区域尺度深部探测中的人工源震源特性及信号检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域尺度的研究对于了解和研究地壳上地幔的结构构造、物质组成、物质的物理化学性质以及热力学状态,研究大地构造,认识地球演化、强震分布规律和潜在震源区的定量化判别,寻找地下隐伏断裂、油气资源和成矿规律,发展地学理论都具有重要的理论和实践意义。天然地震受制于地域性、地震事件有限性以及震源定位误差的影响,观测的精度和分辨率受到限制。人工地震信号是一种由人工源激发出的探测信号,具有很强的确定性、可控性和可重复性,这些特性是人工震源与天然地震之间的本质区别。以人工震源构建地震雷达,从被动观测变为对地下状态和结构的主动探查,对于探测地下结构及其变化、认识灾害机理、探索地震的物理预测等,都有重要的意义。
     人工震源的激发能量很低,在利用人工震源进行大范围的地下探察时,如何提高人工震源的探测能力和探测距离是一个亟待解决的重要科学问题。
     本文针对人工震源能量小、探测能力有限,将人工地震激发过程和通信系统结合起来,从震源特性角度和信号检测角度研究了深部探测中人工震源探测遇到的问题。
     震源是地震勘探的重要组成部分,震源产生的地震波信号质量将直接影响地震研究的效果。炸药是陆地上使用时间最久、用途最广的震源。大当量的炸药可以实现数百公里的探测范围,而大当量炸药的破坏性以及费用高的缺点促使人们研究小药量激发实现远距离接收的可能性。研究发现炸药震源的信号具有一定的可重复性,在良好的激发和接收条件下选择小当量炸药可以作为震源,采取恰当的激发和信号处理方式能够实现远距离的信号接收。
     气枪是海洋地震勘探使用最广的震源,本文研究了大容量气枪在陆地水库激发的能量、频谱、探测距离、可重复性等特征。气枪单次激发能量等同于1.4-1.6kg的炸药,大容量气枪震源是具有10Hz以下低频信号的低频震源,单次激发信号可传播120km。气枪具有环保、经济、较高可操作性和高度可重复性的特点,是较理想的区域性研究的震源。界面对与气枪激发的信号有改造作用,在地震探测中,需要地震波有足够的透射能量,才能达到勘探要求的深度,获得更多的反射层信息。
     深部探测一般采用大容量的气枪或枪阵,本文研究了大容量气枪子波信号的模拟,并针对大容量气枪的特征作了修正。通过对子波的研究发现气泡脉冲包含的低频成分高,在深部探测中应设法增加气泡脉冲,增加低频段能量输出,这是深部探测中气枪设计和参数选择的关键。利用实验与模拟结果本文分析了工作参数对信号的影响,对阵列中气枪容量、工作压力、沉放深度和组合方式的选择等做出分析,数值模拟方法得到的阵列远场子波及其频谱分析表明数值模拟方法设计的气枪震源阵列能够满足实际生产的需要,是针对实际生产中的困难,省时、省力设计满足生产需求的不可或缺的重要手段。
     提高地震记录的信噪比,提取其中的有效地震信号是地震数据处理的基础性工作。规则噪声的自适应压制能适应规则噪声视速度的任意变化,可有效压制规则噪声,并且该方法对有效信号的畸变也较小,可以克服全局滤波的缺点。互信息量方法能够清晰地标示出待测信号的存在,有助于采用自动化的方法进行分析和处理。
     充分利用人工震源的可控性和可重复性,以现代信息科学的理论和方法为基础,探索如何通过地震信号处理指导人工震源的设计、激发和信号观测,以期提高人工震源的探察能力和探测距离,是地震学和现代信息科学的交叉领域。本文将激发方式和信号检测结合起来,激发方式采取了大当量激发地激发小当量信号,小当量多次激发以及小当量编码激发的方式,并分析了三种激发方式下的数据处理方法,包括相关处理,N次方根加权叠加,相位权重叠加以及编码技术,取得了较好的检测效果。
     本研究为利用小当量激发进行区域尺度深部探测提供了新的尝试和基础。
Seismic waves can spread through the Earth's interior, and it's the most effective means to explore Earth's interior information. The 4D map of regional structure of deep earth provides important information for earthquake prediction and understanding the continental geodynamics. Suitable seismic source and advanced recording and processing systems are necessary to produce the 4D map. Although natural earthquakes can release huge amounts of energy, the epicenters of natural earthquakes are not accurate enough to be used regional scale exploration. Artificial seismic signal is inspired by the artificial source; it is highly controllable and repeatable. These characteristics are the main difference between artificial source and natural seismic. Seismic radar built using artificial seismic source can help people observe underground state and structure initiatively; it has major significance for detecting underground structures and changes, understanding the mechanism of disasters, and studying physical forecast of earthquake. Energy of artificial source is very low. How to improve the detection ability and detection range of artificial source is very important scientific question.
