, Sehested J. Whisker carbon revisited[J]. Catalyst Deactivation 2001, Proceedings,2001,139:1-12.
    [64]Xu J, Saeys M. Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron[J]. Journal of Catalysis,2006,242(1):217-226.
    [65]Bengaard H S, Narskov J K, Sehested J, Clausen B S, Nielsen L P, Molenbroek A M, Rostrup-Nielsen J R. Steam reforming and graphite formation on Ni catalysts [J]. Journal of Catalysis,2002,209(2):365-384.
    [66]Christensen A, Ruban A V, Stoltze P, Jacobsen K W, Skriver H L, Narskov J K, Besenbacher F. Phase diagrams for surface alloys[J]. Physical Review B,1997,56(10): 5822-5834.
    [67]Triantafyllopoulos N C, Neophytides S G. Dissociative adsorption of CH4 on NiAu/YSZ: The nature of adsorbed carbonaceous species and the inhibition of graphitic C formation[J]. Journal of Catalysis,2006,239(1):187-199.
    [68]Perdew J P, Burke K, Ernzerhof. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865.
    [69]Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B,1999,59(11):7413-7421.
    [70]Blochl P E. Projector augmented-wave method[J]. Physical Review B,1994,50:17953.
    [71]Henkelman G, Jonsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives [J]. J Chem Phys,1999,111(15):7010-7022.
    [72]Zhu Y A, Chen D, Zhou X G, Yuan W K. DFT studies of dry reforming of methane on Ni catalyst[J]. Catalysis Today,2009,148(3-4):260-267.
    [73]Zhu Y-A, Dai Y-C, Chen D, Yuan W-K. First-principles study of C chemisorption and diffusion on the surface and in the subsurfaces of Ni(111) during the growth of carbon nanofibers[J]. Surface Science,2007,601(5):1319-1325.
    [74]Abild-Pedersen F, Lytken O, Engbaek J, Nielsen G, Chorkendorff I, Narskov J K. Methane activation on Ni(111):Effects of poisons and step defects[J]. Surface Science, 2005,590(2-3):127-137.
    [75]Nave S, Jackson B. Methane Dissociation on Ni(111):The Role of Lattice Reconstruction[J]. Physical Review Letters,2007,98(17).
    [76]Wang S G, Liao X Y, Hu J, Cao D B, Li Y W, Wang J G, Jiao H J. Kinetic aspect of CO2 reforming of CH4 on Ni(111):a density functional theory calculation[J]. Surface Science, 2007,601(5):1271-1284.
    [77]Termentzidis K, Hafner J. CO adsorption on a Au/Ni(111) surface alloy-a DFT study[J]. Journal of Physics-Condensed Matter,2007,19(24):
    [78]Shishkin M, Ziegler T. The Electronic Structure and Chemical Properties of a Ni/CeO2 Anode in a Solid Oxide Fuel Cell:A DFT plus U Study[J]. Journal of Physical Chemistry C,2010,114(49):21411-21416.
    [79]Ceyer S T, Beckerle J D, Lee M B, Tang S L, Yang Q Y, Hines M A. Effect of translational and vibrational energy on adsorption:The dynamics of molecular and dissociative chemisorption[J]. Journal of Vacuum Science & Technology A,1987,5(4): 501-507.
    [80]Norskov J K, Bligaard T, Kleis J. Rate Control and Reaction Engineering[J]. Science, 2009,324(5935):1655-1656.
    [81]Somorjai G A, Park J Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure[J]. Chemical Society Reviews,2008,37(10): 2155-2162.
    [82]Zambelli T, Wintterlin J, Trost J, Ertl G. Identification of the "Active Sites" of a Surface-Catalyzed Reaction [J]. Science,1996,273:1688-1690.
    [83]Abild-Pedersen F, Greeley J, Norskov J K. Understanding the effect of steps, strain, poisons, and alloying:Methane activation on Ni surfaces[J]. Catalysis Letters,2005, 105(1-2):9-13.
    [84]Maiya P S, Blakely J M. Surface Self-Diffusion and Surface Energy of Nickel [J]. Journal of Applied Physics,1967,38(2):698.
    [85]Rostrup-Nielsen J, Norskov J K. Step sites in syngas catalysis[J]. Topics in Catalysis, 2006,40(1-4):45-48.
    [86]Kaminsky W. WinXMorph:a computer program to draw crystal morphology, growth sectors and cross sections with export files in VRML V2.0 utf8-virtual reality format[J]. Journal of Applied Crystallography,2005,38(3):566-567.
