整体结构及其表示与推理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用计算机解决应用问题的一般过程可以概括为:对于某个给定领域和目标,应用某种语言为该问题建立可计算的模型。这个过程主要涉及本体论、语言(逻辑)和计算三个领域的理论和技术,其中本体论是核心与起点。本文的工作涉及上述三个方面。
     一、本体论方面的工作
     基于对部分整体关系(partof)的分析,提出了整体结构。partof关系因具有特殊的语义以及在本体论中的重要地位而广受关注。本文讨论并分析了使用partof来表示整体的局限性、困难性和复杂性,指出问题的关键所在是没能体现partof的特殊语义。分析表明,partof是in关系的子关系,其特殊语义与本体依赖和整体性有本质的联系。这种特殊语义不能被当前的表示语言以直观的方式来体现和刻画。为克服这一问题引入了整体结构构造,该构造具有很强的本体能力。通过它,整体被表示成结构化的实体,由一系列内在事物按照某种完整性约束组合而成。partof和in关系的特殊语义可以通过整体结构与其内部事物之间的关系来体现。由于整体结构具有天然的模块化性质和局部化语义,因此可以使得知识表示更加自然和简洁。
     基于整体结构,提出了一种非常一般的角色模型。角色是另一个受到广泛关注的概念,它对于整体结构的定义也是至关重要的。相关研究表明,角色的表示及其语义与对象和上下文有着密切关系。要形式化角色,必须首先形式化上下文。整体结构本质上是上下文,基于它,提出了一个新的角色模型:角色是不同于对象(类)的类型,二者之间必须通过play关系联系;角色总是整体结构的内部事物,其扮演者(对象)必须位于整体结构外部;角色实例存在依赖于扮演者和上下文。该模型为角色概念提供了统一的表示形式,能够体现当前关于角色的几乎所有特征。
     基于哲学本体论框架,提出了本体论元建模体系结构(OMMA)。在哲学界,本体论至少涉及三个主要组成部分:一组基本范畴的列表、基本范畴的性质以及相互间的关系、用于解释基本范畴的形而上学。三级实例化结构和Peirce三分法以非常抽象的方式体现了这个框架的基本原理。基于它们,提出了OMMA和存在的一般表示模式:后者指明前者在每个级别上的核心任务是通过整体结构建立事物间的依赖关系。OMMA的核心观点是赋予(同一级别事物间的)in关系和(相邻级别事物间的)实例化关系以相同的基础性地位。其可以作为构建形式理论、定义元语言和本体描述语言的指导原则。
     二、形式化本体描述语言方面的工作
     基于OMMA,提出了一个新的本体描述语言,可将它视为传统逻辑语言的整体结构扩展。
     该语言将整体结构看作是基本的语法成分,因此无论是语法上还是语义上都发生了重要改变。语法方面,除了整体结构外,还要求在引用内部事物时,必须明确的指出其所在的整体结构,称这样的概念(实例)为具体概念(实例)。语义方面,单纯的集合论对于整体性和本体依赖的语义解释是不够的。为此,提出了一种新的形式理论,其在集合论的基础上增加了in关系和内涵结构。
     基于该语言,形式定义了基本范畴之间的本体依赖关系,刻画了Is-A和play等重要关系的性质和约束。特别是,形式地刻画了角色的基本性质和特征。另外,根据对角色实例的两种不同观点,给出了本体描述语言的两种语义解释。
     将该语言应用于UML静态结构的形式化表示。UML的某些表示不够严格,不能将其直接转化为本文提出的形式化语言表示,因此应首先规范UML静态建模元素的表示。为此,根据本文提出的本体元建模体系结构,提出了一个UML表示的新框架,形式定义了UML的几个基本构造。符合相关约束的UML表示可以直接地转化为本文提出的本体描述语言。另外,该框架的一个副产品是不同视角的模型可以被融合在一起。
     三、可判定描述逻辑方面的工作
     描述逻辑(DLs)是当前知识表示特别是本体描述的最为重要的形式体系之一,其强调概念间的包含关系以及描述语言的可判定性。本文用整体结构来扩展描述逻辑,得到表达能力更强同时可判定的描述语言。这个结果主要源于整体结构具有特殊的模型论性质。
     首先,讨论了描述逻辑的两种关系约束扩展。第一个采用整体结构来表示关系。由于整体结构具有天然的模块性,与同一个关系有关的约束可以被紧凑地组织在一起。这样,多元关系就能以非常自然的方式表达出来,推理效率也会得到提高。第二个用关系的无环约束和有限链约束来扩展DLs。这个扩展可以给出有向无环关系和良建性质的基本约束。两种扩展都是可判定的。
     基于整数规划分别系统地提出了有和无基数约束(又称CBox)DLs的有限模型推理算法(FMRA)。FMRA对于整体结构的可满足性至关重要。
     指出无基数约束描述逻辑的FMRA的主要困难所在,提出了受限子类型概念作为对策。基于这一概念,给出了不同DL的FMRA。这些算法与己提出的算法相比更加简单和实用。进一步,证明了基本描述逻辑ALC关于CBox推理是非确定指数完全的。这说明DLs关于CBox推理是一致地困难。讨论了有和无基数约束描述逻辑在FMRA上的关键不同点,为具有基数约束的描述逻辑提出了实用的FMRA。这些算法填补了DLs在FMRA方面的一个空白。
     最后,提出了描述逻辑的整体结构扩展并给出了推理算法。该算法本质上是无限制模型的场景算法与FMRA的混合,其中,FMRA主要处理整体结构的内部可满足性问题。证明了该扩展的可判定性,展示了该扩展的表达能力。
     本文的主要贡献可以概括为:一个好的本体论基础对形式理论以及描述语言都有重大影响,而后者又进一步影响了寻找表达能力更强且可判定的受限语言的可能性。本文的研究在本体论、本体描述语言和可判定性语言方面均有所突破。希望本文的工作有助于构建一个更加强大的理论基础,也希望其能为诸如软件工程等领域提供一个更加自然、简单和强大的形式化语言支持。
The process applying computer to solve an application problem can be summarized as using language and Ontology to build computable models of the domain for certain purpose. This process involves at least three main fields, namely, Ontology, logic and computation. Among them, Ontology is the kernel and start point. The work of this thesis is divided into three parts according to the three fields.
     1 The work related to Ontology
     Based on the detailed discussion and analysis on Part-Whole relationship (partof), this thesis presents the construct named whole structure. Part-Whole relation has caused considerable attention due to its special semantics and important status in Ontology. Firstly, it is shown that the representation of whole with partof is a rather complex, difficult and error-prone task. The main reason is that the special semantics of partof is ignored in these representations. Based on the deep analysis, it is revealed that partof is the specialization of in relation and its special semantics lies in ontological dependence and unity. Further, it is pointed out that this special semantics can not be captured by the current formal languages in a natural way. To overcome this problem, whole structure, a construct with very strong ontology power, is introduced. By it, a whole is represented as a structured thing which is comprised of some internal things. In this kind of representations, the special semantics of partof and in relation can be directly expressed by whole structure and its internal things. Because the whole structure possesses inherent modularity and local semantics, the representation is very natural and simple.
     Based on the whole structure, a general role model is given. Role is another notion received considerable attention. Furthermore, roles are crucial to the representation of wholes. The related work has shown that role is a very important and fundamental notion and its semantics is tied up with object and context. To formalize the role, we should formalize the context first. Because the whole structure is essentially a formal construct corresponding to context, it can be used to formalize the primary characteristics of roles. The result is a novel role model. In this model, roles are explicitly distinguished from objects but always played by objects; roles are always internal to some whole structure; roles are existentially dependent on their players and contexts they reside in. This model is very simple and general to capture almost all characteristics of roles.