     As active seismic source has low energy, its detecting ability is limited. We study the problem in active seismic source exploration from source character and signal detection. Explosion is the most common source for seismic exploration on the land. Traditionally, explosives are used as the seismic sources for exploring deep structure. However, explosives are expensive and have a large negative effect on the environment, so it is difficult to use them. Small explosive can be used as the seismic source for deep structure exploration if the source and receiver conditions are good enough.
     The airgun is the most important seismic source in marine exploration. We study energy spectrum, detection range, repeatability, and other features of high-capacity airgun firing in the reservoir. Energy of single airgun is equivalent to 1.4-1.6kg of explosives. Signal of high-capacity airgun include abundant low-frequency energy, single-shot signal can transmit to 120km. Airgun source is eco-friendly, economic, high controllable and high repeatable seismic source. It is a very useful source for regional studies. Interface can change the signal from airgun. In deep exploration, seismic waves should have enough transmission capacity to meet the requirements of the deep exploration, and help people get more information on the reflector.
     People use large-capacity airgun or airgun array in deep exploration. In this paper, We study simulating airgun wavelet signal, and making some amendments for high-capacity airgun. Through our study, we find that bubble pulse has more low-frequency components than pressure pulse. In deep structure exploration we should increase bubble pulse to increase low-frequency energy output. That's the key point for airgun design and parameter selection. We analyze the influence of work parameter such as airgun volume, work pressure and set depth to airgun signal. Airgun wavelet signal and its spectrum analysis from numerical simulation showed that numerical simulation can help us design airgun array to meet the actual needs. It is an important method for actual exploration.
     Improving the SNR of seismic records and extracting effective seismic signal is the basic work for seismic data process. Adaptive noise suppression method can effectively suppress noise, and the methods can overcome the shortcomings of the whole filter. Mutual information method can clearly mark out the tested signal and help us analyze and process seismic data automatically.
     Make full use of controllability and repeatability of the artificial source, based on modern information theory and approach, we study how to use seismic signal process to guide the design, inspiring mood, and signal observation of artificial source to improve detection ability and distance of active source. This is the cross field of seismology and modern information science.
     We combine inspiring method and signal detection, and use the following inspiring method, inspiring small shot in big shot area, a number of small shot excitation, as well as coding inspiring methods. We analyze the data-processing methods for the three shooting mode, including cross-correlation, N-th root weighted stack, phase weighted stack, as well as coding technology.
引文
[1] Aki K, 1984. Asperities, barriers, characteristic earthquake, and strong motion prediction. J. Geophys. Res., 89(B7), 5867-5872.
    [2] Alekseev A S, Chichinin I S, Korneev V A. 2005. Powerful low-frequency vibrators for active seismology [J]. Bull. Seismol. Soc. Am.95:1-17.
    [3] Anstey N.A. 1966. Correlation techniques-A review [J]. J. Can. Soc. Expl.Geophys. 2(1): 55-86.
    [4] Askeland B, Hobaek H, Mjelde, R. 2007. Marine seismics with a pulsed combustion source and Pseudo Noise codes[J]. Marine Geophysical Researches, 28(2): 109-117.
    [5] Avedik F, Renard V. 1993. Allenou P.J.Single bubble air-gun array for deep exploration [J], Geophysics, 58(3):366-382.
