多胺缀合物的合成及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤(tumor)是严重威胁人类生命的疾病,目前已经成为引起人类死亡的第一或第二位原因。化学药物治疗是肿瘤治疗中发展最快的一个领域。近年来,已经开发出大量的药物用于治疗肿瘤。但是,现有的抗肿瘤药物普遍存在治疗选择性低、容易产生耐药性的缺点,在治疗疾病的同时往往产生严重的毒副作用,因而使它们的临床应用受到限制。解决此类问题的关键是发现和确定有效的药物作用靶点,开发出具有靶点定向作用的抗肿瘤药物。随着科学技术的迅猛发展及分子生物学技术的进展,围绕提高抗肿瘤药物作用靶向性的研究日益活跃,其中,以多胺(polyamine)为靶向载体的抗肿瘤药物研究是目前国际上药物研究的热点方向之一。多胺是细胞必需的生长因子,与肿瘤细胞生长密切相关,它在肿瘤细胞内生物代谢过程的关键环节可作为抗癌药物设计的切入点。对多胺的前期研究结果表明,肿瘤细胞膜上的多胺转运通道(polyamine transporter,PAT)能对多胺及其结构类似物优先识别并转运进入细胞。因此,利用多胺骨架结构的运载功能可以实现抗肿瘤药效团靶向进入肿瘤细胞内,从而提高药物作用的选择性。
     本论文基于多胺类似物的构效关系,选择PAT为作用靶点,以AN-44为先导化合物,设计、合成了两大系列具有线型骨架结构的多胺缀合物,其中包括7个不同多胺链长的化合物T1-T7以及8个含有不同芳香体系的缀合物T8-T15。通过药理活性评价考察多胺链的长度以及键接药效团大小对抗肿瘤活性的影响。同时,我们还对天然活性产物进行多胺结构修饰,设计、合成了两个系列的“天然活性产物-多胺”缀合物T16-T24和T25-T32,初步评价了它们的抗肿瘤活性以及增效抗肿瘤药物的作用。
     本文尝试多条反应路线用于线型多胺骨架结构的简便、高效合成。对于T1-T7系列目标化合物,我们最终采用均三甲基苯磺酰基(Mts)作为氨/胺基的保护基,利用经典的Gabriel合成氨反应策略实现了多胺链的高效合成。然而,当尝试用叔丁氧羰基(Boc)作为氨/胺基的保护基进行多胺链的合成时,我们发现所经历的Gabriel反应进程出现了开环副反应,经“一锅法”改进,意外地以较高收率得到目标物。对于T8-T15系列目标化合物,我们采用砌块对接策略高效地合成了4-4-2多胺骨架。并且用同样的方法合成对照物AN-44(C1),结果发现反应收率及经济性均比文献方法有显著提高。对于多胺修饰天然产物的系列化合物T16-T24,我们结合天然物质结构的特殊性,采用比较温和的反应条件实现了目标物的合成,并使天然结构片段构型得以保持。
     本文合成各种中间体和目标化合物共84个,其中74个新化合物未见文献报道,包括35个目标化合物,化合物的结构经MS,~1H/~(13)C NMR波谱分析及元素分析等方法确证。
     本文对所合成的目标化合物进行了初步体外抗肿瘤活性评价,主要选取L1210,CHO,HeLa,B16,K562等肿瘤细胞株,测定化合物使50%的肿瘤细胞生长受到抑制的浓度(IC_(50),μM)。结果表明,化合物T1-T7整体上具有中等到较强的肿瘤细胞生长抑制作用。基于细胞水平的药理活性筛选发现,化合物T6具有显著的PAT识别作用,可以作为具有靶向抗肿瘤化合物的先导物进行深入研究。化合物T8-T15对HeLa细胞表现出较强的生长抑制活性,其中的化合物T11的IC_(50)达到0.58μM,活性最强。化合物T16能增效长春新碱(VBL)的抗肿瘤作用,协同系数S=2.07,优于文献报道的化合物SDB。
     本文对初筛效果良好的化合物T6,进一步从分子水平及动物整体水平进行了深入研究,探讨其可能作用的分子靶点及在生物体内的抗肿瘤活性。结果发现,T6能够较强地抑制DNA拓扑异构酶(Ⅱ型)的解旋作用,对多胺合成酶ODC也具有明显的抑制作用,T6在一定浓度下能诱导B16肿瘤细胞的凋亡性死亡,这表明化合物T6具有多靶点的作用模式。对荷瘤小鼠的活性实验表明,化合物T6不但能显著抑制小鼠体内实体瘤的增长(在10 mg/kg/d剂量连续7天给药后,对肿瘤的抑制率达到56.9%),而且化合物T6按10 mg/kg/d给药剂量下,小鼠的平均存活时间分别提高到29.75±1.8天,平均存活时间提高了约2.29倍。
Tumor is still a lethal disease threatening human beings and it has become the major cause which resulted in death of lives.Chemotherapy is one of the most rapidly developing strategies in cancer therapy.To date,although a large number of drugs have been developed and used in neoplasm therapy,they always exhibit many drawbacks such as low tumor-target and multidrug resistance and bring out severe side effects in clinical use.Thus,their application is greatly limited.Determination of the drug target becomes important to breach such trouble and be helpful to develop new efficient drugs.With the development of modern technology and molecular biochemistry,the research on tumor target has become more and more active in anticancer drugs.Among them,polyamine is one of the hot topics in the development of antineoplastic drugs. Polyamines are ubiquitous constituents of eukaryotic cells and play a key role in cellular physiology.The pathways for polyamine metabolism have been elucidated and provided a target for the design of antitumor agents.The polyamine transporter could recognize polyamine and its analogues,and preferentially ferry them into cells.Thus, the polyamine backbone could act as potential carriers for drug delivery.As a result, the tumor targeting of drugs were improved.