     Based on the research of Ontology in philosophy, an ontological metamodeling architecture (OMMA) is proposed. In philosophy, Ontology consists of at least three main parts: a list of basic categories, the properties of these categories and the basic relations between them, a metaphysics framework for explaining these categories. There are also two principles, i.e., the three levels instantiation structure and Peirce's trichotomy reflect some basic ideas underpinning Ontology. Base on these principles, this thesis present OMMA and a general pattern for representing being. This pattern reveals that the main task in the each level of OMMA is to construct the dependence relations among being by whole structure. This architecture serves as the foundation for defining formal theory, ontology language and metalanguage in this thesis.
     2 The work related to logic language
     Based on OMMA, a novel ontology language is presented which can be viewed as the extension of the traditional language with whole structure.
     In this language, whole structure is an inherent syntax element, and thus the syntax and semantics are both changed greatly. In syntax, it is regulated that when referring internal elements they must be accompanied with their whole structure (context). This kind of concepts (instances) are called concrete concepts (instances). In semantics, set theory alone is not enough. A new formal theory is proposed by extending set theory with in relation and intension structure. In other words, in relation is endowed with the same fundamental status as instantiation.
     With this language, several important relations such as Is-A, play and ontological dependence are formally defined. Especially, roles are also formally characterized. Further, two kinds of semantics are proposed based on two different views on role instances.
     This language is applied to the formalization of UML static diagrams. The representation with UML is not strict enough to gain its formal semantics based on the presented language. So, the primary task is to give formal specifications to the main UML modeling elements. For this, a new framework for formalizing UML static diagrams is presented and it can be viewed as a specialization of the proposed OMMA. Further, several basic constructs of UML are formally defined within this framework. Base on them, the representation of UML becomes more strick and they can be easily transformed into the language presented in this thesis. Furthermore, the separated models for modeling different aspects can be fused together in an inherent way.
     3 The work related to the extension of Description Logics with whole structure
     Description Logics (DLs) are one of the most important knowledge representation formalism. They emphasize on the inclusion relation between concepts and provide sound and complete reasoning services for key reasoning problems. The main work in this part is to present a decidable and more power language by extending DLs with whole structure. This result is attributed to the properties of the model theory resulted from whole structure.
     Two decidable extensions of DLs with relation restrictions in different ways are given. The first one adopts whole structure to represent relations. Because of the inherent modularity of whole structure, the restrictions related to the same relation can be compactly organized together. By this, n-arity relations can be represented in a natural way and the efficiency of reasoning algorithm can also be improved. The other one extends DLs with acyclic and finite chain relation restrictions, which can capture the constraints of directed acyclic relations and well-founded property. Both of the two extentions are decidable.
     The second contribution of this part is to establish the finite model reasoning algorithms (FMRA) of DLs with or without cardinality restrictions (called CBox also) respectively based on integer programming. The finite model restriction is crucial to the satisfiability of concepts with whole structure.
     Based on the detailed analysis, the main difficulty in the FMRA of DLs without cardinality restrictions is pointed out. To tackle it, the notion of qualified subtype is introduced. With this notion, several FMRA in different DLs are presented. They are more simple and practical than the ones proposed in the related work. For the FMRA of DLs with CBox, the analysis of their computation complexities reveals that the reasoning in the basic description logic ALC w.r.t. CBox is NExpTime-complete. This means that the reasoning in DLs w.r.t. CBox is commonly difficult. Further, the key difference on FMRAs between the DLs with CBox and the ones without CBox is analyzed. Several practical algorithms with tight upper bound complexity for the DLs with CBox are presented. To the best of my knowledge, this is the first practical finite model decision procedure for DLs with CBox.
     At last, this thesis presents a formal language by extending the DL ALCIQ with whole structure. Its sound and complete algorithm is also given. Essentially, this algorithm is a hybrid of tableau algorithm with FMRA where the later is used to decide the satisfiability of whole structure. It is shown that this language can significantly improve the expressivity of DLs.