    [6] Baeten G, Ziolkowski A. 1990. The Vibroseis Source[M]. Oxford:Elsevier
    [7] Barbier M G, Bondon P, Mellinger R, et al.1976. Mini-SOSIE for land seismology [J]. Geophysical Prospecting, 24(3):518-527.
    [8] Bohnhoff M, Makris J. 2004. Crustal structure of the southeastern Iceland-Faeroe Ridge (IFR) from wide aperture seismic data[J]. Journal of Geodynamics, 37(2):233-252.
    [9] Boschetti F, Dentith D M, List D R. 1996. A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics, 61(4):1095~l102.
    [10] Bortfeld. 1961. Approximations to the reflection and transmission coefficients of plane longitudinal and tranverse waves [J].Geophysical Prospecting. 9:485-502.
    [11] Caldewll J, Dragoset W. 2000. A brief overview of seismic air-gun arrays [J].The Leading Edge, 19(8):898-902.
    [12] Caldwell J. 2002. Does air-gun noise harm marine mammals [J].The Leading Edge, 21(1):75-78.
    [13] Chapman W L, Brown G L, Fair D W. 1981.The Vibroseis system: A high-frequency tool [J]. Geophysics, 46(12):1657-1666.
    [14] Chen Y, Chen Q F, Liu J, et al. 2002. Seismic Hazard and Risk Analysis: A Simplified Approach [M].Beijing:Science Press
    [15] Chen Y, Liu L B, Ge H K, et al. 2008. Using an air-gun array in a land reservoir as the seismic source for seismotectonic studies in northern China:experiments and preliminary results.Geophysical Prospecting.56:601-612.
    [16]Crampin S.1999.Calculable fluid-rock interactions[J].Journal of the Geological Society,156(3):501-514.
    [17]Davis J L,Annan A P.1989.Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy[J].Geophysical Prospecting,37(5):531-551.
    [18]Dragoset,W.H.,1984.A comprehensive method for evaluating the design of air guns and air gun arrays[J].The Leading Edge,52:52-61
    [19]Dragoset W.2000.Introduction to air guns and air-gun arrays[J].The Leading Edge,19(8):892-987.
    [20]Dooley S R,Nandi A K.1999.Adaptive subsample time delay estimation using lagrange interpolators[J].IEEE Signal processing letters,6:65-67.
    [21]Fisher M A,Normark W R,Bohannon R G,Sliter R W,Calvert A J.2003.Geology of the continental margin beneath Santa monica bay,southern California,from seismic-reflection data.Bulletin of the Seismological Society of America,93(5):1955-1983.
    [22]Fuis G S,Clayton R W,Davis P M,et al.2003.Fault systems of the 1971 San Fernando and 1994 Northridge earthquakes,southern California:Relocated aftershocks and seismic images from LARSE Ⅱ[J].Geology,31(2):171-174.
    [23]Fuchs,Muller G.1971.Computation of synthetic seismograms with the reflectivity method and comparison with observation[M].Geophysics.17(2):97-105.
    [24]Gao Y.,Crampin S.2003.Temporal variations of shear-wave splitting in field and laboratory studies in China[J].Journal of Applied Geophysics,54(3-4):279-287.
    [25]Gelchinsky B,Shtivelman V.Automatic picking of first arrivals and parameterization of traveltime curves[J].Geophys.Prosp,1983,31:915-928.
    [26]Gelchinsky B,Shtivelman,V.1983.Automatic Picking of First Arrivals and Parameterization of Traveltime Curves,Geophysical Prospecting.31:915-928
    [27]Gibbons S J,Ringdal F.2006.The detection of low magnitude seismic events using array-based waveform correlation[J].Geophysical Journal International,165(1):149-166.
    [28]Giese P,Prodehl C,Stein A.1983.国家地震局地球物理勘探大队译,欧洲中部爆破地震研究[M].北京:地震出版社
    [29]Giles,B.F.and Johnston,.R.C.1973.System approach to airgun array design[J], Geophysical. Prospecting. 21:77-101.
