深厚软弱场地上桩箱基础高层建筑地震反应特性数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与结构相互作用(SSI)问题长期以来一直是地震工程领域备受关注的一个重大研究课题。对于建在深厚软弱地基上的高层建筑来说,与上部结构之间必然会存在很强的相互作用。本文的目的在于探讨深厚软弱地基上SSI效应对桩箱基础高层建筑、双塔高层建筑和相邻的双幢高层建筑地震反应的影响。为此,本文将高层建筑—桩箱基础—深厚软弱地基视为一个完整的体系进行了地震反应分析。
     首先,以某26层桩箱基础框架—剪力墙高层建筑为例,探讨了深厚软弱地基条件和输入地震动特性对桩箱基础高层建筑地震反应的影响。其成果如下:
     1.深厚软弱地基对输入地震波具有明显的放大作用,这种放大效应与地基的物理力学性质和输入地震动特性有关;并具体探讨了层放大系数与输入地震动加速度峰值的关系。
     2.通过对刚性地基和深厚软弱地基条件下上部结构地震反应的比较,分析了SSI效应对桩箱基础高层建筑地震反应的影响;讨论了在不同的深厚软弱地基条件下,输入地震动特性不同时桩箱基础高层建筑地震反应的特性,指出了SSI效应对上部结构楼层绝对加速度反应和楼层相对位移反应的影响规律。
     3.对同一深厚软弱场地条件下同一地震动输入时的相互作用体系进行了二维和三维地震反应对比分析,初步探讨了两种分析方法所得结论的异同。
     其次,对深厚软弱地基上带多层地下室的双塔高层建筑的地震反应进行了数值模拟,探讨了SSI效应对双塔高层建筑地震反应的影响规律;并与单塔高层建筑的地震反应进行了对比分析,指出两种不同体系地震反应的差别;另外,还对塔间连体设置位置和方式不同的双塔高层建筑的地震反应进行了探讨,分析结果表明,双塔高层建筑塔间连梁对其地震反应有很大的影响,当输入地震动水平相当于多遇地震和常遇地震时,双塔高层建筑底部或底部和顶部同时设置塔间连体对双塔高层建筑地震反应有显著减震作用。因此,在双塔高层建筑底部或底部和顶部同时设置塔间的连体是比较理想的方式;此外,在双塔高层建筑底部和顶部同时设置连体结构,则其上部楼层的地震反应的减幅特别明显。
     最后,对深厚软弱地基上相邻的双幢高层建筑的地震反应进行了探讨,指出SSI效应对双幢高层建筑地震反应的影响规律;并针对双幢高层建筑和单幢高层建筑这两种不同体系,分析了深厚软弱地基上它们之间地震反应的差异。一般地,相邻的双幢高层建筑各楼层的绝对加速度反应要比单幢高层建筑的反应略小一些,而双幢高层建筑中部楼层的绝对加速度反应也可能大于单幢高层建筑的反应。此外,还分析了相邻的双幢高层建筑之间的间距对其地震反应的影响,得到了一些有益的结论。
The problem of soil-structure interaction (SSI) is always an important research topic paid a great deal of attention to in the field of earthquake engineering over a long period of time. For many structures built on deep soft deposits, strong interaction appears between soils and superstructure. The purpose of this paper is to discuss the influence of SSI effect to pile-box foundation frame and shear wall high-rise building built on deep soil sites, high-rise building with two towers and adjacent double high-rise building. So, in this paper superstructure, pile-box foundation and deep soft soils are considered as a whole system to analyze its earthquake response.
    First, a 26-storied frame and shear wall high-rise building with pile-box foundation on deep soft deposits is analyzed under input different ground motions. The results show:
    1. Deep soft sites can amplify the input ground motion, this amplification is related to the characteristic of the soil deposits and the input ground motion. After detailed analysis, the relationships between the amplification coefficient and the maximum acceleration peak value of input ground motion is given.
    2. Through the comparison of earthquake response of high-rise building built on rigid base and deep soft sites, the influence of SSI effect to frame and shear wall high-rise building with pile-box foundation is analyzed; the earthquake response characteristic of superstructure built on different deep soft sites is discussed for different input ground motions. Some rules of SSI effect to the absolute acceleration peak value and relative displacement of high-rise building floors are drawn out.
    3. The interaction system is analyzed by two-dimension and three-dimension finite element method, the results are compared with each other.
    Second, the earthquake response of piles-multistoried basement-high-rise building with two towers is analyzed by numerical simulation, some rules of SSI effect to high-rise building with two towers are drawn out; compared with that of high-rise building with single tower, the difference of the two systems are indicated. Still, this paper discusses the influence of connections between the two towers, the results show that the connections have great effect on the earthquake response of high-rise building with two towers. If the connections are set at the bottom or bottom-top, they can greatly reduce the earthquake response of high-rise building with two towers for input acceleration peak value level equivalent to the most probable earthquake and design basic earthquake. So, the connections set at the bottom or bottom-top of two towers are good manners to reduce the earthquake response of high-rise building with two towers. Still, the connections set at the bottom-top can remarkably reduce the earthquake respon
    se of the top floors of high-rise building with two towers.