     The main contribution of this thesis can be summarized as a good ontology base has great influence on the formal theory and languages, and the later further impact the com-putability of their restricted sublanguages. Several creative contributions are made among three main fields. It is hoped that the results of this thesis can help the establishment of the more powerful foundation, and can also help to provide the more nature, simple and powerful languages for other fields such as software engineering.
引文
[1]Sowa J F.Knowledge Representation:Logical,Philosophical,and Computational Foundations.Pacific Grove,CA:Brooks/Cole Publishing Co.,2000
    [2]金芝.知识工程中的本体论研究.北京:清华大学出版社,2001
    [3]Stanford Encyclopedia of Philosophy.Categories,2004.Http://plato.stanford.edu/entries/categories/
    [4]Aristotle.Categories.Oxford:Clarendon Press,1963.Translated with notes by J.L.Ackrill
    [5]Stanford Encyclopedia of Philosophy.Substance,2004.Http://plato.stanford.edu/entries/substancel
    [6]Stanford Encyclopedia of Philosophy.Ontological Dependence,2005.Http://plato.stanford.edu/entries/dependence-ontological/
    [7]Stanford Encyclopedia of Philosophy.Aristotle's Metaphysics,2003.Http://plato.stanford.edu/entries/aristotle-metaphysics/
    [8]Stanford Encyclopedia of Philosophy.Identity,2006.Http://plato.stanford.edu/entries/identity/
    [9]Guarino N,Welty C.Identity and subsumption.In R.Green,C.A.Bean,S.Hyon Myaeng(eds.),The Semantics of Relationships:An Interdisciplinary Perspective.Kluwer:Clarendon Press,2001
    [10]Guarino N,Welty C.Supporting ontological analysis of taxonomic relationships.Data and Knowledge Engineering.2001,39(1):51-74
    [11]Guarino N.Concepts,attributes and arbitrary relations.Data and Knowledge Engineering.1992,8:249-261
    [12]Guarino N.Some Ontological Principles for Designing Upper Level Lexical Resources.R.Castro A.Tejada A.Rubio,N.Gallardo,(Editor) Proceedings of First International Conference on Language Resources and Evaluation.1998,527-534
    [13]Gangemi A,Guarino N,Masolo C,Oltramari A.Understanding top-level ontological distinctions.Proceedings of IJCA12001 Workshop on Ontologies and Information Sharing.Seattle,Washington,2001,26-33
    [14]Guarino N.Formal Ontology and Information Systems.Proceedings of Formal Ontology and Information Systems(FOIS'98).lOS Press,1998,3-15
    [15]Neches R,Fikes R,Finin T,Gruber T,Patil R,Senator T,Swartout W R.Enabling technology for knowledge sharing.AI Magazine.1991,12(3):36-56
    [16]Gruber T.A Translation Approach to Portable Ontology Specifications.Knowledge Acquisition.1993,5(2):199-220
    [17]Guarino N,Giaretta P.Ontology an Knowledge Bases- towards a terminological clarification.ISO Press,1995
    [18]Borst P,Akkermans H.Engineering Ontologies.International Journal of Human-Computer Studies.1997,46:365-406
    [19]陆汝钤,姬广峰.关于常识的研究.北京:清华大学出版社,2001
    [20]Ogden C K,Richards I A.The Meaning of Meaning.New York:Harcourt,Brace,and World,8th ed.,1946
    [21]Guarino N.Formal Ontology and Information System.in:Proceeding of FOIS'98,Amsterdam,IOS Press,1998,3-15
    [22]Technical Committee T2 National Committee for Information Technology Standards.Draft proposed American national standard for Knowledge Interchange Format,1998.Http://logic.stanford.edu/kif/dpans.html,1998.
    [23]Inference Engines for the Semantic Web.http://www.semanticWeb.org/inference.html
    [24]Baader F,Calvanese D,McGuinness D,Nardi D,Patel-Schneider P,(Editors) The Description Logic Handbook.Cambridge University Press,2003
    [25]W3C Recommendation.OWL Web Ontology Language Overview,10 2004.Available at:http://www.w3.org/TR/owl-features/
    [26]W3C Recommendation.OWL Web Ontology Language Guide,10 2004
    [27]W3C Recommendation.Resource Description Framework(RDF):Concepts and Abstract Syntax,2 2004.Available at:http://www.w3.org/TR/rdf-concepts/
    [28]W3C Recommendation.RDF/XML Syntax Specification(Revised),2 2004.Available at:http://www.w3.org/TR/rdf-syntax-grammar/
    [29]W3C Recommendation.RDF Vocabulary Description Language 1.0:RDF Schema,2 2004.Available at:http://www.w3.org/TR/rdf-schema/
    [30]Pan Jeff,Horrocks Ian.RDFS(FA):Connecting RDF(S) and OWL DL.IEEE Trans on Knowledge and Data Engineering.2007
    [31]Uschold M,King M,Moralee S,Zorgios Y.The Enterprise Ontology.The Knowledge Engineering Review.1998,13(1):31-89
    [32]Gr(u|¨)ninger M,Fox M S.Methodology for the Design and Evaluation of Ontologies.in:IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing,Montreal,Quebec,Canada,1995
    [33]陈禹六编.IDEF建模分析和设计方法.北京:清华大学出版社,2000
    [34]M.Mitchell.机器学习.北京:机器工业出版社,2003
    [35]Ganter B,Wille R.Formal Concept Analysis.Berlin-Heidelberg:Springer,1999
    [36]Maedche A.Ontology learning for the semantic web.Berlin:Springer,2006
    [37]Maedche A,Staab S.Mining Ontologies from Text.In Proc.of EKAW-2000,2000
    [38]Maedche A,Staab S.Ontology learning for the semantic web.IEEE Intelligent Systems.2001,16(2):72-79
    [39]Stuckenschmidt H,Klein M.Integrity and change in modular ontologies.in:Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI'03),2003
    [40]Baader F,Lutz C,Sturm H,Wolter F.Fusions of description logics and abstract description systems.Journal of Artificial Intelligence Research.2002,16:1-58
    [41] Kutz O, Lutz C, Wolter F, Zakharyaschev M. E-connections of abstract description systems. Artificial Intelligence. 2004,156(1): 1-73
    