    [30] Gilmore F. R. 1952. Collapse of a spherical bubble. Hydrodynamics Laboratory, California Institute of Technology, Report
    [31] Gitterman Y., Ben-Avraham Z., Ginzburg A. 1998. Spectral analysis of underwater explosions in the Dead Sea[J]. Geophys. J. Int., 134(2):460-472.
    [32] Hobbs R. W., Snyder D. 1992. Marine seismic sources for deep seismic reflection profiling. First Break, 10: 417-426.
    [33] Johnston R C. 1980. Comparison of 2000 and 6000psi airguns: theory and experiment. Geophysical prospecting, 28: 700-715.
    [34] Johnston R. C. 1982. Development of more efficient airgun arrays: theory and experiment. Geophysical prospecting, 30: 752-773.
    [35] Johnson, D.T. 1994. Understanding air-gun bubble behavior. Geophysics, 59(11):1729-1734.
    [36] Jones I F, Levy S. 1987. Signal-to-noise ratio enhancement in multichannel seismic data via the Karhunen-Loeve transform. Geophysical Prospecting, 35:12-32.
    [37] Kanasewich, E. R.1990.Seismic Noise Attenuation. Handbook of Geophysical Exploration, Pergamon Fress, Oxford.
    [38] Kanasewfoh E R, Hemmings C D, Alpaslan T,1973. N-th root stack nonlinear multichannel filter[J].Geophysics,38( 2), 327-338.
    [39] Keller, J. B., Kolodner, I.I. 1956. Damping of underwater explosion bubble oscillation. J. Applied Physics, 27(10):1152-1161.
    [40] Kirkwood, J. G., Bethe, H. 1942. Progress report on "The pressure wave produced by an underwater explosion".Office of Scientific Research and Development Report
    [41] Lutter W J, Fuis G S, Thurber C H, et al. Tomographic images of the upper crust from the Los Angeles basin to the Mojave Desert, California: Results from the Los Angeles Region Seismic Experiment: 145.
    [42] Langhammer J., Landro, M.1993.Temperature effects on airgun signatures. Geophysical prospecting, 41:737-750.
    [43] Langhammer J. , Landro, M. Martin, J. 1995.Air-gun bubble damping by a screen.Geophysics, 60(6): 1765-1772.
    [44] Landro, M. 1992. Modeling of GI gun signatures[J]. Geophysical Prospecting, (40):721-747.
    [45] Lau K. W. H., White R. S., Christie P. A. F. 2007. Low-frequency source for long-offset, sub-basalt and deep crustal penetration. The Leading Edge, 26(1): 36-39.
    [46] Lunnon. 2003. An evaluation of peak and bubble tuning in sub-basalt seismology: modeling and results from OBS. EAGE 65th Conference & Exhibition.
    [47] Maurice G, Barbier.1982. Pulse coding in seismology[M]. Boston:International Human Resources Development Corporation.
    [48] Mayne W. H., Quay R. G, 1971. Seismic signatures of large air guns: Geophysics. 36(6): 1162-1173
    [49] McCauley R D, Fewtrell J, Duncan A J, et al. 2000. Marine seismic surveys-a study of environmental implication[J]. APPEA Journal. 40:692-708.
    [50] McFadden P L, Drummend B J Kravis S. 1986. N-th root stack: theory, applications and examples[J], Geophysics, 51:879-892.
    [51] Miller R D, Pullan S E, Waldner J S, et al.1986. Field comparison of shallow seismic sources[J]. Geophysics, 51:2067.
    [52] Mooney W D, 1989. Seismic methods of determining earthquake source parameters and lithospheric structure [J].Geophysical Society of America Memoir, 172:11-34
    [53] Muithead, K J, Dart R , 1976. The N-th root process apphed to seismic array data. Geophysics. J. R. Astr. Soc, 47:197-210.
    [54] Nazareth J J, Clayton R W.2003. Crustal structure of the Borderland-Continent Transition Zone of southern California adjacent to Los Angeles[J]. J. Geophys Res., 108(B8):2404.
    [55] Ni S, Kanamori H, Helmberge D.2005. Energy radiation from the Sumatra earthquake[J]. Nature, 434(582).
