面向认知网络的自适应QoS感知与配置方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术的不断发展和应用范围的不断扩大,网络系统越来越复杂,一些新兴通信应用不断涌现,致使网络性能及端到端系统性能得不到保障。受限于传统网络层次化结构的限制,当前网络元素不能感知其它网络元素的各种行为及环境状态,更多地依靠人工干预,对复杂环境的适应能力明显不足,难以满足人们所希望得到的网络服务质量(Quality of Service,QoS)。认知网络(Cognitive Networks,CN)正是在此需求背景下而产生,并成为网络工作者面临的一个重要课题。所谓认知网络就是网络系统具有感知环境变化和网络状态的能力,根据整体目标及端到端目标,通过适当的学习机制,利用感知的环境信息和网络状态信息,实时动态地调整网络配置,智能地适应环境变化并能指导未来的自主决策。目前,认知网络作为下一代网络(Next Generation Network,NGN)的核心内容和发展趋势,其研究正处于起步阶段,而认知网络应用环境的复杂程度远超过开发者在系统设计初期所预想的程度,几乎所有国家在部署下一代网络实施要求时,都提出了要解决认知网络端到端QoS问题。如何建立保障通信的框架结构并提供高效的网络QoS以保证认知网络端到端性能成为认知网络的核心内容和研究热点。
     本文首先从系统框架这一宏观角度出发,结合认知理念,提出面向认知网络的自适应QoS框架,为后续工作的开展打下基础;然后从边界网络和主干网络两个角度分别对认知网络QoS数据的收集和分析进行研究,为下一步的QoS动态自配置提供数据支持;最后使用效用函数对QoS进行表示和区分,对QoS动态自配置进行研究。本文从体系架构到数据处理分析再到系统配置,构建一条保障端到端QoS的途径,以满足用户对认知网络QoS的需求。主要研究内容组织如下:
     首先,本文提出了具有跨层感知能力的认知网络自适应QoS框架。考虑到下一代网络的业务需求,结合认知网络QoS设计理念,突破传统网络层次结构,提出一种自适应的QoS框架结构,该结构自下而上分为“系统层—服务层—用户层”三个逻辑层次。通过在每个层次上部署QoS管理单元来实现网络元素的互操作,建立层间QoS管理单元独立通道来实现系统的跨层感知,以实现一体化的QoS控制。形式化分析结果表明,本文设计的认知网络QoS框架能够体现认知网络跨层感知、自我管理和动态感知等方面设计需求。
     其次,针对端到端的QoS保障要求,本文从边界网络和主干网络两个方面对网络QoS数据进行采集和分析。针对边界网络的QoS感知问题,提出了“两阶段”的数据处理方法即基于DS证据理论的QoS数据处理(Data Preprocess,DPP)和动态权重提升(Dynamic AdaBoost,D-AdaBoost)相结合的QoS数据预处理方法,将感知到的边界网络数据进行融合预处理,DPP无法处理的数据将由D-AdaBoost提升方法对“难分”数据进行二次分类,达到根据多层数据实时感知网络QoS状态的目的。实验结果表明,“两阶段”的数据处理方法不仅能保证分类的精确度,去除不确定性噪声数据带来的不利影响,有效的避免DPP中的证据冲突,而且能提高QoS数据分类能力。针对主干网络的QoS感知问题,提出了基于中值树的IP流聚合方法。通过对主干网络上的IP数据流特点进行分析,从“聚”和“合”两个角度对主干网络IP流进行分析,并综合考虑主干网络IP流的统计特征,给出了IP流特征动态合并的方法。仿真实验结果表明,此方法不仅能在离线情况下高时效地处理大规模样本,而且在在线时也能通过统计特征的动态合并准确实时地反映主干网络IP流的特点,为主干网络实时QoS保证提供参考。
     最后,本文提出了基于效用函数的QoS动态自配置方法。充分考虑了下一代网络的认知特性和认知网络的自我管理能力,提出一种面向认知网络的用户QoS动态自配置方法,使用效用函数对用户QoS优先级进行表示和区分,并采用中断策略对用户QoS优先级进行动态修正,解决网络阻塞状态下对用户QoS支持不足的问题,使网络用户群体在当前的网络条件下获得最优的QoS。仿真实验结果表明,该方法可以在一定程度上减轻瓶颈链路的拥塞状态,降低数据包的丢失率,在发生链路堵塞的情况下能有效地保持用户满意度。
With the rapid development of networking technologies, its application scope has been extended every corner of the world. Specifically, network systems have become extremely complicated with the appearance of new communication technologies, which has resulted in the unreliability of network and end-to-end performances. Those current network elements could not be awareness of the action of others and the environment state due to the constraint of traditional network architecture. As a result, the adaptaion ability of network elements for complex environment is inadequate and the quality of service (QoS) can not be guaranteed. Therefore, the concept of cognitive networks (CN) is generated under this background and become an important topic for the researchers in network fields.The so called cognitive networks are the specific network systems that have ability of environment-awareness and network state-awareness. Based on awared information, the whole system targets and end-to-end targets, cognitive networks can utilize proper learning mechanism to adjust network configuration, adapt to environmental change intelligently and guide future autonomous decision-making.Cognitive networks are considered as the core and development trend of the next generation network (NGN) in commom, which now are on its infant stage, and the application complexity of cognitive network is beyond the original understanding of system designers. The end-to-end QoS problem in cognitive networks is proposed when NGN is deploied in most of the counties. How to construct the architecture and provide the effective network QoS have become the key topics in the field of cognitive networks.