     Based on the structure-activity relationship of polyamine analogues,we reported in this dissertation the design and synthesis of two series of linear polyamine conjugations and their investigation on polyamine transporter affinity using AN-44 as the lead compound.Compounds T1-7 were designed for comparison of the different polyamine chains,and T8-15 were evaluated for the influence of dissimilar pharmacophore conjugated.Moreover,we reported the structural modification of natural products T16-32 and investigated the synergistic effect on anticancer drug.
     We employed various synthetic routes in efficient construction of polyamine backbones.The classical Garbiel procedure was performed during the synthesis of target compounds using MtsC1 or Boc_2O as the protection agents.During the synthesis of T1-7,the side reaction was detected,and the title compound was obtained with "one-pot" amelioration,and the yield was also improved unexpectedly.
     In this thesis,amount to 84 compounds were synthesized including 74 initial ones, their chemical structures were confirmed by MS,~1H/~(13)C NMR and elemental analysis.
     The in vitro antitumor activities of target compounds were investigated in L1210, CHO,HeLa,B16 and K562 tumor cells,and the results revealed that the compound T6, from T1-7 series,could be recognized by PAT,and could act as potential tumor targeting agent for further evaluation.Among the T16-32 series,compound T16 was the most potent agent which showed prominent synergistic effect on VBL.Its synergy coefficient was 2.07 which was higher than that of reference compound SDB.
     With T6 in hand,we further investigated the antitumor activity both on enzyme and whole animal levels.It turned out that T6 had obvious effects on TOPOⅡand ODC,and that T6 could induce the apoptosis of B16 tumor cells.The in vivo antitumor activity revealed that T6 could not only inhibit the tumor growth,but also obviously increase the lifespan of tumor-bear mice.For example,at the dose of 10 mg/kg/d,the tumor growth was inhibited by 56.9%and the mean survival time of tumor-bear mice was increased to 2.29 folds in comparison with the control.
引文
1.中华人民共和国卫生部.中国癌症预防与控制规划纲要(2004-2010年).卫疾控发[2003],352号.
    2.曾益新主编.《肿瘤学》(第二版).北京:人民卫生出版社,2003.
    3.Rowinsky,E.K.;Gilbert,M.C.;Guire,W.R.et al.Sequences of taxol and cisplatin:A phase and I pharmacolgic study.JClin Oncol,1991,9,1692.
    4.Legha,S.S.;Tenney,D.M.;Krakoff,I.R.et al Phase I study of taxol using a 5-day intermittent schedule.J Clin Oncol,1986,4,762.
    5.Kris,M.G.;Joseph,P.Gralla,R.J.et al.Phase I trial of taxol given as a 3 hour infusion every 21 days.Cancer Treat Rep,1986,70,605.
    6.Dumont,S.Muller,C.D.;Schuber,F.et al.Antitumoral properties and reduced toxicity of LPS targeted to macrophages via normal or mannosylated liposlmes.Anticancer Res,1990,18,155-158.
    7.王里伟,周翡,李琦,等.肿瘤药物靶向治疗的最新进展.肿瘤,2006,26,389-392.
    8.Folkman,J.What is the evidence that tumors are angiogenesis dependent? Nat.J.Cancer Inst,1990,82,4-6.
    9.甄永苏.肿瘤的靶向治疗.国外医学肿瘤学分册,2002,29,323-326.
    10.周薇薇,白炎.光敏性单克隆抗体的产生及其对细胞毒作用的实验研究.药学学报,1989,5,300.
    11.隋延仿,孙志伟,陈志南等.肝癌免疫导向药物的内化.第四军医大学学报,1997,18,310-303.
    12.Huang,Y.et al.Polyamine analogues down-regulate estrogen receptor a expression in human breast cancer cells.J.Biol.Chem.2006,281,19055-19063.
    13.詹彦,支兴刚,骆云鹏.多胺和细胞凋亡.国外医学.生理、病理科学与临床分册,2002,22,412-414.
    14.刘晶华,王岩,刘俊亭.多胺合成和代谢中抗肿瘤作用新靶点的研究进展.中南药学,2005,3,113-115.
    15.Casero,R.A.;Woster,P.M.Terminally alkylated polyamine analogues as chemotherapeutic agents.J Med.Chem.2001,44,1-26.
    16.Gerner,E.W.;Meyskens,F.L.Polyamines and cancer:old molecules,new understanding.Nat.Rev.Cancer.2004,4,781-792.
    17.Bardocz,S.et al.The importance of dietary polyamine in cell regeneration and growth.Br.J. Nutr.1995,73,819-828.
    18.Pegg,A.E.;Xiong,H.;Feith,D.J.;Shantz,L.M.Biochem.Soc.Trans.1998,26,580-586.
