青藏高原的壳幔电性结构特征及其动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以中国地质大学(北京)完成的0线、100线、500线、700线、800线、900线、1000线等八条南北向大地电磁测深(MT)剖面数据为基础,系统应用现代的MT数据处理技术与二维反演算法,对观测数据统一进行处理与反演,获得剖面控制区域新的二维壳幔电性结构模型。
     大地电磁场观测数据的阻抗张量分解结果表明,研究区域的地下介质电性结构近似为二维结构,电性主轴方位近东西向,这说明青藏高原的主构造方向为东西向。通过对大地电磁测深响应的分析以及约束反演验算,证明了论文所采用的大地电磁数据的探测深度超过100公里。
     研究结果表明:研究区壳幔电性结构模型中,沿南北向横向存在的电性梯度带与畸变带,基本与区域地质资料圈定的大断裂带吻合,反映了区内断裂构造带的深部结构特征。青藏高原地下100Km深度范围内,地壳可大致分为三个电性层,其中第二个电性层为高导层,即中、下地壳高导层。中、下地壳高导层在各个地块内的分布有较大差别:喜马拉雅地块内的壳内高导层规模较小;拉萨-冈底斯地块内的壳内高导层分布最广泛,规模大,产状向北倾斜;而羌塘地块内的壳内高导层明显分隔为南、北两部分,分别位于南羌塘与北羌塘。青藏高原的壳内高导层可能是由于岩石的部分熔融或者部分熔融与水流体共同作用的结果。在拉萨-冈底斯地块,壳内高导层可能是印度板块向北俯冲的电性痕迹,高导层的成因与板块俯冲过程中由于摩擦生热导致岩石部分熔融和脱水作用有关;在羌塘地块,壳内高导层可能是由于幔源物质上涌的烘烤作用导致中、下地壳岩石温度升高,发生部分熔融现象的结果;羌塘地块内未见明显的板块俯冲痕迹。
     印度板块俯冲的前缘并没有越过班公-怒江缝合带,在班公-怒江缝合带南侧刚性的印度岩石圈下插至上地幔,造成幔源物质上涌,形成班公-怒江缝合带附近大规模的高导体。金沙江缝合带附近也存在大规模高导体,并且北侧的高导层明显向南倾斜,可能时亚洲板块向南俯冲的证据。沿缝合带东西向连续分布的大规模高导体,有可能是青藏高原下地壳物质向东“逃逸”的证据;其中班公-怒江缝合带可能是最重要的“通道”。
Based on the magnetotelluric sounding (MT) data from eight north-south trending profiles (the line 0, line 100, line 500, line 700, line 800, line 900, etc.) finished by China University of Geosciences Beijing and with systematical application of modern data processing technology and two-dimensional algorithm to data processing and inversion, the paper presents a new two-dimensional model of crust-mantle electrical structure in profile-controlled region.
     As the decomposition of the magnetotelluric impedance tensor show, the underground electrical structure of research area is approximately a two-dimensional structure, in which electrical axis is nearly east-west direction, thus indicating the main structure of Tibetan Plateau is east-west direction. With MT sounding response analyzed and constrained inversion checked, the exploration depth of MT sounding used in this paper is proved to be over 100km.
     The results show that in crust-mantle electrical structure model of the study region, the location of electric gradient and distortion zone along the north-south direction, roughly coincides with the major fault line delineated by regional geological data, reflecting deep structural characteristics of regional faults. Within the depth of 100Km, the Tibetan Plateau crust can be broadly divided into three electrical layer, of which the second layer is the high conductivity layer, that is, the middle and lower crustal high conductivity layer. The distribution of middle and lower crustal high conductivity layer differs a lot in different plots. In the Himalayan block exists a relatively small-scaled high conductivity layer; in Lhasa - Gangdise block, there is a vast distribution of high conductivity layer, with an attitude of north-dipping; and in Qiangtang block,the high conductivity layer can be clearly divided into two parts, which are located in the South and North Qiangtang respectively.