     In this paper, we first propose a self-adaptive QoS framework of cognitve network combined with the cognitve philosophy. As a data support for next dynamic self-configuration, we then investigate the bordernet and backbone QoS data collection and analysis. Finally, QoS metrics are distinguished by utility function and the dynamic self-configuration mechanism is proposed. In this paper, we propose an approach to guarantee the end-to-end QoS in order to meet the users’need. The main contents are organized as follows.
     Firstly, a cognitive network QoS framework is proposed, which is ability of cross-layer awareness. Considering the demand of NGN as well as design philosophy of cognitive network QoS, a self-adaptive QoS framework is proposed which is devided into three logic layer called as“system layer-service layer-user layer”from bottom to top. QoS management elements on every layer are deployed to achive the mutual operation, and the channels are constructed to obtain the cross layer awareness and integrative QoS control. Formal analysis result shows that this proposed QoS framework meets the need of cognitive networks demand which can demonstrate philosophy of cross layer design, self-management and dynamic awareness.
     Secondly, according to the requirements of end-to-end QoS, a data preprocessing approach is proposed in the views of bordernet and backbone.In order to solve the bordernet QoS-awareness, a“two step”method are proposed. In the first step, DPP (Data Preprocessing) based on DS evidence theory is utilized to fusion network QoS data and classify them in the meanwhile. In the second step, the D-AdaBoost (Dynamic AdaBoost) is utilized to classify the remained QoS data by the first step.The experimental results show that our method can assure the precision of classification, eliminate the influence of uncertain noisy data and avoid the evidence conflict.In order to solve the backbone QoS-awareness, IP flow aggregation method based on median tree is proposed in this paper. By analyzing the IP flow statistical characteristics of backbone networks, the propoed method has a capability of analyzing backbone IP flows in the views of“cluster”and“combination”. The simulation experiments show that IP flow aggregation method can handle the large scale data effectively offline. Moreover, our method can demonstrate IP flow characteristics of backbone networks accurately by statistics characteristics combination.
     Lastly, we propose a QoS dynamic self-configuration method based on utility function. Taking cognitive characteristics and self-management ability into consideration, the utility function is used to distinguish QoS priority and adopt interruption policy to dynamically modify the QoS priority which can reinforce the users’QoS support when the network is congested. The experiment results show that our method can alleviate the congestiong on the bottleneck links to some extent, reduce the data packets lost and maintain the user satisfaction when bottleneck links are congested.