    [42] Stuckenschmidt H, Klein M. Structure-Based Partitioning of Large Concept Hierarchies. in: Proceedings of the International Semantic Web Conference(ISWC'04),LNCS, 2004
    
    [43] Grau B C, Parsia B, Sirin E, Kalyanpur A. Modularity and Web Ontologies.in:Proceeding of KR'06,2006
    
    [44] Natalya F N, Mark A M. Ontology Versioning in an Ontology Management Framework. IEEE Intelligent Systems. 2004,19(4):6-13
    
    [45] Klein M. Supporting Evolving Ontologies on the Internet.in: EDBT Workshops,2002
    
    [46] Klein M, Fensel D, Kiryakov A, Ognyanov D. Ontology versioning and change detection on the web. in: Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management, LNAI2473,2002,197-212
    
    [47] Huang Z S, Stuckenschmidt H. Reasoning with Multi-version Ontologies: A Temporal Logic Approach. in: Proceeding of ISWC05, Springer, LNCS 3729, 2005,398-413
    
    [48] Grau B Cand Sirin E. Working with multiple ontologies on the semantic web. in:Proceeding of ISWC'04, Springer, 2004,620-634
    
    [49] Pan Rong, Ding Zhongli, Yu Yang, Peng Yun. A Bayesian Network Approach to Ontology Mapping. In Proc. of ISWC05,2005, 563-577
    
    [50] Kalfoglou Y, Schorlemmer M. Ontology Mapping: The State of the Art. Kalfoglou Y, Schorlemmer M, Sheth A, Staab S, Uschold M, (Editors) Semantic Interoperability and Integration. No. 04391 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,Germany, 2005
    
    [51] Lu R Q, Zhang S M. PANGU—An agent-oriented knowledge base. in: Processing of Conference on Intelligent Information Processing (WCC2000), 2004, 486-493
    [52]曹存根.知识工程中的本体论研究.北京:清华大学出版社,2003
    [53]OMG.UML 2.0 Superstructure -Final Adopted Specification,August 2003.Available at:http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
    [54]OMG.Meta Object Facility,January 2006.Available at:http://www.omg.org/cgibin/doc?formal/2006-01-01
    [55]OMG.MDA Guide Version 1.0.1,June 2003.Available at:http://www.omg.org/docs/omg/03-06-01.pdf
    [56]Pan J Z,Horrocks I.OWL FA:a metamodeling extension of OWL DL.In Proc.of WWW'06,2006,1065-1066
    [57]Motik B.On the Properties of Metamodeling in OWL.In Proc.of ISWC'05,2005,548-562
    [58]Mili H,Pachet F,Benyahia I,Eddy F.Workshop Summary.In Proc.of OOPSLA'95Workshop on Metamodeling in OO,1995,105-110
    [59]Atkinson C,K(u|¨)hne T.Model-Driven Development:A Metamodeling Foundation.IEEE Softw.2003,20(5):36-41
    [60]Sipser M.Introduction to the Theory of Computation.PWS Publishing Company,2006
    [61]Horrocks I,Sattler U,Tobies S.Practical Reasoning for Expressive Description Logics.in:Proceeding of LPAR'99,number 1705 in LNAI,1999,161-180
    [62]Gr(a|¨)idel E,Kolaitis P,Vardi M.On the Decision Problem for Two-Variable First-Order Logic.The Bulletin of Symbolic Logic.1997,3(1):53-69
    [63]Mortimer M.Conceptual Modeling in a Document Management Environment using Part-of Reasoning in Description Logics.Zeitschr f math Logik u Grundlagen d Math.1975,21:135-140
    [64]Gradel E,Otto M,Rosen E.Two-variable Logic with Counting is Decidable.in:Proceeding of the Twelfth Annual IEEE Symposium on Logic in Computer Science (LICS-97),1997.Http://speedy.informatik rwth-aachen.de/WWW/papers.html
    [65] Lopuszanski J, Pacholski L. Finite Satisfiability of Two-variables Logic with counting, 2003
    
    [66] Simons P M. Parts-A Study in Ontology. London: Clarendon Press, 1987
    
    [67] Varzi A. Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology. Data and Knowledge Eng. 1996,20(3):259-286
    
    [68] Opdahl A, Henderson-Sellers B, Barbier F. Ontological Analysis of Whole-Part Relationships in OO-Models. Information and Software Technology. 2001,43(6):387-399
    
    [69] Leiniewski S. Foundations of the General Theory of Sets, in Collected Works (English version). London: Nijhoff, 1992
    
    [70] Motschnig-Pitrik R. The Semantics of Parts Versus Aggregates in Data/Knowledge Modelling. Advanced Information Systems Eng. 1993,685:352-373
    
    [71] Motschnig-Pitrik R, Kaasb(?)ll J. Part-Whole Relationship Categories and Their Application in Object-Oriented Analysis. IEEE Trans Knowledge and Data Eng. 1999,11(5):779-797
    
    [72] Sattler U. A Concept Language for an Engineering Application with Part-Whole Relations. In Proc. of DL'95,1995,119-123
    
    [73] Sattler U. Description Logics for the Representation of Aggregated Objects. in:Proceedings of the 14th European Conference on Artificial Intelligence (ECAI00).IOS Press, Amsterdam, 2000
    