     The crustal high conductivity layer within Tibetan Plateau may be due to the effect of partial melting , or a combination of partial melting and fluid effect. In Lhasa - Gangdise block, crustal high-conductivity layers might be the electrical traces of the northward underthrusting of Indian plate. And the cause of crustal high conductivity layer there is probably friction heat, which can lead to rock partial melting and dehydration in the process of underthrusting. In Qiangtang block, causes of crustal high conductivity layer might be the heating effect of upwelling mantle-derived material, leading to the warming up and thus partial melting of middle and lower crustal rock. There are no apparent underthrusting traces in Qiangtang block.
     The leading edge of India plate did not cross the Bangong Lake-Nu River suture zone in the underthrusting; In the south of Bangong Lake-Nu River suture zone, India's rigid lithosphere underthrusts to the upper mantle, resulting in the upwelling of mantle material, thus the large-scale high-conductors near Bangong Lake-Nu River suture zone is formed. Near Jinsha River suture zone also exists a large-scale high conductivity layer, and the north of the layer obviously tilted south, which might be the evidence of Asian plate's underthrusting southward. And the large-scale east-west direction distribution of high-conductors along the suture zone might prove that the Tibetan Plateau lower crustal materials escape eastward and the Bangong Lake-Nu River suture zone is probably the most important "passages".
引文
[1] Argand E. La tectonique de l'Asie . Proc 13th Int Geol Congr, 1924, 7:171~372
    [2] Zhao W L, Morgan W J .Uplift of Tibetan plateau. Tectonics, 1985, 4:359~369
    [3] Molnar P, Tapponnier P. Cenozoic tectonics of Asian:Effects of a continental collision. Science,1975, 189:419~426
    [4] Tapponnier P. The Ailao Shan-Red Rive metamorphic belt:Tertiary left-lateral shear between Indochina and South China. Nature, 1990, 343:431~437
    [5]崔作舟,尹周勋,高恩元,等.青藏高原地壳结构构造及其与地震的关系.中国地质科学院院报,1990,21:215~226
    [6]吴功建,肖序常,李廷栋.亚东—格尔木地壳及上地幔的构造和演化,地质学报,1989,63(4):285~296
    [7]沈显杰,张文仁,杨淑贞,等.青藏高原南北地体壳幔热结构差异的大地热流证据.中国地质科学院院报,地质出版社,1990,21:203~214
    [8]周华伟, MICHAEL A.,林清良.西藏及其周围地区地壳、地幔地震层析成像—印度板块大规模俯冲于西藏高原之下的证据,地学前缘,2002,9(4):285~292
    [9] Owenst T J, Zandt G . Implications of crustal property variations for models of Tibetan Plateau evolution . Nature,1997, 387:37~43
    [10] Kosarev G K R, Sobolev S V,et al . Seismic evidence for detached Indian lithosphere mantle beneath Tibet . Science, 1999, 283:1306~1309