引文
[1] Rejeb S B, Nasser N, Choukair Z, et al. Modeling end-to-end QoS management and real time agreement protocols for resource reservation for multimedia mobile radio network. Computer Communications, 2007, 30(9): 1953-1963P
    [2] Antoniou J, Koukoutsidis I, Jaho E, et al. Access network synthesis game in next generation networks. Computer Networks, 2009, 53(15): 2716-2726P
    [3] Lee C, Fapojuwo O. Analysis and modeling of a campus wireless network TCP/IP traffic. Computer Networks, 2009, 53(15): 2674-2687P
    [4] Lai C C, Lee R G, Hsiao C C, et al. A H-QoS-demand personalized home physiological monitoring system over a wireless multi-hop relay network for mobile home healthcare applications. Journal of Network and Computer Applications, 2009, 32(6): 1229-1241P
    [5] Wang N C, Lee C Y. A reliable QoS aware routing protocol with slot assignment for mobile ad hoc networks. Journal of Network and Computer Applications, 2009, 32(6): 1153-1166P
    [6] Agoulmine N, Balasubramaniam S, Botvich D, et al. Challenges for autonomic network management. Proceedings of 1st Conference on Modelling Autonomic Communication. Dublin, Ireland, 2006: 1-20P
    [7] Albayrak S, Bur K, Toker A. Network economy in service-and context-aware next generation mobile networks. Proceedings of 18th International Symposium on Personal, Indoor and Mobile Radio Communications. Athens, Greece, 2007: 1-5P
    [8] Jennings B, Vander S, Balasubramaniam S, et al. Towards autonomic management of communications networks. IEEECommunications Magazine, 2007, 45(10): 112-121P
    [9] Thomas R. Cognitive Networks. Virginia Polytechnic and State University, VA, 2007
    [10] Dimitrakopoulos G, Tsagkaris K, Demestichas K, et al. A management scheme for distributed cross-layer reconfigurations in the context of cognitive B3G infrastructures. Computer Communications, 2007, 30(18): 3807-3822P
    [11] Ramming C. Cognitive networks. Proceedings of DARPATech Symposium. Anaheim, CA, USA, 2004: 9–11P
    [12] Thomas R, Dasilva L, MacKenzie A. Cognitive networks. New Frontiers in Dynamic Spectrum Access Networks, 2007: 352-360P
    [13] Thomas R, Friend D, Dasilva L, et al. Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine, 2006, 44(12): 51-57P
    [14] Fortuna C, Mohorcic M. Trends in the development of communication networks: Cognitive networks. Computer Networks, 2009, 53(9): 1354-1376P
    [15] Schmid S, Sifalakis M, Hutchison D. Towards autonomic networks. Lecture Notes in Computer Science, 2006, 4195: 1-11P
    [16] Derbel H, Agoulmine N, Sala M. ANEMA: Autonomic network management architecture to support self-configuration and self-optimization in IP networks. Computer Networks, 2009, 53(3): 418-430P
    [17] Latr S, Simoens P, De Vleeschauwer B, et al. An autonomic architecture for optimizing QoE in multimedia access networks. Computer Networks, 2009, 53(10): 1587-1602P
    [18] Balasubramaniam S, Botvich D, Jennings B, et al. Policy-constrained bio-inspired processes for autonomic route management. Computer Networks, 2009, 53(10): 1666-1682P
    [19] Tansupasiri T, Kanchanasut K, Barakat C, et al. Using activenetworks technology for dynamic QoS. Computer Networks, 2006, 50(11): 1692-1709P
    [20] Huang T C, Shieh C K, Miao Y B. Bottleneck Active Node Detouring for capsule-based active network. Journal of Network and Computer Applications, 2009, 32(1): 1-30P
    [21] Solarski M, Bossardt M, Becker T. Deployment and management of component-based services in active networks. Computer Networks, 2006, 50(14): 2506-2518P
    [22] Ci S, Guizani M, Sharif H. Adaptive clustering in wireless sensor networks by mining sensor energy data. Computer Communications, 2007, 30(14-15): 2968-2975P
    [23] Pitsillides A, Lambert J. Adaptive congestion control in ATM based networks: quality of service and high utilisation. Computer Communications, 1997, 20(14): 1239-1258P