    [87]Kaminsky W. From CIF to virtual morphology using the WinXMorph program[J]. Journal of Applied Crystallography,2007,40(2):382-385.
    [88]Trimm D L. Coke formation and minimisation during steam reforming reactions[J]. Catalysis Today,1997,37(3):233-238.
    [89]Trimm D L. Catalysts for the control of coking during steam reforming[J]. Catalysis Today,1999,49(1-3):3-10.
    [90]Linic S, Nikolla E, Schwank J. Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts:The impact of the formation of Ni alloy on chemistry[J]. Journal of Catalysis,2009,263(2):220-227.
    [91]Chen D, Lodeng R, Anundskas A, Olsvik O, Holmen A. Deactivation during carbon dioxide reforming of methane over Ni catalyst:microkinetic analysis[J]. Chemical Engineering Science,2001,56(4):1371-1379.
    [92]Christensen K O, Chen D, Lodeng R, Holmen A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming[J]. Applied Catalysis A-General,2006,314(1):9-22.
    [93]Andersson M P, Bligaard T, Kustov A, Larsen K E, Greeley J, Johannessen T, Christensen C H, Norskov J K. Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts[J]. Journal of Catalysis,2006,239(2):501-506.
    [94]Grabow L C, Studt F, Abild-Pedersen F, Petzold V, Kleis J, Bligaard T, Norskov J K. Descriptor-Based Analysis Applied to HCN Synthesis from NH3 and CH4[J]. Angewandte Chemie International Edition,2011,50(20):4601-4605.
    [95]Lausche A C, Hummelshoj J S, Abild-Pedersen F, Studt F, Norskov J K. Application of a new informatics tool in heterogeneous catalysis:Analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde [J]. Journal of Catalysis,2012,291:133-137.
    [96]Jones G, Bligaard T, Abild-Pedersen F, Norskov J K. Using scaling relations to understand trends in the catalytic activity of transition metals[J]. Journal of Physics-Condensed Matter,2008,20(6):
    [97]Y. Xu, T. S. Khan, B. Yang, A. C. Lausche, Norskov J K, Bligaard T. Consistent Adsorbate-adsorbate Interaction Model for the Multi-site Microkinetic Trend Studies over Stepped Surfaces[J]. to be submitted.
    [98]Fan C, Zhu Y-A, Xu Y, Zhou Y, Zhou X-G, Chen D. Origin of synergistic effect over Ni-based bimetallic surfaces:A density functional theory study[J]. The Journal of Chemical Physics,2012,137(1):1-10.
    [99]Wei J M, Iglesia E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals[J]. Journal of Physical Chemistry B,2004,108:4094.
    [100]Jones G, Jakobsen J G, Shim S S, Kleis J, Andersson M P, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen J R, Chorkendorff I, Sehested J, Norskov J K. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts[J]. Journal of Catalysis,2008,259(1):147-160.
    [101]Rostrup-Nielsen J R. Sulphur-passivated nickel catalyst for carbon-free steam reforming of methane[J]. Journal of Catalysis,1984,85:31.
    [102]Bengaard H S, Alstrup I, Chorkendorff I, Ullmann S, Rostrup-Nielsen J R, Norskov J K. Chemisorption of methane on Ni(100) and Ni(111) surfaces with preadsorbed potassium[J]. Journal of Catalysis,1999,187(1):238-244.
    [103]Bhattacharjee T, Inderwildi O R, Jenkins S J, Riedel U, Warnatz J. Oxidation of hydrocarbons at surface defects:Unprecedented confirmation of the oxomethylidyne pathway on a stepped Rh surface[J]. Journal of Physical Chemistry C,2008,112(24): 8751-8753.
    [104]Shetty S, Jansen A P J, van Santen R A. Direct versus Hydrogen-Assisted CO Dissociation[J]. Journal of the American Chemical Society,2009,131(36):12874.
    [105]Chen Y, Vlachos D G. Density Functional Theory Study of Methane Oxidation and Reforming on Pt(111) and Pt(211)[J]. Industrial & Engineering Chemistry Research,2012, 51(38):12244-12252.
    [106]Inderwildi O R, Jenkins S J, King D A. Mechanistic studies of hydrocarbon combustion and synthesis on noble metals[J]. Angewandte Chemie-International Edition,2008, 47(28):5253-5255.