    [11] Kolaojo O, Meissner R. Southern Tibet :Its deep seismic structure and some tectonic implications . J Asian Earth Sci, 2001, 19:249~256
    [12]滕吉文,王绍周,姚振兴,等.青藏高原及其邻近地区的地球物理场特征与大陆板块构造.地球物理学报,1980,23(3):254~268
    [13]滕吉文,熊绍柏,尹周勋,等.喜马拉雅山北部地区的地壳结构模型和速度分布特征.地球物理学报,1983,26(6):525~540
    [14]吴功建,高锐,余钦范,等.青藏高原“亚东~格尔木地学断面”综合地球物理调查与研究.地球物理学报,1991,34(2):552~561
    [15]崔作舟,尹周勋,高恩元旦,等.青藏高原速度结构和深部构造.北京:地质出版社,1992
    [16]赵文津,赵逊,史大年,等.喜马拉雅和青藏高原深剖面(INDEPTH )研究进展.地质通报,2002,21(11):691~700
    [17]潘裕生,孔祥儒.青藏高原岩石圈结构演化和动力学.广东科技出版社,1998:1~35
    [18]孔祥儒,王谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构研究.中国科学(D),1996,26(4):308~315
    [19]卢占武,高锐,李秋生,等.中国青藏高原深部地球物理探测与地球动力学研究(1958 ~2004) .地球物理学报,2006,49 (3) :753~770
    [20] Wittlinger G, Vergne J, Tapponnier P, et al . Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet . Earthand Planetary Science Letter, 2004, 221 : 117~130
    [21] Gao R, Ma Y S, Zhu X, et al . The lithospheric structures of theSongpan block in the northeastern Tibetan plateau~ revelation from investigation of the deep seismic profile, GEOLOGIE ALPINE, 20th Himalayan~ Karakoruam~ Tibet Workshop Special Extended Abstracts, Aussois,France, 2005, 44, 58
    [22]陈乐寿,王光锷,大地电磁测深法,北京:地质出版社,1990
    [23]郭新峰,张元丑,程庆云等.青藏高原亚东-格尔木地学断面岩石圈电性研究.中国地质科学院院报,1990,21;191~202
    [24]朱仁学,胡祥云.格尔木-额济纳旗地学断面岩石圈电性结构研究.地球物理学报,1995,38(增刊II):46~57
    [25]孔祥儒,王谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构研究.中国科学(D),1996,26(4):308~315
    [26]马晓冰,孔祥儒,青藏高原岩石圈热状态及其东西部差异.地球物理学进展,2001,16: 12~19
    [27]孙洁,晋文光,白登海等.青藏高原东缘地壳、上地幔电性结构探测及其构造意义.中国科学(D辑),2003,33:173~181
    [28] Egbert, G., and Booker, J.R., 1986, Robust estimation of geomagnetic transfer functions, Geophys. J. R. Astr. Soc., 87, 173~194
    [29]晋光文,孔祥儒.大地电磁阻抗张量的畸变与分解.北京:地震出版社,2006
    [30]晋光文,王家映,王天生.一种大地电磁阻抗张量的计算方法.地球物理学报,1982,25: 650~659
    [31] R.W.Groom, R.C.Bailey. Analytic investigations of the effects of near~surface three~dimention galvanic scatterers on MT tensor decompositions., Geophysics,1995.56(4):496~518
    [32] Gary W.McNeice,Alan G.Jones. Mutisite mutifrequecy tensor decomposition of magnetotelluric data, Geophysics,2001.66(1):158~173
    [33]陈乐寿、刘任、王天生等,1989,大地电磁资料处理与解释,北京:石油工业出版社
    [34] Constable S C, Parker R L, Constable C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics,1987, 52(3):289~300
    [35] DeGroot Hedlin, C., and Constable, S.C., 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data, geophysics, 55, 1613~1624
    [36] Yamane K, Kim H J, and Ashida Y. Three-dimension magnetotelluric inversion using a generalized RRI method and its applications. Butsuri-Tansa,53(3):234~244
    [37] Yamane K, Takasugi S, Lee K H. A new magnetotelluric inversion scheme using generalized RRI method. J. Appl. Geophys.,1996,35:209~213