    [24] Chen H, Mineno H, Mizuno T. Adaptive data aggregation scheme in clustered wireless sensor networks. Computer Communications, 2008, 31(15): 3579-3585P
    [25]王慧强,冯光升,吕宏武,等.认知网络研究新进展.科技论文在线, 2009
    [26] Mahmoud Q. Cognitive Networks: Towards Self-Aware Networks, NY: Wiley-Interscience, 2007: 1-59P
    [27] Srivastava V, Motani M. Cross-layer design: a survey and the road ahead. IEEE Communications Magazine, 2005, 43(12): 112-119P
    [28] Giambene G, Kota S. Cross-layer protocol optimization for satellite communications networks: a survey. International Journal of Satellite Communications, 2006, 24(5): 323P
    [29] Clark D D, Partridge C, Ramming J C, et al. A knowledge plane for the internet. Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications. Karlsruhe, Germany, 2003: 3-10P
    [30] Balamuralidhar P, Prasad R. A context driven architecture for cognitive radio nodes. Wireless Personal Communications, 2008, 45(3): 423-434P
    [31] Melcher B, Mitchell B. Towards an autonomic framework: Self-configuring network services and developing autonomic applications. Intel Technology Journal, 2004, 8(4): 279–290P
    [32] Strassner J, Agoulmine N, Lehtihet E. FOCALE–A Novel Autonomic Networking Architecture. Proceedings of American Autonomic Computing Symposium. NY, USA, 2006: 1-13P
    [33] Clark D, Braden R, Wroclawski J, et al. New ARCH: Future Generation Internet Architecture. Storming Media, 2004
    [34] Wang M, Suda T. The Bio-Networking Architecture: a biologically inspired approach to the design of scalable, adaptive, and survivable/available network applications. Proceedings of 2001 Symposium on Applications and the Internet. San Diego, California, USA, 2001: 43-53P
    [35] Jong F d, Oard D W, Ordelman R, et al. Searching spontaneous conversational speech. SIGIR Forum, 2007, 41(2): 104-108P
    [36] Baumgarten M, Bicocchi N, Kusber R, et al. Self-organizing knowledge networks for pervasive situation-aware services. IEEE International Conference on Systems, Man and Cybernetics. Quebec, Canada, 2007: 1-6P
    [37] Raymer D, Meer S v d, Strassner J. From Autonomic Computing to Autonomic Networking: An Architectural Perspective. Proceedings of 5th IEEE Workshop on Engineering of Autonomic and Autonomous Systems. Belfast, UK, 2008: 174-183P
    [38] Parker S, Wall T, Cordery J. Future work design research and practice: Towards an elaborated model of work design. Journal of Occupational and Organizational Psychology, 2001, 74(4): 413-440P
    [39]毕丽红,张淑敏.无线网络教室的监测与控制技术.微计算机信息, 2004, 20(9): 38-39页
    [40] Keeney J, Cahill V. Chisel: a policy-driven, context-aware, dynamic adaptation framework. Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and Networks. Lake Como, Italy, 2003: 1-12P
    [41] Kirsch-Pinheiro M, Villanova-Oliver M, Gensel J, et al. Context-aware filtering for collaborative web systems: adapting the awareness information to the user's context, 2005: 1668-1673P
    [42] Ye B, Guo M, Chen D, et al. A degree-constrained QoS-aware routing algorithm for application layer multicast. Information Sciences, 2007, 177(17): 3613-3626P
    [43] Tian M, Gramm A, Ritter H, et al. Efficient selection and monitoring of QoS-aware web services with the WS-QoS framework. Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. Beijing, China, 2004: 152-158P
    [44] Canfora G, Penta M D, Esposito R, et al. A framework for QoS-aware binding and re-binding of composite web services. Journal of Systems and Software, 2008, 81(10): 1754-1769P
    [45] Tsesmetzis D, Roussaki I, Sykas E. Modeling and simulation of QoS-aware web service selection for provider profit maximization. Simulation, 2007, 83(1): 93-106P
    [46] Sabrina F. A novel resource scheduling algorithm for QoS-aware services on the Internet. Computers & Electrical Engineering, 2009, In Press, Corrected Proof