    [56] Okaya D, Bhowmik J, Fuis G, Murphy J, Robertson M, Chakraborty A, Benthien M, Hafner K, Norms J. 1994. LARSE: explosion data acquired at onshore stations during the Los Angeles Region Experiment(LARSE)
    [57] Okaya D, Henrys S, Stem T.2002. Double-side onshore-offshore seismic imaging of a plate boundary:"super-gathers" across South Island, New Zealand[J]. Tectonophysics, 255:247-263.
    [58] Oliver J, Cook F,Brown L.1983. COCORP and the continental crust[J]. JGR. 88(B4):3329-3347.
    [59] Pascouet A. 1991. Something new under the water: the bubbleless air gun. Geophysics: the leading edge of exploration, 33:79-81
    [60] Peraldi R, Clement A. 1972. Digital processing of refraction data-study of first arrivals, Geophysical Prospecting. 20:529-548
    [61] Piersol A G. 1981.Time delay estimation using phase data [J].IEEETrans.on ASSP. 29(3): 471-477.
    [62] Qiu X L, Ye S, Wu S. 2001. Crustal structure across the Xisha Trough, northwestern South China Sea[J].Tectonophysics, 341:179-193.
    [63] Rayleigh, O. M. 1917. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Mag, 34:94-98.
    [64] Reasenberg P, Aki K. A.precise, continuous measurement of seismic velocity for monitoring in situ stress[J]. J. Geophys. Res., 1974. (79):399-406.
    [65] Roberts, P. M. 1991. Development of the active doublet method for monitoring small changes in crustal properties, Seismol. Res. Lett., 62(1):36-37.
    [66] Roberts, P. M., Phillips, W. S. and Fehler, M. C. 1992. Development of the active doublet method for measuring small velocity and attenuation changes in solids. J. Acoust. Soc. Am.,91(6):3291-3302.
    [67] Ronen S. 2002. Psi, pascal, bars, and decibels[J]. The Leading Edge, 21:60-61.
    [68] Rubin A.M. 2002. Using repeating earthquakes to correct high-precision earthquake catalogs for time-dependent station delays. Bull. Seis. Soc. Amen, 92:1647-1659.
    [69] Safar, M. H.1976. Radiation of acoustic waves from an air-gun. Geophysical Prospecting, 24:756-772
    [70] Shannon,C. E.1948. A mathematical theory of communication, Bell System Technical Journal, 27:379-423(part I), 623-656(part II).
    [71] Sharpe J A. 1942. The production of elastic wave by explosion pressures. I: Theory and empirical field observations. Geophysics, 7(2): 144-154.
    [72] Sinclair, J. E., Bhattacharya, G.. 1980. Interaction effects in marine seismic source arrays. Geophysical Prospecting, 28:323-332
    [73] Scarbrough K, Ahmed N, Cater G C.1981. On the simulation of a class of time delay estimation algorithms [J].IEEE Trans. on ASSP,29:534-540.
    [74] Schaff D P, Richards P G. 2004. Repeating Seismic Events in China[J]. Science, 303(5661): 1176-1179.
    [75] Sheriff R. E., Geldart L. P..1982. Exploration Seismology: History, Theory, and Data Acquisition. Cambridge: Cambridge Univ. Press
    [76] Schulze-Gattermann, R.1972. Physical aspects of the "Airpulser" as a seismic energy source[J]. Geophysical Prospecting, 20:155-192
    [77] Schimmel M., Paulssen H, 1997. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophysical Journal International, 130:497-505.
    [78] Schimmel M. 1999. Phase cross-correlations: design, comparisons and applications [J], Bull. Seismol. Soc. Am. 89:1366-1378
    [79] Shillington D J, Minshull T A, Peirce C, et al.2008. P-and S-wave velocities of consolidated sediments from a seafloor seismic survey in the North Celtic Sea Basin, offshore Ireland[J]. Geophysical Prospecting. 56(2): 197-211.
    [80] Steer D N, Brown L D, Knapp J H, et al.1996. Comparison of explosive and vibroseis source energy penetrationduring COCORP deep seismic reflection profiling in the Williston Basin[J]. Geophysics, 61(1):211-221.