    [38] Weerachai Siripunvaraporn and Gary Egbert, 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data, Geophys,65,791~803
    [39] Rodi W L, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics,2001,66(1):174~187
    [40] Madden T R, Mackie R L. There~dimensional magnetotelluric modeling and inversion. Proc. IEEE.1989,77: 318~ 333
    [41] Zhdanov M S, Fang S, Hursan G. Electromagnetic inversion using quasi-linear approximation. Geophysics,2000,65(5):1501~1513
    [42] Smith, J.T. and Booker, J.R., 1991, Rapid inversion of two- and three-dimensional magnetotelluric data, J. Geophys. Res., 96, 3905~3922
    [43]谭捍东,余钦范, Booker J等.大地电磁三维快速松弛反演.地球物理学报,2003, 46(6): 850~855
    [44] Weerachai Siripunvaraporn,Gary D. Egbert. Current Version of WSINV3DMT,国际第十九届电磁大会文摘,第一卷,2008,北京,718~718
    [45]潘裕生,孔祥儒.青藏高原岩石圈结构演化和动力学.广东科技出版社,1998:1~35
    [46]滕吉文,王绍周,等.青藏高原及其邻近地区的地球物理场特征与大陆板块构造.地球物理学报,1980,23(3):254~268
    [47]尹安,喜马拉雅-青藏高原造山带地质演化—显生宙亚洲大陆生长,地球学报,2001,22(3):195~229
    [48]熊盛青,周伏洪,姚正煦,等,青藏高原中西部航磁调查,2001,北京:地质出版社
    [49] Yin A, Harrison T M. Geologic Evolution of the Hi~malayan~Tibetan Orogen. Ann. Rev.Earth Planet Sci., 2000,28 :211~280
    [50]孙鸿烈,郑度.青藏高原形成演化与发展.广州:广东科技出版社,1998
    [51] KONG Xiangru, WANGQianshen, XIONG Shaobai . Comprehensive geophysics and lithospheric structure in the western Xizang ( Tibet)Plateau. Science in China ( Series D), 1996, 39 (4) : 348~358
    [52]袁学诚,周姚秀,李立,等.西藏古地磁与大地电磁研究.北京:地质出版社,1990. 25~37
    [53]郭新峰,张元丑,程庆云等.青藏高原亚东-格尔木地学断面岩石圈电性研究.中国地质科学院院报,1990,21;191~202
    [54]秦国卿,陈九辉,刘大建,等.昆仑山脉和喀喇昆仑山脉地区的地壳上地幔电性结构特征.地球物理学报, 1994, 37 (2) : 193~199
    [55]赵文津,赵逊,史大年,等.喜马拉雅和青藏高原深剖面( INDEPTH)研究进展.地质通报,2002, 22(11) : 691~700
    [56]赵文津,刘葵,蒋忠惕等.西藏班公湖-怒江缝合带—深部地球物理结构给出的启示.地质通报,2004, 23(7):623~635
    [57]黄汲清,陈炳蔚.中国及邻区特提斯海的演化.北京:地质出版社, 1987
    [58]西藏区调队.中华人民共和国区域地质调查报告(1∶100万,改则幅, I~ 45). 1986. 1~50
    [59]周祥.西藏板块构造—建造图及说明书.北京,地质出版社,1984. 1~20
    [60]刘增乾,徐宪,潘桂唐.青藏高原大地构造与形成演化.北京:地质出版社, 1990. 1~174
    [61]刘训.青藏高原不同地体的地层生物区系及沉积构造演化史.北京:地质出版社, 1992. 2~50
    [62]张之孟,金蒙.川西南乡城—得荣地区的两种混杂岩及其构造意义.地质科学, 1979, 3: 205~210
    [63]西藏地质矿产局.西藏区域地质志.北京:地质出版社, 1993.100~188
    [64]刘增乾,李兴振,叶庆同,等.三江地区构造岩浆岩带的划分与矿产分布规律.中华人民共和国地质矿产部地质专报(四),矿床与矿产.第34号,北京:地质出版社, 1993. 25~28
    [65]王二七.金沙江转换断层沉积.地质科学, 1985,(1) : 33~42
    [66]王培生.云南德钦蛇绿岩中基性熔岩的岩石化学特征初步研究.青藏高原地质文集( 9) .北京:地质出版社, 1985. 207~209
    [67]何龙清,金沙江造山带的大地构造环境及演化模式.现代地质, 1998, 12 (2) : 185~191
    [68]王立全,潘桂棠,李定谋,等.金沙江弧-盆系时空结构及地史演化.地质学报, 1999, 73 (3) : 206~218
    [69]陈炳蔚.三江地区主要大陆构造问题及其与成矿的关系.中华人民共和国地质矿产部地质专报(五),构造地质、地质力学.第11号,北京:地质出版社, 1991
    [70]钟大赉,丁林.从三江及邻区特提斯演化讨论岗瓦纲大陆离散与亚洲增生.亚洲的增生.北京:地震出版社, 1993