    [47] Chen T, Sortais M, Schafer G, et al. Performance analysis of a denial of service protection scheme for optimized and QoS-aware handover. Computer Networks, 2005, 49(3): 449-464P
    [48] Shakkottai S, Rappaport T, Karlsson P. Cross-layer design forwireless networks. IEEE Communications Magazine, 2003, 41(10): 74-80P
    [49]公维宾,常义林,沈中,等.具有多出入口区域的节点移动和分布研究.计算机研究与发展, 2008, 45(3): 428-435页
    [50]卢先领,孙亚民,周灵,等. Ad Hoc无线网络跨层设计综述.计算机科学, 2007, 34(10): 24-26,32页
    [51]蔡蓓蓓,成际镇,谢文珂.各标准组织QoS分类和DiffServ业务类别的映射.中国数据通信, 2004, 6(11): 1-3页
    [52] Carugi M, Hirschman B, Narita A. Introduction to the ITU-T NGN focus group release 1: target environment, services, and capabilities. IEEE Communications Magazine, 2005, 43(10): 42-48P
    [53] Song J, Chang M, Lee S, et al. Overview of ITU-T NGN QoS control. IEEE Communications Magazine, 2007, 45(9): 116-123P
    [54] Dijkstra F, Andree B, Koymans K, et al. A multi-layer network model based on ITU-T G.805. Computer Networks, 2008, 52(10): 1927-1937P
    [55] Cadzow S. Security concerns in IP-based telephony: covering TIPHON as a case study. Information Security Technical Report, 2000, 5(3): 74-82P
    [56] Chakeres I, Macker J. Mobile ad hoc networking and the IETF. ACM SIGMOBILE Mobile Computing and Communications Review, 2006, 10(1): 58-60P
    [57] Weng J F, Chen J C, Cheng K W. Comparative study of broadcast and multicast in 3GPP and 3GPP2 networks. Computer Communications, 2008, 31(17): 4220-4229P
    [58] Chaikalis C. Implementation of a reconfigurable turbo decoder in 3GPP for flat Rayleigh fading. Digital Signal Processing, 2008, 18(2): 189-208P
    [59] Awad C, Sans B, Girard A. DiffServ for differentiatedreliability in meshed IP/WDM networks. Computer Networks, 2008, 52(10): 1988-2012P
    [60] Alouneh S, Agarwal A, En-Nouaary A. A novel path protection scheme for MPLS networks using multi-path routing. Computer Networks, 2009, 53(9): 1530-1545P
    [61] Maheswaran R T, Basar T. Decentralized network resource allocation as a repeated noncooperative market game. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida, 2001, 5: 4565-4570P
    [62] Papavassiliou S, Puliafito A, Tomarchio O, et al. Mobile agent-based approach for efficient network management andresource allocation: framework and applications. IEEE Journal on Selected Areas in Communications, 2002, 20(4): 858-872P
    [63] Papavassiliou S, Puliafito A, Tomarchio O, et al. Integration of mobile agents and genetic algorithms for efficient dynamic network resource allocation. Proceedings of the 6th IEEE Symposium on Computers and Communications Hammamet, Tunisia, 2001: 456-463P
    [64] Johari R, Tsitsiklis J N. Network resource allocation and a congestion game: the single link case. Proceedings of 42nd IEEE Conference on Decision and Control. Hyatt Regency Maui, Hawaii, USA, 2003, 3: 2112-2117P
    [65] Johari R, Tsitsiklis J. A scalable network resource allocation mechanism with bounded efficiency loss. IEEE Journal on Selected Areas in Communications, 2006, 24(5): 992-999P
    [66]邹园萍,糜正琨.基于MPLS和DiffServ的域内网络资源配置方法.电子与信息学报, 2007(1): 214-217页
    [67] Wei Y, Li X, Song M, et al. Cooperation Radio Resource Management and Adaptive Vertical Handover in Heterogeneous WirelessNetworks. Proceedings of 4th International Conference on Natural Computation. Jinan, China, 2008, 5: 197-201P
    [68] Miyamoto T, Hayashi M, Tanaka H. Pull operation-based adaptive network resource allocation with application switching. Proceeding of 7th International Conference on Optical Internet. Tokyo, Japan, 2008: 1-2P
    [69] Ing-Chau C, Sheng-Wen H. An adaptive QoS guarantee framework for SMIL multimedia presentations with ATM ABR service. Proceedings of IEEE Global Telecommunications Conference. San Francisco, USA, 2002, 2: 1784-1788P