    [74] Artale A, Franconi E, Guarino N, Pazzi L. Part-Whole Relations in Object-Centered Systems: An Overview. Data and Knowledge Eng. 1996,20(3):347-383
    
    [75] Artale A, Franconi E, Guarino N. Open Problems with Part-Whole Relations. In Proc. of DL'96,1996,70-73
    
    [76] Halper M, Geller J, Perl Y. An OODB Part-Whole Model: Semantics, Notation,and Implementation. Data and Knowledge Eng. 1998,27(1):59-95
    
    [77] Bertino E, Guerrini G. Extending the ODMG Object Model with Composite Objects. In Proc. of OOPSLA'98,1998, 259-270
    [78] Henderson-Sellers B, Barbier F. Black and White Diamonds. In Proc. of UML'99,1999, 550-565
    
    [79] Barbier F, Henderson-Sellers B, Parc-Lacayrelle A, Bruel J M. Formalization of the Part-Whole Relationship in the Unified Modeling Language. IEEE Trans Software Eng. 2003, 29(5):459-470
    
    [80] Barbier F, Henderson-Sellers B, Parc-Lacayrelle A, Bruel J M. What Is This Thing Called Aggregation. In Proc. of TOOLS EUROPE'99, 1999, 236-250
    
    [81] Winston M, Chaffin R, Herrmann D. A Taxonomy of Part-Whole Relations. Cognitive Science. 1987,11:417-444
    
    [82] Sowa J F. Conceptual Structures: Information Processing in Mind and Machine.New York: AddisonWesley Publishing Company, 1984
    
    [83] Whitehead A. The Concept of Nature. Cambridge, UK: Cambridge University Press, 1920
    
    [84] Cruse D A. On the Transitivity of the Part-Whole Relation. Journal of Linguistics.1979,15:29-38
    
    [85] Saksena M, Larrondo-PetrieOpdahl M, France R, Evett M. Extending Aggregation Constructs in UML. In Proc. of UML'98,1998,434-441
    
    [86] Saksena M, France R, Larrondo-PetrieOpdahl M. A Characterization of Aggregation. In Proc. of OOIS'98,1998,11-19
    
    [87] OMG. UML 2.0 OCL - 2nd Revised Submission, January 2003. Available at:http://www.omg.org/cgibin/doc?ad/2003-01-07
    
    [88] Brunet J. Object Oriented Approach to Information Systems. North Holland: Elsevier. 1991:361-379
    
    [89] Hartmann T, Jungclaus R, Saake G. Aggregation in a Behavior Oriented Object Model. In Proc. of ECOOP'92,1992, 57-77
    
    [90] Booch G. Object-Oriented Analysis and Design with Applications, second ed. Ben-jamin/Cummings, 1994
    [91]Rumbaugh J,Blaha M,Premerlani W,Eddy F,Lorensen W.Object-Oriented Modeling and Design.Englewood Cliffs,New Jersey:Prentice Hall,1991
    [92]Jacobson I,et.al.Object-Oriented Software Eng.Addison Wesley,1992
    [93]W3C Draft.Simple part-whole relations in OWL Ontologies,11 2005.Available at:http://www.w3.org/2OO1/sw/BestPractices/OEP/SimplePartWhole/index.html
    [94]Horrocks I,Kutz O,Sattler U.The Even More Irresistible SROUQ.in:Processing of Conference on on Principles of Knowledge Representation and Reasoning (KR06),57-67
    [95]Franconi E.A treatment of plurals and plural quantification based on a theory of collections.Minds and Machines.3
    [96]Speel P H,Patel-Schneider P F.CLASSIC extended with physical whole-part relations.In Proc.of DL'94,1994,45-50
    [97]Padgham L,Lambrix P.A Framework for Part-of Hierarchies in Terminological Logics.in:Processing of Conference on on Principles of Knowledge Representation and Reasoning(KR94),485-496
    [98]Lambrix P,Padgham L.Conceptual Modeling in a Document Management Environment using Part-of Reasoning in Description Logics.Data and Knowledge Engineering.2000,32(1):51-86
    [99]Lambrix P,Shahmehri N.Querying Documents using Content,Structure and Properties.Journal of Intelligent Information Systems.2000,15(3):287-307
    [100]Lambrix p.Part-Whole Reasoning in an Object-Centered Framework.Lecture Notes in Artificial Intelligence.2000,1771
    [101]Mittal S,Frayman F.Product Configuration Frameworks - A Survey.IEEE Intelligent Systems,Issue on Configuration.1998,13(4):50-58
    [102]McGuinness D L,Wright J R.An Industrial Strength Description Logics-Based Configurator Platform.IEEE Intelligent Systems,Issue on Configuration.1998,13(4):69-77
    [103] Bachman C W, Daya M. The role concept in data models. In Proc. of the Third International Conference on Very Large Databases, 1977,464—476
    
    [104] Steimann F. On the representation of roles in object-oriented and conceptual modelling. Data and Knowledge Engineering. 2000,35(1):83-106
    
    [105] Dahchour M, Pirotte A, Zimanyi E. A role model and its metaclass implementation.Information Systems. 2004, 29(3):235-270
    
    [106] Odberg E. Category classes: flexible classification and evolution in object-oriented databases. In Proc. of CAiSE'94,1994,406-420
    
    [107] Chambers C. Predicate classes. In Proc. of ECOOP'93,1993, 268-296
    
    [108] Li Q, Dong G. A framework for object migration in object-oriented databases.Data and Knowledge Engineering. 1994,13(3):221-242
    
    [109] Reenskaug T, Wold P, Lehne O A. Working with Objects: The OOram Software Engineering Method. Englewood Cliffs, NJ: Prentice-Hall, 1995
    