    19.Wang,Y.et al.Properties of purified recombinant human polyamine oxidase,PAOhl/SMO.Biochem.Biophys.Res.Commun.2003,304,605-611.
    20.Xie,X.;Gillies,R.J.;Gerner,E.W.Characterization ofa diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates.J.Biol.Chem.1997,272,20484-20489.
    2 1.王纪防,苏瑞斌,李锦.多胺与肿瘤发生及其在临床上的应用.国外医学药学分册,2004,31.263-267.
    22.杨筱珍,陈耀星,余锐萍,王子旭.多胺与细胞凋亡.动物医学进展,2004,25,11-14.
    23.Heby,O.;et al.Trends Biochem Sci,1990,15,153-158.
    24.Svechnikov,K.;Ritzen,E.M.;Hoist,M.Androgen and estrogen stimulation of ornithine decarhoxylase activity in mouse kidney.J.Steroid Biochemistry & Molecular Biology,2000,75,329-333.
    25.Trubiani,O.;Pieri,C.;Rapino,M.et al.The c-myc gene regulates the polyamine pathway in DMSO-induced apoptosis.Cell Prolif.1999,32,119-129.
    26.Kubota,S.;Kiyosawa,H.;Nomura,Y.et al.Ornithine decarboxylase overexpression in mouse 10T1/2 fibroblasts:cellular transformation and invasion.J.Natl.Cancer lnst.1997,89,567-571.
    27.Smith,M.K.;Goral,M.A.;Wright,J.H.et al.Ornithine decarboxylase overexpression leads to increased epithelial tumor invasiveness.Cancer Res.1997,57,2104-2108.
    28.Murikami,Y.;Matsufuji,S.;Kameji,T.;Hayashi,S.;Tanaka,K.;Tamura,T.;Ichihara,A.Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination.Nature,1992,360,597-599.
    29.He,Y.;Suzuki,T.;Kashiwagi,K.;Igarashi,K.Antizyme delays the restoration by spermine of growth of polyamine-degicient ceils through its negative regulation of polyamine transport.Biochem.Biophys.Res.Commun.1994,203,608-614.
    30.McCann,P.P.;Pegg,A.E.Ornithine decarboxylase as an enzyme target for therapy.Pharmacol.Ther.1992,54,195-215.
    31.Harik,S.I.;Pasternak,G.W.and Snyder S.H.in Polyamines in Normal and Neoplastic Growth(Russell,D.H.Ed.),Raven Press,New York,1973,307-321.
    32.Khomutov,R.M.;Hyv(o|¨)nen,T.;Karvonen,T.;Kauppinen,L.;Paalanen,L.;Elorante,T.; Pajula,R.L.;Andersson,L.C.;P(o|¨)s(o|¨),H.Biochem.Biophys.Res.Commun.1985,130,596-602.
    33.Stanek,J.;Frei,J.H.;Mett,H.;Schneider,P.;Regenass,U.J.Med.Chem.1992,35,1339-1344.
    34.Abdel-Monem,M.M.;Newton,N.E.;Weeks,C.E.J.Med.Chem.1974,17,447-451.
    35.Metcalf,B.W.;Bey,P.;Danzin,C.;Jung,M.;Ca.sara,P.;Vevert,J.P.J.Am.Chem.Soc.1978,100,2551-2553.
    36.Pegg,A.E.;McGovern,K.A.;Wiest,L.Biochem.J.1987,241,305-307.
    37.Poulin,R.;Lu,L.;Ackerman,B.;Bey,P.;Pegg,A.E.J.Biol.Chem.1992,267,150-158.
    38.Seiler,N.;Danzin,C.;Prakash,N.J.;Koch-Weser,J.in Enzyme-Activated Irreversible Inhibitors(Seller,N.,Jung,M.J.and Koch-Weser J.Eds.),Elsevier/North Holland,Amsterdam,1978,pp.55-71.
    39.Fozard,J.R.;Prakash,N.J.Naunyn-Schmiede-berg's Arch.Pharmakol.1982,320,72-77.
    40.Heston,W.D.W.;Fair,W.R.;Kadmon,D.Cancer Lett.1982,16,71-79.
    41.Quemener,v.;Moulinoux,J.P.;Havouis,R.;Seller,N.AntiCancer Res.1992,12,1447-1454.
    42.Bartholeyns,J.;Koch-Weser,J.CcmcerRes.1981,41,5158-5161.
    43.Marton,L.J.;Levin,V.A.;Hervatin,S.J.;Koch-Weser,J.;McCann,P.P.;Sjoerdsma,A.Cancer Res.1981,41,4436-4441.
    44.Anton,D.L.;Kutny,R.Escherichia coli.S-Adenosylmethionine Decarboxylase:Subunit Structure,reductive amination and NH2-terminal sequences.J.Biol.Chem.1987,262,2817-2822.
    45.Williams-Ashman,H.G.;Sche none,A.Biochem.Biophys.Res.Commun.1972,46,288-295.
    46.Stanek,J.;Caravatti,G.;Capraro,H.G.;Furet,P.;Mett,H.;Schneider,P.;Regenass,U.S-Adenosylmethionine decarboxylaseinhibitors:New aryl and heteroaryl analogues of methylglyoxal bis(guanylhydrazone).J.Med.Chem.1993,36,46-54.