    Last, the earthquake response of adjacent double high-rise building built on deep soft sites
    
    
    is analyzed and the effect of SSI are discussed; In accordance with two different systems of adjacent double and single high-rise buildings, the difference of their earthquake response on deep soft sites is analyzed. The results show that, in general, the absolute acceleration peak value of high-rise building is a little smaller than that of single tower high-rise building, however, the acceleration peak value of the floors in the middle of high-rise building with double tower may be lager than that of single high-rise building. In addition, some valuable conclusions have been obtained by analyzing the influence of the distance between two double high-rise buildings to their earthquake response.
引文
[1] Bycroft G N. Forced Vibration of a rigid circular plate on a Semi-infinite elastic space and on an elastic stratrum. Philo.trans.Roy.soc.ser.248: 327-368
    [2] 李辉,赖明,白绍良.与结构研究综述(Ⅲ)—简化分析模型.重庆建筑大学学报.1999(5):112-116
    [3] 李辉,赖明,白绍良.与结构研究综述(Ⅱ)—简化分析模型.重庆建筑大学学报.1999(4):112-116
    [4] 陈国兴.体—结构体系地震性能研究.哈尔滨建筑工程学院学报.1994(5):11—18
    [5] 陈素文,严士超.结构一桩—地震反应分析.工业建筑.2000(2):44-46
    [6] 王凤霞,荆玉龙.浅谈与结构动力相互作用.低温建筑技术.200l(4):27-29
    [7] 吴世明等编著.动力学.中国建筑工业出版社.2000
    [8] 张克绪,谢君斐著.动力学.地震出版社.1989
    [9] 窦立军,杨柏坡,刘光河.—结动力相互作用几个实际应用问题.世界地震工程.1999(4):62-68
    [10] 曹志远,张佑启.半解析数值方法.国际工业出版社.1992
    [11] Yun C-B, Kim JM. Analytical frenquency-dependment infinit elements for soil-structure interaction analysis in two-dimensional medium. Engineering Structures.2000(22): 258-271
    [12] Kewy DW, Mustoe GGW, Zienkiewica. Coupling of boundary element methods with other numerical methods. In: Banenjce PK. Batterfield R, editors. Development in Boundary Element Methods-London. Applied Science Publishers. 1979:251-258
    [13] 姜忻良,郑刚,刘宝祥.圆板—弹性层状地基下样条有限元—无限元耦合分析法.岩工程学报.1997(5):80-87
    [14] 林皋.与结构相互作用.世界地震工程.1991(1):4-21
    
    
    [15] A.H.Hadjian,W.S.Tseng,C.Y.Chang etal.谢君斐译.罗东(台湾)—结构相互作用大比例模型试验的启示
    [16] 王松涛,陈向乐.地基与钢结构动力相互作用效果.第五届全国地震工程会议论文集(Ⅰ).1998:469-474
    [17] 吕西林,陈跃庆等.结构—地基动力相互作用体系振动台模型试验研究.地震工程与工程振动.2000(4):20-29
    [18] 陈国兴,王志华,宰金珉.考虑与结构相互作用效应的结构减震控制大型振动台模型试验研究.地震工程与工程振动.2001(4):117-127
    [19] 克拉夫,彭津著,王光远等译.结构动力学.科学出版社.1981
    [20] 胡聿贤著.地震工程学.地震出版社.1988
    [21] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitation. EESD. 1992(21): 713-740
    [22] Ernsto H Z, Vanmarkce E H. Seismic random-Vibration analysis of multi-support structure system. ASCE J Eng Mech. 1994(15): 1107-1128
    [23] 林家浩.随机地震响应的确定性算法.地震工程与工程振动.1985(1):89-93
    [24] Manolis G D, D E Beskos. Dynamic response of lined tunnels by an isoparametic boundary element method. Comp. Meth. Appl. Mech. Engng. 36.1983
    [25] 黄东升,李瑶楠.与结构相互作用时结构的动力特性.结构设计与研究.2000(1):105-106
    [26] 康仲山,王克成.框剪结构与地基动力相互作用分析.建筑结构.1997(11):40-44
    [27] 《建筑抗震设计规范》[S].GB50011-2001.北京:中国建筑工业出版社.2001
    [28] 姜忻良,王松涛.多点输入的相邻结构—地基—地震反应分析.地震工程与工程振动.1997(4):65-71
    [29] 赵钧等.地基刚度对结构地震反应和动力特性的影响.第五届全国地震工程会议论文集.1994(Ⅰ):126-131
    [30] Veletsos A S and Meek J W. Dynamic behavior of building-foundation system. EESD.1974(3): 126-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700