    [71]孙晓猛,张保民,聂泽同,等.滇西北金沙江带蛇绿岩、蛇绿混杂岩形成环境及时代.地质论评, 1997, 43(2) : 113~120
    [72]孙晓猛,简平.滇川西部金沙江古特提斯洋的威尔逊旋回.地质论评, 2004, 50 (4) : 343~350
    [73]莫宣学,沈上越,朱勤文,等.三江中南段火山岩-蛇绿岩与成矿.北京:地质出版社, 1998
    [74]任纪舜,肖黎薇. 1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报, 2004, 23(1) : 1~11
    [75]赵志丹,莫宣学,等.印度-亚洲俯冲带结构—岩浆作用证据,地学前缘,2003,10(3): 149~157
    [76]中国地质调查局,成都地质矿产研究所,青藏高原及邻区地质图1:150万,成都地图出版社,成都:2004.5
    [77] L D Brown,Wenjin Zhao,K D Nelson, et al .Bright Spots Structure and magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 1996,274 (6) : 1688~1690
    [78] NELSON K D,ZHAO W,et al .Partially molten middle crust beneath southern Tibet :Synthesis of Project INDEPTH Results . Science,1996,274:1684–1688
    [79] Kind R, Ni J, Zhao WJ, et al . Evidence from earthquake data for apartially molten crustal layer in Southern Tibet . Science, 1996, 274 :1692~1694
    [80]王式,卢德源,黄立言等.西藏高原南北走向的地壳结构模型和速度分布特征.见:西藏地球物理文集.北京:地质出版社, 19901 38~47
    [81] Spratt J E, Jones A G, Nelson K D, et al . Crustal structure of theIndia~Asia collision zone, southern Tibet, from INDEPTH MTinvestigations. Physics of the Earth and Planetary Interiors,2005,150(1~3) :227~237
    [82]魏文博,金胜,叶高峰,等.西藏高原中、北部断裂构造特征:INDEPTH(Ⅲ)-MT观测提供的依据.地球科学—中国地质大学学报, 2006,31( 2):257~265
    [83]金胜,叶高峰,魏文博,邓明,景建恩.青藏高原西缘壳幔电性结构与断裂构造:札达~泉水湖剖面大地电磁探测提供的依据.地球科学,2007,32(4):474~480
    [84]魏文博,陈乐寿,谭捍东,等.西藏高原大地电磁深探测—亚东-巴木措沿线地区壳幔电性结构.现代地质,1997,11(3):366~374
    [85]谭捍东,魏文博,MartynUnsworth等.西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究.地球物理学报,2004,47(4):685~691
    [86] Wei W,Unsworth M,et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies.Science, 2001, 292:716~718
    [87]叶高峰,金胜,魏文博等.西藏高原中南部地壳与上地幔导电性结构.地球科学,2007,32(4):491~499
    [88]金胜,叶高峰,魏文博等.青藏高原东南部地壳导电性结构与断裂构造特征研究.地学前缘,2006,13(5):407~415
    [89]魏文博,金胜,叶高峰等,藏北高原地壳及上地幔导电性结构—超宽频带大地电磁测深研究结果,地球物理学报,2006,49(4):1215~1225
    [90] Frost, B.R., Fyfe, W.S., Tazaki, K. & Chan, T., 1989. Grain~boundary graphite in rocks and implications for high electrical conductivity in the lower crust, Nature, 340, 134~136
    [91] Nover, G., Heikamp, S., Meurer, H.J. & Freund, D., 1998. In~situ electrocal conductivity and permeability of mid~crustal rocks from the KTB drilling:consequences for high conductive layers in the Earth crust, Surv. Geophys.,19, 73~85
    [92] Camfield, P.A. & Gough, D.I., 1977. A possible proterozoic plate boundary in North America, Can. J. Earth Sci., 14, 1229~1238
    [93] Pan, Y. & Kidd, W.S.F., 1992. Nyainqentangula shear zone: a late Miocene extensional detachment in the southernTibetan Plateau, Geology,20,775~778
    [94] Cogan, M.J., Nelson, K.D., Kidd,W.S.F.,Wu, C.&Project INDEPTH Team,1998.