    [107]Norskov J K, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis[J]. Proceedings of the National Academy of Sciences,2011, 108(3):937-943.
    [108]Schumacher N, Boisen A, Dahl S, Gokhale A A, Kandoi S, Grabow L C, Dumesic J A, Mavrikakis M, Chorkendorff I. Trends in low-temperature water-gas shift reactivity on transition metals[J]. Journal of Catalysis,2005,229(2):265-275.
    [109]Neurock M. The microkinetics of heterogeneous catalysis. By J. A. Dumesic, D. F. Rudd, L. M. Aparicio, J. E. Rekoske, and A. A. Trevino, ACS Professional Reference Book, American Chemical Society, Washington, DC,1993,315 [J]. Aiche Journal,1994, 40(6):1085-1087.
    [110]Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter T R, Moses P G, Skulason E, Bligaard T, Norskov J K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces[J]. Physical Review Letters, 2007,99(1):016105.
    [111]Ferrin P, Nilekar A U, Greeley J, Mavrikakis M, Rossmeisl J. Reactivity descriptors for direct methanol fuel cell anode catalysts[J]. Surface Science,2008,602(21):3424-3431.
    [112]Jones G, Studt F, Abild-Pedersen F, Norskov J K, Bligaard T. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces[J]. Chemical Engineering Science,2011,66(24):6318-6323.
    [113]Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H, Sehested J. The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis,2004,224(1):206-217.
    [114]Michaelides A, Liu Z P, Zhang C J, Alavi A, King D A, Hu P. Identification of General Linear Relationships between Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces[J]. Journal of the American Chemical Society,2003,125(13): 3704-3705.
    [115]Pallassana V, Neurock M. Electronic Factors Governing Ethylene Hydrogenation and Dehydrogenation Activity of Pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) Surfaces[J]. Journal of Catalysis,2000,191(2):301-317.
    [116]Henkelman G, Johannesson G, Jonsson H. Methods for Finding Saddle Points and Minimum Energy Paths [M] Schwartz S. Theoretical Methods in Condensed Phase Chemistry; Springer Netherlands.2002:269-302.
    [117]Hummelshoj J S, Abild-Pedersen F, Studt F, Bligaard T, Norskov J K. CatApp:A Web Application for Surface Chemistry and Heterogeneous Catalysis[J]. Angewandte Chemie-International Edition,2012,51(1):272-274.
    [118]Wang S, Petzold V, Tripkovic V, Kleis J, Howalt J G, Skulason E, Fernandez E M, Hvolbaek B, Jones G, Toftelund A, Falsig H, Bjorketun M, Studt F, Abild-Pedersen F, Rossmeisl J, Norskov J K, Bligaard T. Universal transition state scaling relations for (de)hydrogenation over transition metals[J]. Physical Chemistry Chemical Physics,2011, 13(46):20760-20765.
    [119]Xu Y, Lausche A C, Wang S, Khan T S, Abild-Pedersen F, Studt F, Norskov J K, Bligaard T. In silico search for novel methane steam reforming catalysts [J]. New Journal of Physics,2013,15(12):125021.
    [120]Bradford M C J, Vannice M A. CO2 reforming of CH4[J]. Catalysis Reviews-Science and Engineering,1999,41(1):1-42.
    [121]S. Wang G L, G. J. Millar. Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts:State of the Art[J]. Energy & Fuels,1996, 10:896-904.
    [122]Teuner S C, Neumann R, Linde F V. Processing-CO through CO2 Reforming--The Calcor Standard and Calcor Economy Processes[J]. Oil Gas European Magazine,2001, 27(3):44-45.
    [123]Ferreira-Aparicio P, Rodriguez-Ramos I, Anderson J A, Guerrero-Ruiz A. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts[J]. Applied Catalysis A-General,2000,202(2):183-196.
    [124]Richardson J T, Garrait M, Hung J K. Carbon dioxide reforming with Rh and Pt-Re catalysts dispersed on ceramic foam supports[J]. Applied Catalysis A-General,2003, 255(1):69-82.
    [125]Budiman A W, Song S H, Chang T S, Shin C H, Choi M J. Dry Reforming of Methane Over Cobalt Catalysts:A Literature Review of Catalyst Development[J]. Catalysis Surveys from Asia,2012,16(4):183-197.
    [126]Lv X Y, Chen J F, Tan Y S, Zhang Y A highly dispersed nickel supported catalyst for dry reforming of methane[J]. Catalysis Communications,2012,20:6-11.