    47.Regenass,U.;Mett,H.;Stanek,J.;Mueller,M.;Kramer,D.;Porter,C.W.CGP 48664,a new S-adenosylmethionine decarboxylase inhibitor with broad spectrum antiproliferative and antitumor activity.Cancer Res.1994,54,3210-3217.
    48.Casara;P.;Marchal,P.;Wagner,J.;Danzin,C.5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine:A potent enzyme activated irreversible inhibitor of S-adenosyl-L-methionine decarboxylase from Escherichia coli.J.Am.Chem.Soc.1989,111,9111-9113.
    49.Danzin,C.;Marchal,P.;Casara,P.Irreversible inhibition of rat S-adenosylmethionine decarboxylase by 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine.Biochem. Pharmacol.1990,40,1499-1503.
    50.Marchant,P.;Dredar,S.;Manneh,V.;Alshabanah,O.;Matthews,H.;Fries,D.;Blankenship,J.A selective inhibitor of N~8-acetylspermidine deacetylation in mice and HeLa cells without effects on histone deacetylation.Arch.Biochem.Biophys.1989,15,128-136.
    51.Coward,J.K.in Design of Enzyme Inhibitors as Drugs (Sandler,M.and Smith,H.J.Eds.)Oxford University Press,Oxford,1989,pp.724-750.
    52.Pankaskie,M.C;Abdel-Monem,M.M;Raina,A.;Wang,T.;Foker,J.E.J.Med.Chem.1981,24,549-553.
    53.Hibasami,H.;Kawase,M.;Tsukada,T.;Maekawa,S.;Sakurai,M;Nakashima,K.FEBS Lett.1988,229,234-246.
    54.Delia Ragione,F.;Pegg,A.E.Studies of the specificity and kinetics of rat liver spermidine/sperrnine-Nl-acetyltransferase.Biochem.J.1983,213,701-706.
    55.Matsui,I.;Wiegand,L.;Pegg,A.E.Properties of spermidine N-acetyltransferase from livers of ratstreated with carbon tetrachloride and its role in the conversion of spermidine into putrescine.J.Biol.Chem.1981,256,2454-2459.
    56.Fogel-Petrovic,M.;Shappell,N.W.;Bergeron,R.J.;Porter,C.W.Polyamine and polyamine analog regulation of spermidine/spermine Nl-acetyltransferase in MALME-3M human melanoma cells.J.Biol.Chem.1993,268,19118-19125.
    57.Xiao,L.;Casero,R.A.Jr.Differential transcription of the human spermidine/spermine Nl-acetyltransferase (SSAT)gene in human lung carcinoma cells.Biochem.J.1996,313,691-696.
    58.Celano,P.;Baylin,S.B.;Casero,R.A.Jr.Polyamines differentially modulate the transcription of growthassociated genes in human colon carcinoma cells.J.Biol.Chem.1989,264,8922-8927.
    59.Wang,J.Y.et al.Decreased expression of protooncogenes c-fos,c-myc,and c-jun following polyamine depletion in IEC-6 cells.Am.J.Physiol.1993,265,G331-G338.
    60.Bardocz,S.et al.The importance of dietary polyamine in cell regeneration and growth.Br.J.Nutr.1995,73,819-828.
    61.Milovic,V.Polyamines in the gul lumen:bioavailability and biodistribution.Eur.J.Gastroenterol.Hepatol.2001,i3,1021-1025.
    62.Kashiwagi,K.;Endo,H.;Kobayashi,H.;Takio,K.;Igarashi,K.Spermidine-preferential uptake systemin Escherichia coli.ATP hydrolysis by PotA protein and its association with membrane.J.Biol.Chem.1995,270,25377-25382.
    63.Antognoni F:Del Duca S;Kuraishi A;Kawabe E;Fukuchi-Shimogori T;Kashiwagi K;Igarashi K.Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD.J.Biol.Chem.1999,274,1942-1948.
    64.Vassylyev,D.G.;Tomitori,H.;Kashiwagi,K.;Morikawa,K.;Igarashi,K.Crystal structure andmutational analysis of the Escherichia coli putrescine receptor:Structural basis for substrate specificity.J.Biol.Chem.1998,273,17604-17609.
    65.Felschow,D.M.;Mi,Z.;Stanek,J.;Frei,J.;Porter,C.W.Selective labeling of cell-surface polyamine binding proteins on leukaemic and solid-tumor cell types using a new polyamine photoprobe.Biochem.J.1997,328,889-895.
    66.Torossian,K.;Audette,M;Poulin,R.Substrate protection against inactivation of the mammalian polyamine transport system by l-ethyl-3-(3-dimethylamonipropyl)carbodiimide.Biochem.J.1996,319,21-26.
    67.Blais,Y.;Zhao,C;Huber,M.;Audette,M.;Labrie,F.;Poulin,R.Growth independent induction of spermidine transport by IL-4 and IL-3 in ZR-75-1 human breast cancer cells.Int.J.Cancer 1996,67,532-538.
    68.Sakata,K.;Fukuchi-Shimogori,T.;Kashawagi,K.;Igarashi,K.Identification of a regulatory region of antizyme necessary for the negative regulation of polyamine transport.Biochem.Biophys.Acta 1997,238,415-419.