    [70] Tian M, Gramm A, Ritter H, et al. Adaptive QoS for mobile web services through cross-layer communication. Computer, 2007, 40(2): 59-63P
    [71] Tian M, Gramm A, Naumowicz T, et al. A concept for QoS integration in web services. Proceedings of 4th International Conference on Web Information Systems Engineering Workshops. Roma, Italy, 2003: 149-155P
    [72] Hsu-Yang K, Yen-Yen L, Chia-Ni L. A configurable multicast multimedia framework supporting adaptive QoS. Proceeding of IEEE International Symposium on Communications and Information Technology, 2004, 1: 356-361P
    [73]辛明军,吴超,李伟华.基于多Agent的复合模型求解自适应QoS机制.计算机工程, 2007, 33(18): 72-74页
    [74]沈芙辉,周娅.一种用于无线系统的自适应QoS结构.网络安全技术与应用, 2006, 8: 92-94页
    [75]姚尹雄,王豪行. MAQF:一种新的移动Ad2Hoc网络自适应QoS结构框架.电子学报, 2002, 30(5): 727-730页
    [76]刘均,郑庆华.一种基于分层结构的动态自适应QoS分布控制模型.通信学报, 2002, 23(9): 100-106页
    [77]汤庸,杨学良.基于IP网络的自适应QoS管理方案研究.计算机学报,2001, 24(1): 32-39页
    [78]汤庸,杨学良. QoS映射与自适应协商机制的研究与实现.软件学报, 2001, 12(5): 751-757页
    [79] Bouras C, Gkamas A, Karaliotas A, et al. Behaviour investigation using simulation for redundant multicast transmission supporting adaptive QoS. Proceeding of 10th IEEE International Conference on Networks. Paris, France, 2002: 112-117P
    [80] Mercado A, Liu K. Adaptive QoS for wireless multimedia networks using power control and smart antennas. IEEE Transactions on Vehicular Technology, 2002, 51(5): 1223-1233P
    [81] Hongxia S, Hughes H D. Adaptive QoS routing based on prediction of local performance in ad hoc networks. Proceedings of 2003 IEEE Conference on Wireless Communications and Networking. New Orleans, Louisiana, USA, 2003, 2: 1191-1195P
    [82] Shanghong P, Yang S X, Gregori S, et al. An adaptive QoS and energy-aware routing algorithm for wireless sensor networks. Proceedings of International Conference on Information and Automation. Zhangjiajie, Hunan, China, 2008: 578-583P
    [83] Gelenbe E, Ngai E C H. Adaptive QoS routing for significant events in wireless sensor networks. Proceedings of 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems. Atlanta, Georgia, 2008: 410-415P
    [84]袁捷,张同须. IP网络及其QoS技术发展研究.电信科学, 2005, 21(5): 23-27页
    [85]赖积保.基于异构传感器的网络安全态势感知若干关键技术研究.哈尔滨工程大学,哈尔滨, 2009:130页
    [86] Geisweiller N, Hillston J, Stenico M. Relating continuous and discrete PEPA models of signalling pathways. Theoretical Computer Science, 2008, 404(1-2): 97-111P
    [87] Gilmore S, Hillston J, Ribaudo M. An efficient algorithm foraggregating PEPA models. IEEE Transactions on Software Engineering, 2001, 27(5): 449-464P
    [88] Tribastone M. The PEPA plug-in project. Proceedings of Fourth International Conference on the Quantitative Evaluation of Systems. Edinburgh, Scotland, 2007: 53-54P
    [89] Ito Y, Tasaka S. Feasibility of QoS control based on QoS mapping over IP networks. Computer Communications, 2008, 31(10): 2589-2595P
    [90] Moore B, Siller A. Availability of end-to-end ideal QoS in IP packet networks. Computer Communications, 2005, 28(18): 2047-2057P
    [91] Yao J, Xiao L, Nie C, et al. Resource allocation for end-to-end QoS provisioning in a hybrid wireless WCDMA and wireline IP-based DiffServ network. European Journal of Operational Research, 2008, 191(3): 1139-1160P
    [92] Han B. Zone-based virtual backbone formation in wireless ad hoc networks. Ad Hoc Networks, 2009, 7(1): 183-200P
    [93] Huang X, Rubin I. Hybrid mobile backbone network routing with flow control and distance awareness (MBNR-FC/DA). Ad Hoc Networks, 2008, 6(2): 226-244P
    [94] Inai H, Ohtsuki K. Performance study of congestion control for high-speed backbone networks. Computer Communications, 1992, 15(7): 429-437P
    [95] Curino C, Giani M, Giorgetta M, et al. Mobile data collection in sensor networks: the TinyLime middleware. Pervasive and Mobile Computing, 2005, 1(4): 446-469P
