核电厂房地基抗震适应性及楼层谱不确定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
顺应我国核电事业快速发展的形势,鉴于核电厂结构的特殊性,积极开展核电厂建筑结构的抗震研究已非常重要。本研究课题就是在近年来核电工程实践的基础上,以某百万千瓦级核反应堆厂房的楼层谱计算为主要目的,考虑SSI,开展了相关不同场地计算模型、时程分析方法等研究;并针对模型参数不确定性所带来的影响,在ASCE规范框架内,对反应堆厂房(RX)楼层谱进行蒙特卡罗概率统计分析,为楼层谱的确定性计算结果的评价提供了对比参考。具体内容概要如下:
     (1)提出了一种基于谐响应的核电厂地基动阻抗数值求解方法,并基于比例边界有限元(SBFEM)-连分式算法将频域动刚度转换到时域分析中,开展了核电厂房地基动阻抗计算的具体分析。对比分析显示,与传统规范方法和多参数集总场地模型相比较,本算法适于三维问题分析,而且在求解分层以及开挖场地的动阻抗方面具有独特的优势,并能够反映出动阻抗随激励频率变化的特性,且满足工程要求的精度。
     (2)在规范建议的反应堆厂房的集中质量简化模型的基础上,开展了多种时程分析方法的对比研究,其中包括直接法和阻抗子结构法。并在此基础上,以算例的形式,针对半无限均质场地上的核电厂上部厂房结构,进行SSI分析,开展了多场地模型的对比研究,并将得到的楼层加速度反应谱与粘弹边界场地模型结果进行了对比,验证了本文推荐场地动力模型的保守性。
     (3)为反映模型参数不确定性的影响,ASCE等规范以拓峰和峰降的形式只对确定性方法获得的楼层谱进行了定性的不确定性处理,同时规范也指出在2%小阻尼条件下,对确定性分析获得的楼层反应谱进行峰降15%偏于保守,只要满足90%保证率的条件,峰降幅度可不受15%的限制。为了定量评价模型参数不确定性对楼层谱计算值的影响,为拓峰和峰降提供技术依据,在输入地震动水平确定的前提下,单纯考虑模型参数不确定性的影响,采用蒙特卡罗概率统计法,进行了反应堆厂房楼层谱的概率统计分析。结果表明,概率统计分析方法的采用,使确定性分析方法获得的楼层谱的峰值趋于平滑化,且更为有效地降低确定性楼层谱的峰值强度。
In view of the particularity of the nuclear power plant,it is very important to study on seismic performance of nuclear power plant in order to conform to the rapid development of Chinese nuclear power industry.Against the reactor building of a 1000MW reactor nuclear station,this paper has a study on the effect of different site models and time-history method in the floor response spectrum computation,and then makes an analysis of the nuclear power plant seismic response based on the time-history method considering SSI.At last.the probabilistic-statistical analysis of the reactor plant(RX) only considering model parameter uncertainty is performed by the method of Monte-Carlo on the basis of ASCE Standard.This paper reads as follows:
     (1) A numerical solution to the soil dynamic impedance for the nuclear power plant based on harmonic response is proposed,and a continued-fraction solution of SBFEM analysis is studied in this paper.Then,the dynamic impedance of different site models is calculated and analysed concretely.The results for the different field models indicate that the proposed algorithm can both solve the dynamic impedance for the semi-infinite homogeneous field and layered field.Besides,it is able to reflect the dynamic impedance changes with excitation frequencies and its accuracy can meet the engineering requirements.
     (2) Based on the lumped-mass simplified model of the reactor building and the viscouss-elastic boundary model of semi-infinite free field and excavated field,the time-history analysis on the basis of direct method and sub-structrue method has been made in order to determine seismic response of nuclear power plant structure.In addition,different lumped-parameter models of the semi-infinite homogeneous free field and the lumped-mass model of the reactor building are coupled,and then the analysis of SSI has been made. Compared to the results of viscous boundary model,the conservation of the lumped-parameter model is verified.
     (3) In order to reflect the impact of model-parameters uncertainty,ASCE Standard indicates that peak of the floor response spectrum deduced by the deterministic method may be broaden and reduced,and also shows that the reduction 15%amplitude of floor response spectrum is somewhat conservative for the model-parameters uncertainty analysis in the case of 2%small damping,furthermore,the reduction rate of amplitude is not limited to 15%,as long as it meets 90%guarantee rate.In order to provide technical basis for the reasonable peak broaden and reduction,the probabilitic-statistical analysis of the floor response spectrum is made under the determination of the level of input ground motion and the uncertainty of model parameters.The results indicate that the peak of floor response spectrum is not only more smoothing but also smaller after the probabilitic-statistical analysis.
引文
[1]濮继龙.中国改进型压水堆核电技术—CPR1000的形成,中国工程科学,2008,10(3):54-57
    [2]陈岩.基于三维实体模型的核电厂结构楼层反应谱分析[硕士论文].天津:天津大学,2005.
    [3]杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析[博士论文].大连:大连理工大学2007.
    [4]戚承志,钱七虎.核电站抗震研究综述.地震工程与工程振动,2000,20(3):76-86
    [5]Varpasuo P.The development of the floor response spectra using large 3D model.Nuclear Engineering and Design,1999,192(2-3):229-241
    [6]Bielor E,Brettschuh W,Krutzi N J,et al.Dynamic characteristics and structural response of the SWR 1000 under earthquake loading conditions.Nuclear Engineering and Design,2001,207(1):77-93
    [7]Young-Sun Jang,Iae-Young Kim.A study on the connection effects of subsurface slabs to exterior walls in the KNGR seismic analysis.Nuclear Engineering and Design,2001,207:65-76
    [8]Halbritter A L,Krutzik N J,Boyadjiev Z,et al.Dynamic analysis of VVER type nuclear power plants using different procedures for consideration of soil-structure interaction effects.Nuclear engineering and design,1998,182(1):73-92.