    69.Aziz,S.M.;Worthen,D.R.;Yatin,M.;Ain,K.B.;Crooks,P.A.A unique interaction between polyamine and multidrug resistance (P-glycoprotein)transporters in cultured Chinese hamster ovary cells transfected with mouse mdr-1 gene.Biochem.Pharmacol.1998,56,181-187.
    70.Xia,C.Q.;Yang,J.J.;Ren,S.;Lien,E.J.QSAR analysis of polyamine transport inhibitors in L1210 cells.J.Drug Target.1998,6,65-77.
    71.Li,Y.;MacKerrell,A.D.;Egorin,M.J.;Ballesteros,M.F.;Rosen,D.M.;Wu,Y.Y.;Blamble,D.A.;Callery,P.S.Comparative molecular field analysis-based predictive model of structurefunction relationships of polyamine transport inhibitors in L1210 cells.Cancer Res.1997,57,234-239.
    72.Edwards,M.L.;Prakash,N.J.;Stemerick,D.M.;Sunkara,S.P.;Bitonti,A.J.;Davis,G.F.;Dumont,J.A.;Bey,P.Polyamine analogues with antitumor activity.J.Med.Chem.1990,33,1369-1375.
    73.Porter,C.W.;Sufrin,J.Interference with polyamine biosynthesis and/or function by analogues of polyamines or methionine as a potential anticancer chemotherapeutic strategy.Anticancer Res.1986,6,525-542.
    74.Bergeron,R.J.;Stolowich,N.J.;Porter,C.W.Reagents for the selective secondary N-acylation of linear triamines.Synthesis 1982,39,689-692.
    75.Bergeron,R.J.;Garlich,J.R.;Stolowich,N.J.Reagents for the stepwise functionalization of spermidine,homospermidine and bis(3-aminopropyl)amine.J.Org.Chem.1984,49,2997-3001.
    76.Bergeron,R.J.;Neims,A.H.;McManis,J.S.;Hawthorne,T.R.;Vinson,J.R.T.;Bortell,R.;Ingeno,M.J.Synthetic polyamine analogues as antineoplastics.J.Med.Chem.1988,31,1183-1190.
    77.Bergeron,R.J.;Muller,R.;Bussenius,J.;McManis,J.S.;Merriman,R.L.;Smith,R.E.;Yao,H.;Weimar,W.R.J.Med.Chem.2000,43,224-235.
    78.Bergeron,R.J.;Feng,Y.;Weimar,W.R.;McManis,J.S.;Dimova,H.;Porter,C;Raisler,B.;Phanstiel,O.J.Med.Chem.1997,40,1475-1494.
    79.Bergeron,R.J.;McManis,J.S.Liu,C.Z.;Feng,Y.;Weimar,W.R.;Luchetta,G.R.;WU,Q.;Ortiz-Ocasio,J.;Vinson,J.R.T.;Kramer,D.;Porterg,C.J.Med.Chem.1994,37,3464-3476.
    80.Porter,C.W.;Berger,F.G.;Pegg,A.E.;Ganis,B.;Bergeron,R.J.Regulation of ornithine decarboxylase activity by spermidine or the spermidine analogue Nl,N8-bis(ethyl)spermidine (BES).Biochem.J.1987,242,433-440.
    81.Bergeron,R.J.;Hawthorne,T.R.;Vinson,J.R.T.;Beck,D.E.,Jr.;Ingeno,M.J.Role of the methylene backbone in the antiproliferative activity of polyamine analogues in LI210 cells.Cancer Res.1989,49,2959-2964.
    82.Casero,R.A.Jr.et al.Cytotoxic response of the relatively difluoromethylornithine-resistant human lung tumor cell line NCI HI57 to the polyamine analogue N1.N8-bis(ethyl)spermidine.Cancer Res.1987,47,3964-3967.
    83.Casero,R.A.Jr;Ervin,S.J.;Celano,P.;Baylin,S.B.;Bergeron,R.J.Differential response to treatment withthe bis(ethyl)polyamine analogues between human small cell lung carcinoma and undifferentiated large cell lung carcinoma in culture.Cancer Res.1989,49,639-643.
    84.Casero,R.A.Jr.et al.Differential induction of spermidine/spermine N'-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues.Cancer Res.1989,49,3829-3833.
    85.Reddy,V.K.;Valasinas,A.;Sarkar,A.;Basu,H.S.;Marton,L.J.;Frydman,B.Conformationally restricted analogues of 1N,12Nbis(ethyl)spermine:Synthesis and growth inhibitory effects on human tumor lines.J.Med.Chem.1998,41,4723-4732.
    86.Valasinas,A.et al.Long-chain polyamines(oligoamines) exhibit strong cytotoxicities against human prostate cancer cells.Bioorg.Meal.Chem.2003,11,4121-4131.
    87.Huang,Y.et al.A novel polyamine analog inhibits growth and induces apoptosis in human breast cancer cells.Clin.Cancer Res.2003,9,2769-2777.
    88.Mitchell,J.L.et al.Antizyme induction by polyamine analogues as a factor in cell growth inhibition.Biochem.J 2002,366,663-671.
    89.Saab,N.H.et al.Synthesis and evaluation of unsymmetrically substituted polyamine analogues as modulators of human spermidine/spermine-Nl-acetyltransferase(SSAT) and as potential antitumor agents.J.Meal.Chem.1993,36,2998.