    [127]Ferreira-Aparicio P, Guerrero-Ruiz A, Rodriguez-Ramos I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts [J]. Applied Catalysis A-General,1998,170(1):177-187.
    [128]Crisafulli C, Scire S, Maggiore R, Minico S, Galvagno S. CO2 reforming of methane overNi-Ru and Ni-Pd bimetallic catalysts[J]. Catalysis Letters,1999,59(1):21-26.
    [129]Osaki T, Masuda H, Mori T. Intermediate Hydrocarbon Species for the CO2-CH4 Reaction on Supported Ni Catalysts[J]. Catalysis Letters,1994,29(1-2):33-37.
    [130]Nakamura J, Aikawa K, Sato K, Uchijima T. Role of Support in Reforming of CH4 with CO2 over Rh Catalysts[J]. Catalysis Letters,1994,25(3-4):265-270.
    [131]Rostrup-Nielsen J R, Hansen J H B. CO2-Reforming of Methane over Transition-Metals[J]. Journal of Catalysis,1993,144(1):38-49.
    [132]Bhat R N, Sachtler W M H. Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4[J]. Applied Catalysis A:General,1997,150(2):279-296.
    [133]Mark M F, Maier W F. Active Surface Carbon-a Reactive Intermediate in the Production of Synthesis Gas from Methane and Carbon-Dioxide[J]. Angewandte Chemie-International Edition in English,1994,33(15-16):1657-1660.
    [134]Lercher J A, Bitter J H, Hally W, Niessen W, Seshan K. Design of stable catalysts for methane-carbon dioxide reforming [M] Joe W. Hightower Wndei, Alexis T B. Studies in Surface Science and Catalysis; Elsevier.1996:463-472.
    [135]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity[J]. Applied Catalysis A:General, 1996,142(1):73-96.
    [136]Studt F, Abild-Pedersen F, Bligaard T, Sorensen R Z, Christensen C H, Narskov J K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene[J]. Science,2008,320(5881):1320-1322.
    [137]Andersson M, Abild-Pedersen F. CO adsorption energies on metals with correction for high coordination adsorption sites-A density functional study[J]. Surface Science,2007, 601:1747.
    [138]Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts[J]. Journal of Catalysis,1993,141(1):287-299.
    [139]De Jong K P, Geus J W. Carbon nanofibers:Catalytic synthesis and applications [J]. Catalysis Reviews-Science and Engineering,2000,42(4):481-510.
    [140]Grabow L, Hvolbaek B, Narskov J. Understanding Trends in Catalytic Activity:The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals[J]. Topics in Catalysis,2010,53(5-6):298-310.
    [141]Miller S D, Inoglu N, Kitchin J R. Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces[J]. The Journal of Chemical Physics,2011,134(10):
    [142]Grabow L C, Hvolbaek B, Norskov J K. Understanding Trends in Catalytic Activity:The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals[J]. Topics in Catalysis,2010,53(5-6):298-310.
    [143]Khan T S, Falsig H, Wang S, Guo W, Dahl S, Norskov J K, Bligaard T. Parameterization of an Interaction Model for Adsorbate-Adsorbate Interactions[J].2012, To be published.
    [144]Claridge J B, Green M L H, Tsang S C. Methane conversion to synthesis gas by partial oxidation and dry reforming over rhenium catalysts[J]. Catalysis Today,1994,21(2-3): 455-460.
    [145]Lide D R, Weast R C. CRC handbook of chemistry and physics [M]. Boca Raton, Florida:CRC Press,1987.
    [146]Chemicool, http://www.chemicool.com. [M].
    [147]Rase H F. Chemical reactor design for process plants [M]. Chemical reactor design for process plants. New York; Wiley & Sons.1900:256.
    [148]Studt F, Abild-Pedersen F, Wu Q X, Jensen A D, Temel B, Grunwaldt J D, Norskov J K. CO hydrogenation to methanol on Cu-Ni catalysts:Theory and experiment[J]. Journal of Catalysis,2012,293:51-60.
    [149]Wang L, Li D L, Koike M, Koso S, Nakagawa Y, Xu Y, Tomishige K. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas[J]. Applied Catalysis A-General,2011,392(1-2): 248-255.
    [150]Koh A C W, Chen L, Kee Leong W, Johnson B F G, Khimyak T, Lin J. Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts[J]. International Journal of Hydrogen Energy,2007,32(6):725-730.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700