    [81] Stern T, Okaya D, Scherwath M. 2002. Structure and strength of a continental transform from onshore-offshore seismic profiling of South Island, New Zealand[J]. Earth Planets & Space, 54:1011-1019.
    [82] Stevenson R.1976. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing[J].Bull Seism Soc Amer. 66:61-79.
    [83] Vaage, S.. Ursin, B., Haugland, K. 1984. Interaction between airguns[J]. Geophysical Prospecting, 32:676-689
    [84] Van Avendonk H. J. A., Holbrook W S, Okaya D, et al. 2004. Continental crust under compression: a seismic refraction study of South Island Geophysical Transect, South Island, New Zealand[J]. J. Geophys. Res., 109, B06302.
    [85] White R E.1977.The performance of optimum stacking filters in suppressing uncomelated noise. Geophysical Prospecting, 25: 165-178.
    [86] Willis D E. 1963. Seismic measurements of large underwater shots[J]. Bulletin of the Seismological Society of America, 53(4):789.
    [87] William J Lutter, Gary S Fuis, Clifford H Thurber, Janice Murphy. 1999. Tomographic images of the upper crust from the Los Angeles basin to the Mojave Desert,California:Result from the Los Angeles Region Seismic Experiment.Journal of Geophysical Research,104(B11),25:543-565.
    [88]Yamamura K,Sano O,Utada H,et al.2003a.Long-term observation of in situ seismic velocity and attenuation[J].J.Geophys.Res.,108(B6):2317-2331.
    [89]Yamamura K,Sano O,Utada H,et al.2003b.Long-term observation of in situ seismic velocity and attenuation[J].Journal of Geophysical Research,108(B6):2317.
    [90]Yilmaz O.1987.Seismic Data Processing.Tulsa:Society of Exploration Geophysicists.
    [91]Zhao M,Qiu X,Xia S,et al.2008.Identification and analysis of shear waves recorded by three-component OBS in northeastern South China Sea[J].Progress in Natural Science,18(2):181-188.
    [92]Zhou H W.2004.Multi-scale tomography for crustal P and S velocities in southern California[J].Pure and Applied Geophysics,161:283-302.
    [93]Zheng C.2003.A new time delay estimation based on ETDE[J].IEEE Trans.on signal processing,51:1859-1869.
    [94]Ziolkowski,1970.A method for calculating the output pressure waveform from an airgun[J].J.Geophys.R.Astr.Soc.21:137-161.
    [95]Ziolkowski.1998.Measurement of air-gun bubble oscillations[J].Geophysics,63(6):2009-2024.
    [96]Ziolkowski,A..Parkes,G.,Hatton,L.1982.The signature of an air-gun array:computation from near-field measurements including interactions.Geophysics.47:1413-1421.
    [97]安艺敬一,P G 理查兹.1987.定量地震学[M].北京:地震出版社.
    [98]彼得.鲍曼.2006.新地震观测实践手册[M].北京:地震出版社.
    [99]常旭,刘伊克.1998.Hausdorff分数维识别地震道初至走时[J].地球物理学报,41(6):826-832.
    [100]陈遵德,段天友,朱广生.1994.SVD滤波方法的改进及应用[J].石油地球物理勘探,29(6):783-792.
    [101]陈浩林,宁书年,熊金良.2003.气枪阵列子波数值模拟[J].石油地球物理勘探,38(4):363-368.
    [102]陈浩林.2002.气枪震源单枪子波计算机模拟[J].物探装备,12(4):241-244.
    [103]陈颐,陈龙生,于晟.2003b.城市地球物理学发展展望[J].大地测量与地球 动力学,23(4):1-4.
    [104]陈颙,李丽.2003a.地震科学的几个发展趋势[J].国际地震动态,1:2-6.
    [105]陈颙,王宝善,葛洪魁等.2007a.建立地震发射台的建议[J].地球科学进展,22(5):441-446.
    [106]陈颙,李宜晋.2007b.地震波雷达研究展望:用人工震源探测大陆地壳结构[J].中国科学技术大学学报,37(8):813-819.
    [107]陈颙,张尉,陈汉林等.2006.地震雷达[J].地球物理学进展。21(1):1-5.