    90.Casero,R.A.Jr.et al.Growth and biochemical effects of unsymmetricaily substituted polyamine analogues in human lung tumor cells 1.Cancer Chemother.Pharmaeol.1995,36,69.
    91.Wu,R.et al.Synthesis and evaluation of a polyamine phosphinate and phosphonamidate as transition-state analogue inhibitors of spermidine/spermine-N1-acetyltransferase.Bioorg.Med.Chem.1996,4,825.
    92.Ha,H.C.,Woster,P.M.& Casero,R.A.Jr.Unsymmetricaily substituted polyamine analogue induces caspase-independent programmed cell death in BCL-2-overexpressing cells.Cancer Res.1998,58,2711.
    93.Webb,H.K.et al.1-(N-aikylamino)-1 1-(N-ethylamino)-4,8-diazanndecanes:simple synthetic polyamine analogues that differentially alter tubulin polymerization.J.Med.Chem.1999,42,1415.
    94.Seiler,N.;Delcros,J.G.;Moulinoux,J.P.Int.J.Biochem.Cell Biol.1996,28,843-861.
    95.Byers,T.L.;Pegg,A.E.J.Cell Physiol.1990,143,460-467.
    96.Mitchell,J.L.A.;Judd,G.G.;Bareyai-Leyser,A.;Ling,S.Y.Biochem.J.1994,299,19-22.
    97.Zhu,C.;Lang,D.W.;Coffino,P.J.Biol.Chem.1999,274,16425-16430.
    98.Sakata,K.;Kashiwagi,K.;Igarashi,K.Biochem.J.2000,347,297-303.
    99.Bethell,D.A.;Pegg,A.E.J.Cell Physiol.1981,109,461-468.
    100.Mitchell,J.L.A.;Diveley,R.R.Jr.;Bareyai-Leyser,A.Biochim.Biochim.Biophys.Acta 1992,1136,136-142.
    101.Kramer,D.;Mett,H.;Evans,A.;Regenass,U.;Diegelman,P.;Porter,C.W.J.Biol.Chem.1995,270,2124-2132.
    102.Brachet,P.;Quemener,V.;Havouis,R.;Tom(?),D.;Moulinoux,J.P.Biochim.Biophys.Acta 1994,1227,161-170.
    103.Wang,C.;Delcros,J.-G.;Biggerstaff,J.;Phanstiel,O.J.Med.Chem.2003,46,2663.
    104.Wang,C.;Delcros,J.-G.;Biggerstaff,J.;Phanstiel,O.J.Med.Chem.2003,46,2672.
    105.Wang,C.;Delcros,J.-G.;Cannon,L.;Konate,F.;Carias,H.;Biggerstaff,J.;Gardner,R.A.;Phanstiel,O.J.Med.Chem.2003,46,5129.
    106.Gardner,R.A.;Delcros,J.-G.;Konate,F.;Breitbeil,F.;Martin,B.;Sigman,M.;Huang,M.;Phanstiel,O.J.Med.Chem.2004,47,6055-6069.
    107.Delcros,J.-G.;Tomasi,S.;Duhieu,S.;Foucault,M.;Martin,B.;Roch,M.L.;Eifler-Lima,V.;Renault,J.;Uriac,P.J.Med.Chem.2006,49,232.
    108.Ghaneolhosseini,H.;Tjarks,W.;Sjoberg,S.Tetrahedron 1998,54,3877-3884.
    109.Cohen,G.M.;Cullis,P.;Hartley,J.A.;Mather,A.;Symons,M.C.R.;Wheelhouse,R.T.J.Chem.Soc.Chem.Commun.1992,298-300.
    110.Holley,J.L.;Mather,A.;Wheelhouse,R.T.;Cullis,P.M.;Hartley,J.A.;Bingham,J.P.;Cohen,G.M.Cancer Res.1992,52,4190-4195.
    111.Burns,M.R.;Turner,S.L.;Ziemer,J.;Vean,M.M.;Devens,B.;Carlson,C.L.;Graminski,G.F.;Vanderwerf,S.M.;Weeks,R.S.;Carreon,J.Bioorg.Med.Chem.Lett.2002,12,1263.
    112.Delcros,J.-G.;Tomasi,S.;Carrington,S.;Martin,B.;Renault,J.;Biagbrough,I.S.;Uriac,P.J.Med.Chem.2002,45,5008-5111.
    113.Phanstiel,O.;Price,H.L.;Juusola,J.;Kline,M.;Shah,S.M.J.Org.Chem.2000,65,5590-5599.
    114.Xie,S.;Cheng,P.;Liu,G.;Ma,Y.;Zhao,J.;Chehtane,M.;Khaled,A.R.;Phanstiel,O.;Wang,C.Bioorg.Med.Chem.Lett.2007,17,4471.
    115.(a) Kaur,N.;Delcros,J.-G.;Imran,J.;Khaled,A.;Chehtane,M.;Tschammer,N.;Martin,B.;Phanstiel,O.J..Med.Chem.2008,51,1393-1401;(b) Kaur,N.;Delcros,J.-G.;Archer,J.;Weagraff,N.Z.,Martin,B.;Phanstiel,O.J.Med.Chem.2008,51,2551-2560.