    [9]Kobayashi.T,Yoshikawa.K,Takaoka.E,ect.Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity.Nuclear Engineering and Design,2002,212(1-3):145-154
    [10]Elaidi,Bahaa.M,Eissa,et al.Soil-structure interaction in fuel handling building.Nuclear Engineering and Design,1998,181(1-3):145-156
    [11]Kralik J,Simonovic M.Earthquake response analysis of nuclear power plant buildings with soil-structural interaction.Mathematics and computers in simulation,1999,50(1-4):227-236
    [12]LYSMER J,KUHLEMEYER RL.Finite dynamic model for infinite media[J].J Engng Mech Div ASCE,1969,95:759-877.
    [13]李忠献,李忠诚,沈望霞.核反应堆厂房结构楼层反应谱的敏感性分析.核动力工程,2005,26(1):44-50
    [14]UnglessRF.AnInfinite Element(MasterThesis)[D].Columbia:University of British Columbia,1973
    [15]水利部国际合作与科技司编著,当代水利科技前沿[M],北京:中国水利水电出版社,2005
    [16]Wolf J P,Somaini D R.Approximate dynamic model of embeded foundation in time domain.Earthquake Eng Struct Dyn,1986,14:683
    [17]De Barros F C P,Luco J E.Discrete models for vertical vibrations of surface and embedded foundation.Earthquake Eng Struct Dyn,1990,19:289
    [18]Wen-yu Jean,Tsung-wuLin and Joseph Penzien.System Parameters of Soil Foundations for Time Domain Dynamic AnalysisEJ].Earthquake Engineering and Structural Dynamics,1990,(19):541-553.
    [19]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型.大连理工大学学报,1996,36(4):477
    [20]SongWolfJP.Dynamic stiffness of unbounded medium based on damping solvent extraction[J].EarthquakeEngineering&StrUeturalDynamies.1994,23(2):169-181
    [21]WolfJP,SongCh.Finite-Element Modelling of Unbounded Media(M).Newyork:Wiley,1996
    [22]SongCh,WolfJP.The scaled boundary finite-element method alias consistent infinitesimal finite-element cell method-for elastodynamies[J].Computer Methods in Applied Mechanics and Engineering,1997,147(3-4):329-355.
    [23]DeeksAJ,WolfJp.A virtual work derivation of the scaled boundary finite-element method for elastostatics[J].Computational Mechanics,2002,28(6):489-504.
    [24]WolfJP,SongCh.The scaled boundary finite-element method-a Primer:derivations [J]Computers and Structures,2000,78:191-210.
    [25]WolfJp,SongCh.The scaled boundary finite-element method-a fundamental solution-less-boundary element method[J].Computer Methods in Applied Mechanics and Engineering,2001,1905551-5568.
    [26]SongCh,WolfJP.The scaled boundary finite-element method-a Primer:solution procedures[J]Computers and Structures,2000,78:211-225.
    [27]SongCh.A matrix function solution for the scaled boundary finite-element equation in statics[J].Computer Methods in Applied Mechanics and Engineering,2004,193(23-26):2325-2356.
    [27]SongCh.Weighted block-orthogonal base functions for static analysis of unbounded domains[A],In:Proceedings of the 6th World Congress on Computational Methanics[C],Beijing,China,2004,615-620.
    [28]SongCh.Dynamic analysis of unbounded domains by a reduced set of base functions[J].Computer Methods in Applied Mechanics and Engineering,2006,195(33-36):4075-4094.
    [29]BazyarHM,SongCh.A continued-fraction-base high order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry[J],International Journal for Numerical Methods in Engineering,2008:74:209-237
    [30]Song Ch,Wolf J P.The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for diffusion[J].International Journal for Numerical Methods in Engineering,1999,45(10):1403-1430.
    [31]ASCE 4-98,Seismic Analysis of Safety-Related Nuclear Structures and Commentary.ASCE 4-98,1998.
    [32]RCC-G.Adaptation for the Model M310(1000MWe-PWE) of the RCC-G 900 MWe-PWE-Edition [S].1986
    [33]国家技术监督局,中华人民共和国建设部.核电厂抗震设计规范(GB 50267-97).1997
    [34]汪嘉春,傅激扬,才来中.试验堆主厂房楼板谱计算与比较[J].核动力工程,2001,22(4):308-312.
    [35]Wen-yu Jean,Tsung-wuLin and Joseph Penzien.System Parameters of Soil Foundations for Time Domain Dynamic Analysis[J].Earthquake Engineering and Structural Dynamics,1990,(19):541-553.
    [36]DEEKS AJ,RANDOLPH MF.Axisymmetric time-domain transmitting boundaries[J].Journal of Engineering Mechanics,1994,120(1):25-42.
    [37]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].木工程学报,1998,31(3):55-64.
    [38]P.Ruge,C.Trinks,S.Witte.Time-domain analysis of unbounded media using mixed variable formulations[J].Earthquake Engineering and Structural Dynamics.2001,30:899-925.
    [40]A.H.Hadjian,Probabilistic Frequecy Varirations of Concrete Structures Paper Presented at 2nd International Conference on Structural Mechanics in Reactor Technology,Berlin,September,1973
    [41]G.W.Housner,Behavior of Structures During Earthquakes,Journal of the Engineering Mechanics Division,ASCE,October,1959

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700