    [110] Odell J, Nodine M, Levy R. A Metamodel for Agents, Roles, and Groups. In Proc.of 5th International Workshop AOSE'04,2004, 78-92
    
    [111] D'Souza D F, Wills A C. Objects, Components, and Frameworks with UML: The Catalysis Approach. Reading, MA: Addison-Wesley, 1998
    
    [112] Riehle D. Composite design patterns. In Proc. of OOPSLA'97,1997, 218-228
    
    [113] Yacoub S M, Ammar H H. Pattern-Oriented Analysis and Design: Composing Patterns to Design Software Systems. Reading, MA: Addison-Wesley, 2004
    
    [114] Eden A H. Formal Specification of Object Oriented Design. In Proc. of CSME-MDE'01, 2001
    
    [115] France R B, Kim D K, Ghosh S, Song E. A UML-Based Pattern Specification Technique. IEEE Trans Software Engineering. 2004, 30(3): 193-206
    
    [116] Mikkonen T. Formalizing Design Patterns. In Proc. of ICSE'98, 1998, 115-124
    
    [117] Tamai T, Ubayashi N, Ichiyama R. Precise Modeling of Design Patterns in UML.In Proc. of ICSE'04, 2004, 252-261
    [118] Soundarajan N, Hallstrom O J. Responsibilities and Rewards: Specifying Design Patterns. In Proc. of ICSE'04, 2004, 666-675
    
    [119] Karageorgos A. Using Role Modeling and Synthesis to Reduce Complexity in Agent-Based System Design. Ph.D. thesis, University of Manchester Institute of Science and Technology, 2003
    
    [120] Zambonelli F, Jennings N R, Wooldridge M. Developing multiagent systems: the Gaia methodology. ACM Trans Software Engineering and Methodology. 2003,12(3):317-370
    
    [121] Pacheco O, Carmo J. A Role Based Model for the Normative Specification of Organized Collective Agency and Agents Interaction. Journal of Autonomous Agents and Multi-Agent Systems. 2003, 6(2): 145-184
    
    [122] Tamai T, Ubayashi N, Ichiyama R. An adaptive object model with dynamic role binding. In Proc. of ICSE'05, 2005,166-175
    
    [123] Masolo C, Vieu L, Bottazzi E, et. al. Social roles and their descriptions. In Proc.of KR'04, 2004, 267-277
    
    [124] Loebe F. An Analysis of Roles: Toward Ontology-Based Modelling. Master's Thesis, University of Leipzig. 2003
    
    [125] Loebe F. Abstract vs. Social roles: a refined top-Level ontological analysis. In Proc. of the 2005 AAAI Fall Symposium 'Roles an Interdisciplinary Perspective:Ontologies, Languages, and Multiagent Systems', 2005, 93-100
    
    [126] Lutz C. The Complexity of Reasoning with Concrete Domains. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2002
    
    [127] Baader F, Horrocks I, Sattler U. Supporting ontological analysis of taxonomic relationships. Lecture Notes in Artificial Intelligence. 2005, 2605:228-248
    
    [128] Schmidt-Schauβ M, Smolka G. Attributive concept descriptions with complements. Artificial Intelligence Journal. 1991,48(1): 1-26
    
    [129] Schild K. A correspondence theory for terminological logics: Preliminary report.In Proc. of IJCAI'91,1991,466-471
    [130] Calvanese D. Unrestricted and Finite Model Reasoning in Class-Based Representation Formalisms. Ph.D. thesis, Universita di Roma "La Sapienz", 1996
    
    [131] Baader F, Hanschke P. A scheme for integrating concrete domains into concept languages. In Proc. of DCAI'91,1991,452-457
    
    [132] Schaerf A. Reasoning with individuals in concept languages. Data and Knowledge Engineering. 1994,13(2): 141-176
    
    [133] Lutz C, Areces C, Horrocks I, Sattler U. Keys, Nominals, and Concrete Domains. Journal of Artificial Intelligence Research. 2005,23:667-726
    
    [134] Calvanese D, D'Giacomo G, Lenzerini M. Identification constraints and functional dependencies in description logics. In Proc. of DCAI'01, 2001,155-160
    
    [135] Calvanese D, D'Giacomo G, Lenzerini M. On the decidability of query containment under constraints. In Proc. of PODS'98,1998,149-158
    
    [136] Baader F, Sertkaya B, Turhan A Y. Computing the Least Common Subsumer w.r.t.a Background Terminology. Jose Julio Alferes, Joao Alexandre Leite, (Editors) Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA 2004). Lisbon, Portugal: Springer- Verlag, 2004, vol. 3229 of Lecture Notes in Computer Science, 400-412
    
    [137] Baader F, Lutz C, Milicic M, Sattler U, Wolter F. Integrating Description Logics and Action Formalisms: First Results. Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05). Pittsburgh, PA, USA, 2005
    
    [138] Artale A, Lutz C. A Correspondence between Temporal Description Logics. Journal of Applied Non-Classical Logic. 2004,14(1-2):209-233
    
    [139] Horrocks I, Peter P S, Boley H, Tabet S, Grosof B, Dean M. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission, 21 May 2004. Available at http: //www. w3 . org/Submission/SWRL/
    
    [140] Gradel E, Walukiewicz I. Guarded Fixed Point Logic. Proceedings of 14th IEEE Symposium on Logic in Computer Science LICS '99, Trento. 1999, 45-54. Http://www-mgi.informatik.rwth-aachen.de/Publications/pub/graedel /GrWa-lics99.ps
    [141] Brachman R J, Schmolze J G. An overview of the KL-ONE knowledge representation system. Cognitive Science. 1985,9(2): 171-216
    
    [142] Mays E, Dionne R, Weida R. K-REP system overview. SIGART Bulletin. 1991,2(3)
    
    [143] PeltasonC. The BACK system - an overview. SIGART Bulletin. 1991, 2(3):114-119
    