    116.Fischer,F.G.;Bohn,H.Die Giftsekrete der Vogelspinnen;(Poisonous secretions of bird spiders).Ann Chem.1957,603,235-250.
    117.Scott,R.H.;Sutton,K.;Dolphin,A.C.Modulation of neuronal voltage-activated Ca~(2+)currents by polyamines.The Neuropharmacology of Polyamines(pp.205-222),1994, London7 Academic Press.
    118.Usherwood,P.N.R.Interaction of spider toxins with arthropod and mammalian glutamate receptors.Neurotoxins and their Pharmacological Implications(pp.133-151),1987,New York Raven Press.
    119.Williams,D.E.;Lassota,P.,Andersen,R.J.Motuporamines A to C,Cytotoxic Alkaloids Isolated from the Marine Sponge Xestospongia exigua(Kirkpatrick).J.Org.Chem.1998,63,4838-4841.
    120.Roskelley,C.;Williams,D.E.;McHardy,L.;Leong,K.;Karsan,A.;Andersen,R.J.;Dedhar,S.;Roberge,M.Inhibition of Tumor Cell Invasion and Angiogenesis by Motuporamines.Cancer Res.2001,61,6788-6794.
    121.Bretbeil,F.;Kaur,N.;Delcros,J.-G.;Martin,B.;Abboud,A.A.;Phanstiel,O.J.Med.Chem.2006,49,2407-2416.
    122.Williams,D.E.;Craig,K.S.;Patrick,B.;MeHardy,L.M.;Soest,R.v.;Roberge,M.;Anderson,R.J.J.Org.Chem.2002,67,245-258.
    123.Kuksa,V.;Buchan,R.;Thoo Lin,P.K.Synthesis of polyamines,their derivatives,analogues and conjugates.Synthesis,2000,9,1189-1207.
    124.Bergeron,R.J.;M(u|¨)ller,R.;Huang,G.;McManis,J.S.;Algee,S.E.;Yao,H.;Weimar,W.R.;Wiegand,J.;J.Med.Chem.2001,44,2451-2459.
    125.Jasys,V.J.;Kelbaugh,P.R.;Nason,D.M.;Phillips,D.;Rosnack,K.J.;Forman,J.T.;Saccomano,N.A.;Stroh,J.G.;Volkmann,R.A.J.Org.Chem.1992,57,1814.
    126.Edwards,M.L.;Snyder,R.D.;Stemerick,D.M.Synthesis and DNA-binding properties of polyamine analogues.J.Med.Chem.1991,34,2414-2420
    127.Bellevue,F.H.;Boahbedason,M.L.;Wu,R.H.;Casero,Jr.;R.A.;Rattendi,D.;Lane,S.;Bacchi,C.J.;Woster,P.M.Structural Comparison of Alkylpolyamine Analogues with Potent In Vitro Antitumor or Antiparasitic Activity.Bioorg.Med.Chem.Lett.1996,6,2765-2770.
    128.Keller,O.;Keller,W.E.;van Look,G.,Wersin,G.tert-Butoxycarbonylation of Amino Acids and Their Derivatives:N-tert-Butoxycarbonyl-L-Phenylalanine.Org.Synth.1985,63,160-171.
    129.Wu,R.;Saab,N.H.;Huang,H.,Wiest,L.,Pegg,A.E.;Casero,R.A.,Jr.;Woster,P.M.Synthesis and Evaluation of Polyamine Phosphinates and Phosphonamidates as Transition State Analogue Inhibitors of Spermidine/Spermine-N~1-Acetyltransferase.Bioorg.Med.Chem.1996,4,825-836.
    130.Azzam,T.;Eliyahu,H.;Shapira,L.;Linial,M.;Barenholz,Y.;Domb,A.J.Polysaceharide-oligoamine based conjugates for gene delivery.J.Med.Chem.2002,45,1817-1824.
    131.Azzam,T.;Eliyahu,H.;Makovitzki,A.;Domb,A.J.Dextranspermine conjugate:An efficient vector for gene delivery.Macromol.Syrup.2003,195,247-261.
    132.Yudovin-Farber,I.;Azzam,T.;Metzer,E.;Taraboulos,A.;Domb,A.J.Cationic polysaccharides as antiprion agents.J.Med.Chem.2005,48,1414-1420.
    133.William,J.I.;Weitman,S.;Gonzalez,C.M.;Jundt,C.H.;Marry,J.;Stringer,S.D.;Holoryd,K.J.;Mclane,M.P.;Chen,Q.;Zasloff,M.;Von Hoff,D.D.Clin,Cancer Res.2001,7,724.
    134.Bhargava,P.;Marshall,J.L.;Dahut,W.Rizvi,N.;Trocky,N.;Williams,J.I.;Halt,H.;Song,S.;Holroyd,K.J.;Hawkins,M.J.Clin.Cancer Res.2001,7,3912.
    135.Li,D.;Williams,J.I.;Pietras,R.J.Oncogene 2002,21,2805.
    136.Jones,S.R.;Kinney,W.A.;Zhang,X.H.;Jones,L.M.;Selinsky,B.S.Steroids 1996,61,565.
    137.Murdock,K.C.;Child,R.G.;Fabio,P.F.;Angier,R.B.;Wallace,R.E.;Durr,F.E.;CitareIla,R.V.Antitumor Agents.1.1,4-Bis[(aminoalkyl)amino]-9,10-anthracenediones.J.Med.Chem.1979,22,1024-1030.