    [108]陈颙,张先康,丘学林等.2007c.陆地人工激发地震波的一种新方法[J].科学通报,52(11):1317-1321.
    [109]陈颙,周华伟,葛洪魁.2006a.华北地震台阵探测计划[J].大地测量与地球动力学,25(4):1-5.
    [110]陈颙,朱日祥.2005.设立“地下明灯研究计划”的建议[J].地球科学进展,20(5):485-48.
    [111]方盛明,张先康,刘保金等.2002.探测大城市活断层的地球物理方法[J].地震地质,24(4):606-613.
    [112]傅承义,陈运泰,祁贵仲.1985.地球物理学基础[M].北京:科学出版社.
    [113]高锐,李秋生,赵越等.2002.燕山造山带深地震反射剖面启动探测研究[J].地质通报,21(12):905-906.
    [114]苟量.2005.中国西部复杂山地山前带地震勘探应用技术研究[D]:博士.成都理工大学。
    [115]葛洪魁,林建民,王宝善等.2006.编码震源提高地震探测能力的野外实验研究[J].地球物理学报,49(3):864-870.
    [116]嘉世旭,刘昌铨.1995.华北地区人工地震测深震相与地壳结构研究[J].地震地质,17(2):97-105.
    [117]嘉世旭,齐诚,王夫运等.2005b.首都圈地壳网格化三维结构[J].地球物理学报,48(6):1316-1324.
    [118]嘉世旭,张先康,方盛明.2001.华北裂陷盆地不同块体地壳结构及演化研究[J].地学前缘,8(2):259-265.
    [119]嘉世旭,张先康.2005a.华北不同构造块体地壳结构及其对比研究[J].地球物理学报,48(3):611-620.
    [120]李辉,戴旭初,葛洪魁,等.2007基于互信息量的地震信号检测和初至提取方法 [J].地球物理学报,50(4):1190-1197.
    [121]李庆忠.1993.走向精确勘探的道路[M].北京:石油出版社.
    [122]李秋生,卢德源,高锐,等.2001.新疆地学断面(泉水沟.独山子)深地震测深成果综合研究[J].地球学报,22(6):534-540.
    [123]李松林,张先康,宋占隆等.2001.多条人工地震测深剖面资料联合反演首都圈三维地壳结构[J].地球物理学报,44(3):360-370.
    [124]梁慧云,李松林.2004.俄罗斯的人工地震探测研究进展[J].大地测量与地球动力学,24(4):117-122.
    [125]梁慧云,张先康.各国地壳上地幔深地震反射研究计划与进展[J].1996.地球物理学进展,11(1):42-60.
    [126]廖成旺,庄灿涛,梁鸿森.2003.精密可控常时震源系统(ACROSS)的初步实验[J].中国地震,19(1):89-96.
    [127]林建民,王宝善,葛洪魁,唐杰,张先康,陈颙.2008.大容量气枪震源特征及地震波传播的震相分析[J].地球物理学报,51(1):206-212.
    [128]林建民,王宝善,葛洪魁等.2006.重复地震及其在人工探测中的潜在应用[J].中国地震,2006.22(1):1-9.
    [129]林君.2004.电磁驱动可控震源地震勘探原理及应用[M].北京:科学出版社.
    [130]刘洪斌,陈如恒.1997.地震勘探震源的历史与发展[J].石油机械,25(8):43-45,52.
    [131]卢德源,李秋生,高锐等.2000.横跨天山的人工爆炸地震剖面[J].科学通报,45(9):982-988.
    [132]刘兵.2005.气枪震源子波数值模拟及其应用[D]:[硕士].中国海洋大学.
    [133]罗桂纯,葛洪魁,王宝善等.2007.气枪震源激发模式及应用[J].中国地震,23(3):225-232.
    [134]罗桂纯,王宝善,葛洪魁等.2006.气枪震源在地球深部结构探测中的应用研究进展[J].地球物理学进展,21(2):400-407.
    [135]罗桂纯.2006.利用相关检测法进行地震波速及其变化的精确测量[D]:[硕士学位论文].北京:中国地震局地震预测研究所.