    [96] Orozco-Barbosa L, Hirzalla N. Share-based congestion control scheme for systems of interconnected networks. Computer Communications, 1995, 18(2): 79-88P
    [97] Pundt H, Bishr Y. Domain ontologies for data sharing-an examplefrom environmental monitoring using field GIS. Computers & Geosciences, 2002, 28(1): 95-102P
    [98] Feng G, Wang H, Zhao Q. A novel approach of alarm classification for intrusion detection based upon Dempster-Shafer theory. Proceedings of 3rd International Conference on Web Information Systems and Technologies. Barcelona, Spain, 2007: 234-239P
    [99] Dempster A P. Upper and lower probability inferences based on a sample from a finite univariate population. Biometrika, 1967, 54(3-4): 515-528P
    [100] Shafer G. A mathematical theory of evidence: Princeton: Princeton university press, NJ, 1976
    [101] Yager R R. On the Dempster-Shafer framework and new combination rules. Information Sciences, 1987, 41(2): 93-137P
    [102] Yager R R. On the Dempster-Shafer framework and new combination rules. Information Sciences: an International Journal, 1987, 41(2): 93-137P
    [103]徐凌宇,张博锋,徐炜民,等. D-S理论中证据损耗分析及改进方法.软件学报, 2004, 15(1): 69-75页
    [104]杨善林,褚伟,丁帅.一种基于效用和证据理论的可信软件评估方法.计算机研究与发展, 2009(7): 1152-1159页
    [105] Chen L, Shi W, Deng Y, et al. A new fusion approach based on distance of evidences. Journal of Zhejiang University, 2005, 6(5): 476-482P
    [106]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式.电子学报, 2000, 28(8): 117-119页
    [107] Dubois D, Prade H. Default reasoning and possibility theory. Artificial Intelligence, 1988, 35(2): 243-257P
    [108]王连锋,刘卫东.一种新的基本概率函数构建方法及应用.指挥控制与仿真, 2009, 31(1): 98-100页
    [109] Freund Y, Schapire R. A decision-theoretic generalization ofon-line learning and an application to boosting. Journal of computer and system sciences, 1997, 55(1): 119-139P
    [110] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction, New York: Springer Press, 2001: 1001P
    [111] Shamir A. Identity-Based Cryptosystems and Signature Schemes. Advances in Cryptology, 1985: 47-53P
    [112] Baccelli F, McDonald D R. A stochastic model for the throughput of non-persistent TCP flows. Performance Evaluation, 2008, 65(6-7): 512-530P
    [113] Masugi M. Applying a recurrence plot scheme to analyze non-stationary transition patterns of IP-network traffic. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 1418-1430P
    [114] Cdenas C, Gagnaire M, Lez V, et al. Admission control in Flow-Aware Networking (FAN) architectures under GridFTP traffic. Optical Switching and Networking, 2009, 6(1): 20-28P
    [115] Lee Y, Choi S, Lee J. Monitoring MIPv6 Traffic with IPFIX. Lecture Notes in Computer Science, 2006, 4268: 232-235P
    [116]程光,龚俭,丁伟,等.面向IP流测量的哈希算法研究.软件学报, 2005, 16(005): 652-658页
    [117]文浩,林闯,任丰原,等.无线传感器网络的QoS体系结构.计算机学报, 2009(3): 432-440页
    [118]林闯,王元卓,任丰原.新一代网络QoS研究.计算机学报, 2008(9): 1525-1535P
    [119]王伟平,李建中,张冬冬,等.一种有效的挖掘数据流近似频繁项算法.软件学报, 2007(4): 884-892页
    [120] Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases.Francisco, CA, USA, 1994:487-489P
    [121] Guha S, Meyerson A, Mishra N, et al. Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(3): 515-528P
    [122] Ordonez C. Clustering binary data streams with K-means. Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery. San Diego, California, 2003: 12-19P
    [123] O Callaghan L, Mishra N, Meyerson A, et al. Streaming-data algorithms for high-quality clustering. Proceedings of 18th International Conference on Data Engineering. San Jose, CA, 2002: 685-696P
    [124] Babcock B, Datar M, Motwani R, et al. Maintaining variance and k-medians over data stream windows. Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. NY, USA, 2003: 234-243P
    [125] Barbara D. Requirements for clustering data streams. ACM SIGKDD Explorations Newsletter, 2002, 3(2): 23-27P