    138.Li,L(李烈),Ma,Zh.-Y.(马振元),Qian,Q.-X.(钱秋霞),et al Chinese Traditional and Herbal Drug(中草药),2002,33,420-421.
    139.Yu,Y.-Zh.(郁有祝),Zhang,J.-Ch.(张建臣),Xu,J.(徐军),Zhao Y.-F.(赵玉芬).Chin.J.Appl.Chem.(应用化学),2003,20,797-799.
    140.Wang,Ch.-J.(王超杰),Song,J.-Y.(宋金勇),Zhao,J.(赵瑾),Sun,X.-Q.(孙心齐).Chin.J.Appl Chem.(应用化学),2003,20,754-759.
    141.Song,J.-Y.(宋金勇),Wang,Ch.-J.(王超杰),Zhao,J.(赵瑾).Chin.J.Appl.Chem.(应用化学),2002,19,600-602.
    142.Zhao,J.(赵瑾),Song,J.-Y.(宋金勇),Wang,Ch.-J.(王超杰).Chin.J.Org.Chem.(有机化学),2003,23,714-716.
    143.Sidorova,T.A.;Nigmatov,A.G.;Kakpakova,E.S.;Staorovskaya,A.A.;Gerassimova,G.K.;Shil,A.A.;Serebryakov,E.P.J.Med.Chem,2002,45,5330-5339.
    144.Rohinson I.B.,P-Glycoproteino-mediated drug resistance:Puzzles and perspectives.In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells,Plenum Press:New York and London,1991:395-402
    145.Gottesman,M.M.;Pastan,I.;Ambudkar,S.V.Curt.Opin.Genet.Dev.1996,6,610-617.
    146.Tahara,Y.;Koyama,H.;Komatsu,Y.;Kubota,R.;Takahashi T.FR 2481281,1980[Chem.Abstr.1982,96,143116k].
    147.Liu,X.-J,(刘学军),Chen,R.-Y.(陈茹玉),Yang,Y.-Y.(杨嫒媛).Chem.J.Chin.Univ.(高等学校化学学报).2002.23.1299-1303.
    148.Kohei I T.T.;Hitoshi,I.et al.EP 787 716
    149.Aziz,S.M.;Worthen,D.R.;Yatin,M.;Ain,K.B.;Crooks,P.A.A unique interaction between polyamine and multidrug resistance(P-glycoprotein) transporters in cultured Chinese hamster ovary cells transfected with mouse mdr-1 gene.Biochem.Pharmacol.1998,56,181-187.
    150.Konopa,S.A.d.Biochem Pharmacol,1993,46,375-382.
    151.张晓东,王文亮.中华肿瘤杂志,1997,19,260-263.
    152.Eby,J.E.;Kaneko,T.;Sakaguchi,Y.et al.Proc Am Assoc Cancer Res,1994,35,314.
    153.Mestdagh,N.;Vandewalle,B.;Honrez,L.et al.Biochen Pharma,1994,48,709-716.
    154.Kasahara,K.;Fujjwara,Y.;Sugimoto,Y.et al.dNatl.Cancer Inst.,1992,84,113-118.
    155.Huang,H.C.;Lee,C.R.;Chao,P.D.et al.Vasorelaxant effect of emodin,an anthraquinone from a Chinese herb.Eur J Pharmacol,1991,205,289-294.
    156.Kuo,Y.C.;Meng,H.C.;Tsai,W.J.Regulation of cell pro2 liferation,inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum hypoleucum Ohwi.lnflamm Res.2001,50,73-82.
    157.Lin,C.C.;Chang,C.H.;Yang,J.J.et al Hepatoprotective effects of emodin from Ventilago leiocarpa,J Ethnopharmacol,1996,52,107-111.
    158.Demirezer,L.O.;Uz,A.K.;Bergere,I.et al.The structures of antioxidant and cytotoxic agents from natural source:anthraquinones and tannins from roots of Rumex patientia.Phytochemistry,2001,58,1213-1217.
    159.王兴坡,徐文芳.中国药物化学杂志,2005,15,321-326.
    160.Barresi,V.;Condorelli,D.F.;Fortuna,C.G.;Musumarra G.;Scir(?),S.Bioorg.Med.Chem.2002,10,2899.
    161.Koza,R.A.;Megosh,L.C.;Palmiefi,M.et al.Consitent elevated levels of omithine and polyamines in mouse epidermal papillomas.Carinogenesis Lond,1991,12,1619.
    162.Smith,M.K.;Goral,M.A.;Wright,J.H.;et al.Ornithine decarboxylase overexpression leads to increased epithelial tumor invasiveness.Cancer Res.1997,57,2104.
    163.吴克斌,范慕贞.抗多胺代谢对人早幼粒细胞白血病细胞系HL-60生长和分化的作用,中日友好医院学报,1990,4,206.
    164.Guo,Y.;Zhao,J.;Sawichi,J.;Peralta,S.A.;O'Brien,T.G.Mol.Carcinogenesis 1999,26,32.
    165.Liu J.;Huang T.;Hsu M.;Chen C.;Lin W.;Lu F.;Chang W.Toxicol.Appl.Pharmacol.2004,201,186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700