    [144] MacGregor R. The evolving technology of classification-based knowledge representation systems. In John F Sowa, editor, Principles of Semantic Networks.1991:385-400
    
    [145] Patel-Schneider P F, McGuiness D L, Brachman R J, Resnick L A, Borgida A. The CLASSIC knowledge representation system: Guiding principles and implementation rational. SIGART Bulletin. 1991,2(108-113)
    
    [146] Baader F, Hollunder B. A Terminological Knowledge Representation System with Complete Inference Algorithms. Proceedings of the First International Workshop on Processing Declarative Knowledge. Kaiserslautern (Germany): SpringerVerlag, 1991, vol. 572 of Lecture Notes in Computer Science, 67-85
    
    [147] Bresciani P, Franconi E, Tessaris S. Implementing and testing expressive description logics: Preliminary report. Proceedings of the 1995 Description Logic Workshop DL'95. 1995,131-139
    
    [148] Haarslev V, Moller R. RACER system description. Proc. of the Int. Joint Conf.on Automated Reasoning (IJCAR-01). Springer-Verlag, 2001, vol. 2083 of Lecture Notes in Artificial Intelligence
    
    [149] Patel-Schneider P F. DLP. Proc. of the 7th 1999 Description Logic Workshop (DL'99). 1999, 9-13. Http://ceurws.org/Vol-22/
    
    [150] Horrocks I. Using an Expressive Description Logic: FaCT or Fiction? Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR'98).1998, 636-647. Download/1998/kr98.pdf
    
    [151] Baader F, Sattler U. An Overview of Tableau Algorithms for Description Logics.Studia Logica. 2001,69:5-40
    [152] Lutz C, Sattler U. The Complexity of Reasoning with Boolean Modal Logic. Advances in Modal Logic 2000 (AiML 2000). Leipzig, Germany, 2000
    
    [153] Calvanese D, D'Giacomo G, Lenzerini M. Reasoning in expressive description logics with fixpoints based on automata on infinite trees. Dean T, (Editor) Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99).Lecture Notes in Computer Science, Stockholm, Sweden: Morgan Kaufman Publishers, Inc, 1999, 84-89
    
    [154] Calvanese D. Finite Model Reasoning in Description Logics. in: Proceeding of the Fifth International Conference on the Principles of Knowledge Representation and Reasoning (KR-96), 1996
    
    [155] Lutz C, Sattler U, Tendera L. The Complexity of Finite Model Reasoning in Description Logics. Information and Computation. 2005,199:132-171
    
    [156] Lutz C, Sattler U, Tendera L. The Complexity of Finite Model Reasoning in Description Logics. Proc. of the 19th Conference on Automated Deduction (CADE-19). Springer Verlag, 2003, vol. 2741 of Lecture Notes in Artificial Intelligence
    
    [157] Horrocks I, Sattler U. A Tableaux Decision Procedure for SHIQO. in: Proceeding of UCAI 2005, 2005,448-453
    
    [158] Horrocks I, Li L, Turi D, Bechhofer S. The Instance Store: DL Reasoning with Large Numbers of Individuals. Proc. of the 2004 Description Logic Workshop (DL 2004). 2004, 31-40. Download/2004/HLTB04a.pdf
    
    [159] Baader F, Lutz C, Milicic M, Sattler U, Wolter F. A Description Logic Based Approach to Reasoning about Web Services. Proceedings of the WWW 2005 Workshop on Web Service Semantics (WSS'05). Chiba City, Japan, 2005
    
    [160] Berardi D, Calvanese D, Giacomo G D, Mecella M. Composing web services with nondeterministic behavior. In Proc. of the IEEE Int. Conf. on Web Services (ICWS'06). 2006
    
    [161] Berardi D, Calvanese D, D'Giacomo G. Reasoning on UML class diagrams. Artificial Intelligence. 2005,168(1-2):70-118
    [162] Horrocks I, Sattler U. A description logic with transitive and inverse roles and role hierarchies. Journal of Logic and Computation. 1999,9(3):385-410
    
    [163] Husserl E. Logical Investigations. London: Routledge and Kegan Paul, 1970
    
    [164] Fine K. Ontological dependence. Proceedings of the Aristotelian Society. 1995,269-290
    
    [165] Snoeck N, Dedene G. Existence Dependency: The key to semantic integrity between structural and behavioural aspects of object types. IEEE Trans Software Eng.1998,24(24):233-251
    
    [166] Snoeck N, Dedene G. Characterising Aggregations with Existence Dependency,1998. Download from: http://citeseer.ist.psu.edu/632356.html
    
    [167] Fine K. Part-Whole. B. Smith, D.W. Smith, (Editors) The Cambridge Companion to Husserl. New York: Cambridge University Press, 1995,463-485
    
    [168] Guarino N, Welty C. A Formal Ontology of Properties. Proceedings of the ECAI-00 Workshop on Applications of Ontologies and Problem Solving Methods.Springer, 2000,1-8
    
    [169] Casati R, Varzi A C. Parts and Places: The Structures of Spatial Representation.London: MIT Press: Cambridge/MA, 1999
    
    [170] Bunge M. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of the World. New York: D. Reidel Publishing Company, 1977
    
    [171] Bunge M. Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of Systems.New York: D. Reidel Publishing Company, 1979
    
    [172] Wand Y, Storey V C, Weber R. An Ontological Analysis of the Relationship Construct in Conceptual Modeling. ACM transaction on database system, TODS. 1999,24(4):494-528
    
    [173] Goldstein R C, Storey V C. Materialization. IEEE Transaction on Knowledge and Data Engineering. 1994,6(5):835-842
    
    [174] Dahchour M, Pirotte A, Zimanyi F. Materialization and Its Metaclass Implementation. IEEE Transaction on Knowledge and Data Engineering. 2002,14(5):1078-1094
    [175] Dahchour M, Pirotte A, Zimanyi E. A role model and its metaclass implementation.Information Systems. 2004, 29(3):235-270
    