    [126] Aggarwal C, Han J, Wang J, et al. A framework for clustering evolving data streams. Proceedings of the 29th international conference on Very large data bases. Mexico City, Mexico, 2003, 29: 81-92P
    [127] Dai B, Huang J, Yeh M, et al. Adaptive clustering for multiple evolving streams. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9): 1166-1180P
    [128] Wang Z, Wang B, Zhou C, et al. Clustering Data streams on the Two-tier structure. Lecture Notes in Computer Science, 2004, 3007: 416-425P
    [129] Sander J, Ester M, Kriegel H, et al. Density-based clustering in spatial databases: the algorithm gdbscan and its applications.Data Mining and Knowledge Discovery, 1998, 2(2): 169-194P
    [130] Cao F, Ester M, Qian W, et al. Density-based clustering over an evolving data stream with noise. Proceedings of the 6th SIAM International Conference on Data Mining. Bethesda, MD, USA, 2006: 328-339P
    [131] Feng G, Wang H, Zhao Q, et al. A novel clustering algorithm for prefix-coded data stream based upon median-tree. Proceedings of International Conference on Internet Computing in Science and Engineering. Harbin, China, 2008: 79-84P
    [132]彭京,唐常杰,程温泉,等.一种基于层次距离计算的聚类算法.计算机学报, 2007, 30(5): 786-795页
    [133]冯光升,王慧强,武俊鹏,等.一种新的基于分布式入侵检测的警报聚类方法.武汉大学学报:理学版, 2006, 52(5): 635-638页
    [134]彭京,唐常杰,程温泉,等.一种基于层次距离计算的聚类算法.计算机学报, 2007(5): 786-795页
    [135]林平,余循宜,刘芳,等.基于流统计特性的网络流量分类算法.北京邮电大学学报, 2008, 31(2): 15-19页
    [136] Safak M. Towards Cognitive Telecommunication Networks. Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th, 2007: 1-4P
    [137] Lin H, Chang W. CORNet: An OBS metro ring network with QoS support and fairness control. Computer Networks, 2008, 52(10): 2045-2064P
    [138] Lembke J, Choi B K. Edge-limited scalable QoS flow set-up. Journal of Network and Computer Applications, 2008, 31(3): 317-337P
    [139] Cheng H, Cao J, Wang X. A fast and efficient multicast algorithm for QoS group communications in heterogeneous network. Computer Communications, 2007, 30(10): 2225-2235P
    [140] Chang C Y, Chang C T, Chen T S, et al. Hierarchical managementprotocol for constructing a QoS communication path in wireless Ad Hoc networks. Information Sciences, 2007, 177(13): 2621-2641P
    [141] Wang H, Yow K C. A QoS framework to support integrated services in multihop wireless networks with infrastructure support. Computer Communications, 2008, 31(14): 3253-3266P
    [142] Di Stefano A, Morana G, Zito D. A P2P strategy for QoS discovery and SLA negotiation in Grid environment. Future Generation Computer Systems, 2009, 25(8): 862-875P
    [143] Meo M, Milan F. QoS content management for P2P file-sharing applications. Future Generation Computer Systems, 2008, 24(3): 213-221P
    [144] Katsuno Y, Aihara T, Res I, et al. Autonomic network configuration for networkable digital appliances. IEEE Transactions on Consumer Electronics, 2005, 51(2): 494-500P
    [145] Lee C, Knight D. Realization of the next-generation network. IEEE Communications Magazine, 2005, 43(10): 34-41P
    [146] Feng G, Wang H. Dynamic self-configuration of user QoS for next generation network. Proceedings of 6th IFIP International Conference on Network and Parallel Computing. Gold Coast, Australia, 2009: In Press
    [147] Kunqi G, Lixin S, Shilou J. Utility function based fair data scheduling algorithm for OFDM wireless network. Journal of Systems Engineering and Electronics, 2007, 18(4): 731-738P
    [148] Ye L, Wang Z, Che H, et al. Utility function of TCP. Computer Communications, 2009, 32(5): 800-805P
    [149] Kunniyur S, Srikant R. End-to-end congestion control schemes: Utility functions, random losses and ECN marks. IEEE/ACM Transactions on Networking (TON), 2003, 11(5): 689-702P
    [150] Wang Y. Assessment of learner satisfaction with asynchronouselectronic learning systems. Information and Management, 2003, 41(1): 75-86P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700