    [95] Shallowstructure ofYadong–Gulu rift, Southern Tibet, from refractionanalysis of Project INDEPTH common midpoint data, Tectonics, 17,46~61
    [96] Yin, A.&Harrison,T., 2000. Geological evolution of the Himalayan–Tibetan orogen, Annu. Rev. Earth Planet. Sci., 28, 211~280
    [97] Shenghui Li, Martyn J. Unsworth, John R. Booker,et al, Partial melt or aqueous fluid in the mid~crust of Southern Tibet?Constraints from INDEPTH magnetotelluric data Geophys. J. Int. (2003) 153, 289~304
    [98] Chen, L., Booker, J.R., Jones, A.G.,Wu, N., Unsworth, M.J.,Wei,W. & Tan,H., 1996
    [99] Chen L, Booker J R, Jones A G, et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying .Science,1996, 274, 1694~1696
    [100] Nelson, K.D.&the Project INDEPTH Team, 1999. Melt in the Tibetan Crust: where are we now?, AGU Fall Meeting 1999, Vol. 80, no 46, F991–F992,1999
    [101] Sourirajan, S. & Kennedy, G.C., 1962. The system H2O~NaCl at elevated temperature and pressures, Am. J. Sci., 260, 115~141
    [102] Quist, A.S. & Marshall, W.L., 1968. Electrical conductances of aqueous sodium chloride solution from 0 to 800 ?C at pressure to 4000 bars,J. Phys. Chem., 72, 684~703
    [103] Nesbitt, B. Electrical resistivity of crustal fluids, J. geophys. Res.,1993,98,4301~4310
    [104] Yardley, B.W.D. & Valley, J.W., . The petrologic case for a dry lower crust, J. geophys. Res., 1997,102, 12 173~12 185
    [105] Yardley, B.W.D. & Valley, J.W.. Reply, J. geophys. Res.,2000, 105, 6065~6068
    [106]傅良魁,电法勘探教程,北京:地质出版社,1983
    [107] Tyburczy, J.A. & Waff, H.S.. Electrical conductivity of molten basalt and andesite to 25 kbar pressure: geophysical significance and implications for charge transport and melt structure, J. geophys. Res., 1983, 88, 2413~2430
    [108] Schmeling, H.. Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part II: electricalconductivity, Phys. Earth planet. Inter., 1986, 43, 123~136
    [109] Archie, G.E.The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pet. Eng.,1942,146, 54~62
    [110] Hashin, Z. & Shtrikman, S.A variational approach to the theory of effective magnetic permeability of multiphase materials, J. appl. Phys., 1962,33, 3125–3131
    [111] Macdonald, J.D. Impedence Spectroscopy: Emphasizing Solid Materials and Systems, Wiley, New York,1987
    [112] Mibe, K., Fujii, T. & Yasuda, A.. Connectivity of aqueous fluid in theEarth’s upper mantle, Geophys. Res. Lett.,1998, 25, 1233~1236
    [113] Roberts, J.J. & Tyburczy, J.A.. Partial~melt electrical conductivity: influence of melt composition, J. geophys. Res.,1999, 104, 7055~7065
    [114] Scaillet, B., Pichavant, M., and Roux, J., Experimental crystallisation of leucogranite magmas. Journal of Petrology, ,1995,v. 36p. 663~705
    [115] Makovsky, Y. & Klemperer, S.L.. Measuring the seismic properties of Tibetan bright spots: free aqueous fluid in the Tibetan middle crust,J. geophys. Res., 1999, 104, 10 795~10 825
    [116] Ross, A.R., Brown, L.D., Alsdorf, D. & Nelson, K.D.. Deep seismic bright spots and magmatism in Southern Tibet, J. geophys. Res., in review, 2002
    [117]石耀霖,朱元清等.青藏高原构造热演化的主要控制因素,地球物理学报,1992,35(6):46~56
    [118] Jin Y,Mcnutt M K, Zhu Y. Mapping the descent of Indian and Eurasian plates beneath the Tibetan plateau from gravity anomalies.J . Geophys . Res .,1996,101 (B5) :11275~11290
    [119] Owens T J,Zandt G.Implications of crustal property variations for models of tibetan Plateau evolution,nature,1997,387,37~43
    [120] Kosarev G K R,Sobolev S V,Yuan X,et al.Seismic evidence for a detached Indian lithosphere mantle beneath Tibet.Science,1999,282:1306~1309
    [121] Barazangi M,Ni J.Velocities and propagation charactersic of Pn and Sn beneath the Himalaya arc and Tibetan plateau:possible evidence for underthrusting of Indian continental lithosphere beneath Tibet.geology,1982,10:179~185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700