    [136]美国“地球透镜计划”项目组.2004.美国“地球透镜计划”[J].国际地震动态,3:22-41.
    [137]聂文英,祝治平,张先康等.1998.穿过张家口—渤海地震带西缘的折射剖面所 揭示的地壳上地幔构造与速度结构[J].地震研究,21(1):94-101.
    [138]潘纪顺,刘保金,朱金芳等.2002.城市活断层高分辨率地震勘探震源对比试验研究[J].地震地质,24(4):533-541.
    [139]钱荣钧.2003.炸药震源激发效果分析[J].石油地球物理勘探,38(6):583-588.
    [140]钱绍瑚,李套山.1998.炸药震源爆炸机制及激发条件的研究[J].石油物探,37(3):1-14,33.
    [141]丘学林,陈颙,朱日祥等.2007.大容量气枪震源在海陆联测中的应用:南海北部试验结果分析[J].科学通报,52(1):1-7.
    [142]丘学林,赵明辉,叶春明等.2003.南海东北部海陆联测与海底地震仪探测[J].大地构造与成矿学,27(4):295-300.
    [143]施浒立.2004.美国GPS的发展之路,科学时报.
    [144]唐杰,王宝善,葛洪魁,陈颙.2008.小当量激发的远距离信号检测研究[J].地球物理学报,51(6):1810-1818.
    [145]唐杰,王宝善,葛洪魁,陈颙.大容量气枪震源的实验与模拟研究[J].中国地震(已录用).
    [146]陶知非.1995.可控震源的现状与问题[J].石油物探装备,5(1):11-26.
    [147]王勇,骊军,张奎凤.1998.基于小波变换的地震信号降噪处理[J].石油物探,37(3):72-76.
    [148]王云峰.1996.高分辨率空气枪阵列及子波研究[J].中国海上油气(地质),10(6):395-401.
    [149]魏福吉.2003.山前复杂构造带地震勘探野外采集方法研究[D]:[硕士].中国海洋大学.
    [150]徐明才,高景华.1992.欧美陆地反射地震调查[J].国外地质勘探技术,6:17-22.
    [151]徐锡伟,吴卫民,张先康等.2002.首都圈地区地壳最新构造变动与地震[M].北京:科学出版社.
    [152]杨光亮,朱元清.2007.可控震源在深部地壳探测中的应用[J].大地测量与地球动力学,27(5):72-81.
    [153]杨怀春,高生军.2004.海洋地震勘探中空气枪震源激发特性研究[J].石油物探,43(4):323-326.
    [154]姚陈.1992.卢龙地区S波偏振与上地壳裂隙各向异性[J].地球物理学报, 35(3):305-315.
    [155]原秦喜,孙鸿,戴鹏,等.1999.人工地震测深和天然地震流动观测兼用的轻便数字地震仪系统[J].中国地震,15(2):159-166.
    [156]张雪亮,黄树棠.1981.爆破地震效应[M].北京:地震出版社.
    [157]张智,刘财,邵志刚.2003.地震勘探中的炸药震源药量理论与实验分析[J].地球物理学进展,18(4):724-728.
    [158]张尉.2008.利用小当量人工震源进行区域性深部探测的实验研究[D]:[博士].浙江大学.
    [159]赵明辉,丘学林,夏戡原等.2004.南海东北部海陆联测地震数据处理及初步结果[J].热带海洋学报,23(1):58-63.
    [160]赵明辉,丘学林,夏少红等.2007.南海东北部三分量海底地震仪记录中横波的识别和分析[J].自然科学进展,17(11):1516-1523.
    [161]阳生权.2002.爆破地震累积效应理论和应用初步研究[D]:[博士].中南大学.
    [162]朱日祥.2007.地球内部结构探测研究-以华北克拉通为例[J].地球物理学进展,22(4):1090-1100.
    [163]郑秀芬,张春贺,孙振凯.2004.美国“地球透镜计划”[J].国际地震动态,3:22-41.
    [164]臧绍先,周元泽.1988.N次根倾斜叠加方法在间断面研究中的应用[J].地球物理学报,31(1):27-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700