    [176] Semmens L, France R B, Docker T W G. Integrated structured analysis and formal specification techniques. Computer J. 1992,35(6):600-610
    
    [177] Hull R B, King R. Semantic database modelling: Survey, applications and research issues. ACM Comput Surv. 1987,19(3):201-260
    
    [178] Hayes F, Coleman D. Coherent models for object-oriented analysis. Proc. of the Conf. on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA' 91). vol. 26, SIGPLAN Notices, 1991,171-183
    
    [179] Wirsing M, Knapp A. A formal approach to object-oriented software engineering.Electronic Notes on Theoretical Computer Science 4
    
    [180] Evans A S. Reasoning with UML class diagrams. Second IEEE Workshop on Industrial Strength Formal Specification Techniques (WIFT' 98). IEEE Computer Society Press, 1998
    
    [181] Shroff M, France R B. Towards a formalization of UML class structures in Z. Proc.of the Int. Conf. on Computer Software and Applications (COMPSAC'97). IEEE Computer Society Press, 1997, 646-651
    
    [182] Srinivas Y V. Algebraic Specification: Syntax, Semantics, Structure. Tech. Rep.TR-90-15, Dept. of Information and Computer Science, Univ. of California at Irvine, USA, 1990
    
    [183] Srinivas Y V. Category Theory Definitions and Examples. Tech. Rep. TR-90-14,Dept. of Information and Computer Science, Univ. of California at Irvine, USA,1990
    
    [184] Bourdeau R H, Cheng B H C. A formal semantics for object model diagrams. IEEE Trans Software Eng. 1995, 21(10):799 - 821
    
    [185] DeLoach S A, Hartrum TC. A Theory-Based Representation for Object-Oriented Domain Models. IEEE Trans Software Eng. 2000, 26(6):500-517
    [186] Clark T, Evans A, Kent S, Brodsky S, Cook S. A feasibility study in rearchitecting UML as a family of languages using a precise 00 meta-modeling approach. Tech.rep., 2000. Http://www.cs.york.ac.uk/puml/ mmf/mmf.pdf
    
    [187] Clark T, Evans A, Kent S. Engineering modelling languages: A precise meta-modelling approach. Proc. of Conf. on Fundamental Approaches to Software Engineering (FASE 2002). Springer, Berlin: Lecture Notes in Computer Science, 2002,vol. 2306,159-173
    
    [188] Clark T, Evans A, Kent S. The metamodelling language calculus: Foundation semantics for UML. Proc. of Conf. on Fundamental Approaches to Software Engineering (FASE 2001). Springer, Berlin: Lecture Notes in Computer Science, 2001,vol. 2029,17-31
    
    [189] Evans A, France R, Lano K, Rumpe B. Meta-modelling semantics of UML. Kluwer Academic, Dordrecht: Clarendon Press, 1999. Book: Behavioural Specifications for Businesses and Systems, Chapter 2
    
    [190] OMG. UML 2.0 Infrastructure - Final Adopted Specification, September 2003.Available at: http://www.omg.org/cgi-bin/doc?ptc/2003-09-15
    
    [191] Berardi D, Calvanese D, D'Giacomo G. Reasoning on UML class diagrams. Artificial Intelligence. 2005,168(1-2):70-118
    
    [192] Thalheim B. Fundamentals of cardinality constraints. Proc. of the 11th Int. Conf.on the Entity-Relationship Approach (ER92). Springer, Berlin: Lecture Notes in Computer Science, 1992,7-23
    
    [193] Dietrich J, Elgar C. A formal description of design patterns using OWL. Proceedings of the 2005 Australian Software Engineering Conference (ASWEC05). 2005,243-250
    
    [194] Horrocks I, Kutz O, Sattler U. The Even More Irresistible SROIQ, 2005
    
    [195] Tobies S. Compexity Results and Practical Algorithms for Logics in Knowledge Representation. Ph.D. thesis, Technische Universitat Dresden, 5 2001
    
    [196] Lenzerini M, Nobili P. On the satisfiability of dependency constraints in entity-relationship Schemata. Information Systems. 1990,4(15):453-461
    [197] Papadimitriou C H. On the Complexity of Integer Programming. Journal of the ACM 28(2). 1981:765-769
    
    [198] Schrijver A. Theory of Linear and Integer Programming. Wiley, 1986
    
    [199] Baader F, Buchheit M, HollunderB. Cardinality restrictions on concepts. Artificial Intelligence. 1996,88(1-2): 195-213
    
    [200] Pratt-Hartmann I. Complexity of the Two-Variable Fragment with Counting Quantifiers. Journal of Logic, Language and Information. 2005,14(3):369-395
    
    [201] Pratt-Hartmann I. Counting Quantifiers and the Stellar Fragment, 2003
    
    [202] Tobies S. The Complexity of Reasoning with Cardinality Restrictions and Nominals in Expresive Description Logics. Journal of Artifical Intelligence Research. 5 2000,12:199-217
    
    [203] Horrocks I, Sattler U. Ontology reasoning in the SHOQ(D) description logic. In Proc.of IJCAI'01, 199-204
    
    [204] Hladik J, Model J. Tableau Systems for SHIO and SHIQ. in: Proceeding of the 2004 International Workshop on Description Logics (DL 2004), 1996
    
    [205] Cadoli M, Calvanese D, D'Giacomo G, Mancini T. Finite satisfiability of UML class diagrams by constraint programming. In Proc. of the CP 2004 Workshop on CSP Techniques with Immediate Application. 2004
    
    [206] ILOG Solver system version 5.1 user's manual, 2001
    [207] ILOG OPL Studio system version 3.6.1 user's manual, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700