道路水泥混凝土耐久性设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥混凝土路面因强度高、水泥来源广而得到广泛应用,然而,在当前重载交通和自然环境因素作用下,水泥路面耐久性病害日益严重,耐久性问题己成为混凝土界最为关注的焦点。耐久性设计成了道路混凝土组成设计体系中最为关键的组成部分,但已有的设计方法难以表征我国水泥路面真实的耐久性工作状态,导致水泥路面因耐久性损坏而产生惊人的维修费用。针对这种现状,本文以国家西部交通建设科技项目《道路水泥混凝土组成设计研究》为依托,借鉴国内外先进理念,对道路混凝土的耐久性设计进行了深入而系统的研究。
     论文首先全面分析了国内外道路混凝土耐久性设计的研究现状,认为水泥路面耐久性病害及其破坏机理是一个非常复杂的问题,是多种因素综合作用的结果,它不仅涉及到原材料、配比组成设计及施工,还与交通荷载、气候分区、温度应力及腐蚀性介质等有关。
     论文在分析道路混凝土内部结构状态和材料组成关系的基础上,设计了科学合理的研究方案,优选出了能够反映道路混凝土实际耐久性破坏状态的评价指标和测试方法.通过大量实验与理论分析,研究了道路混凝土的材料组成参数和氯离子抗渗性、抗盐冻性和抗滑性之间的关系,建立了各类耐久性设计模型;提出了耐久性气候分区和交通荷载分级的概念与分类;通过分析不同的耐久性能对材料设计要求的共性和差异,借鉴参考大量国内外先进经验,提出了不同耐久性分区下道路混凝土水灰比、用水量、水泥用量、含气量、砂浆体积分量、粗集料公称最大粒径NMPS等参数的合理取值范围;分析了道路混凝土的耐久性损伤和性能衰减模式,探究材料设计优化对耐久性的改善机理;为探索更为简单快捷的耐久性检验方法,还发掘了与抗冻性、耐磨性等耐久性关联性较好且更为易测的路用性能指标,并建议了相关标准。
     论文推荐了不同耐久性气候分区和荷载分级条件下,基于氯离子抗渗性设计、抗盐冻设计及耐磨性设计的道路混凝土材料组成参数的合理取值范围,并建立了氯离子抗渗性设计模型、抗盐冻设计模型及耐磨性设计模型;提出了基于体积设计理念的道路混凝土耐久性设计、验证和调整的流程与步骤,并结合实体工程验证了道路混凝土耐久性设计方法的可操作性和实用性。
Because of the high strength of cement concrete pavement and the extensive source of cement, the cement concrete pavement has been widely used, however, by the action of the contemporary heavy-load traffic and the natural environment factors, the durability diseases of cement concrete road is serious increasingly, durability of concrete has already become the focus in the concrete field. Durability design is the most important key part of road concrete mix design system, but the existing design methods is difficult to represent the characterization of the real durability working condition of our country's road concrete, and causing startling cost of maintenance due to durability diseases of cement concrete road. Aiming at the present situation, this paper relies on the Item of Communications Construction Science and Technology in West China "The Study on Design of Road Concrete Mix Proportion", based on the advanced concepts both home and abroad, the design method of road concrete mix proportion is researched thoroughly and systematically.
     The author in this paper comprehensively investigated and analyzed the domestic and international research conditions of road concrete at first, and thought that the durability diseases of cement concrete road and the pavement damage mechanism is a complicated problem which is the result of many factors comprehensive influence. It relate to not only the raw materials, the design of road concrete mix proportion and construction, but also the traffic load, the partition of climate environment, temperature stress and the corrosive medium.
     On the basis of the analysis relationship between road concrete's state of the internal structure and the material composition, the author designed a scientific and rational research scheme, and optimized the evaluation and testing methods which can reflect the actual durability damage state of road concrete. The relation between the material mix parameters and the impermeability of chloride, the frost and salt resistance, the abrasive resistance and the anti-slip performance of road concrete is also studied systematically by many tests and theoretical analysis, and the various design models of durability is established; Through analyzing the common and difference among durability design requirements which is caused by the different materials, consulting the large number of domestic and international advanced experience, the traffic load classification and durability partition of climate environment is put forward; The reasonable range of road concrete mix parameters under different durability partition such as water-cement ratio, the amount of water consumption and cement consumption, air content, mortar volume component and NMPS, etc. is proposed; The permanent damage and performance degradation model of road concrete is analyzed, and the mechanism of durability improvement which is caused by material design optimization is explored; In order to find a more simple, shortcut testing method, the evaluation indicators of the pavement performance about durability which is easily detected such as frost resistance, wearability was found, and the relative standards is suggested.
     This paper recommends for the first time the reasonable range of road concrete mix parameters under different climatic regionalization and load classification, based on the design of impermeability of chloride, the frost and salt resistance, and the abrasive resistance; Using as basis for the volume design concept, the durability design method, verification and adjustment of the processes and procedures is first presented, and the maneuverability and practicality of concrete durability design is verified by combining the actual project.
引文
[1]长安大学.道路水泥混凝土组成设计研究——道路混凝土耐久性评价指标与评价方法研究[R].2008.
    [2]长安大学.道路水泥混凝土组成设计研究——道路混凝土微观结构与性能研究[R].
    [3]长安大学.道路水泥混凝土组成设计研究——道路混凝土用水泥技术性质研究[R].2008.
    [4]长安大学.道路水泥混凝土组成设计研究——集料对道路混凝土路用性能的影响研究[R].2008.
    [5]长安大学.道路水泥混凝土组成设计研究——道路混凝土施工性能研究[R].2008.
    [6]长安大学.道路水泥混凝土组成设计研究——道路混凝土组成设计方法研究[R].2008.
    [7]长安大学.道路水泥混凝土组成设计研究——道路水泥混凝土力学性能及强度指标体系研究[R].2008.
    [8]长安大学.道路水泥混凝土组成设计研究——道路水泥混凝土配合比设计方法指南[R].2008.
    [9]长安大学.道路水泥混凝土组成设计研究——集料对道路水泥混凝土路用性能的影响研究[R].2008.
    [10]2009年公路水路交通行业发展统计公报.2009年4月29日,中华人民共和国交通运输部.
    [11]陈一飞.混凝土结构劣化机理及耐久性设计研究[J].煤炭工程,2003,12:48-52.
    [12]H.B0hn,混凝土中钢筋腐蚀的几种检测方法.腐蚀与保护,1992(2).
    [13]何玮.水泥行业温室气体减排CDM项目合作计划简介[C].((2006年水泥技术大会暨第八届全国水泥技术交流大会论文集》,2006年
    [14]交通部公路规划设计院.水泥混凝土路面使用品质及修筑技术的研究[R].1995.
    [15]交通部科研所.滑模摊铺水泥混凝土路面材料配合比及性能研究[R].1996.
    [16]李晔.铺面水泥混凝土抗冻设计指标研究[D].上海:同济大学,2003.
    [17]张国强等.混凝土抗盐冻剥落试验方法的研究[J].公路交通科技,2000,4.
    [18]杨全兵.冻融循环条件下氯化钠浓度对混凝土内部饱水度的影响[J].硅酸盐学报,2007,1.
    [19]中国工程院土木建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构 物耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [20]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2004.
    [21]中华人民共和国行业标准.公路水泥混凝土路面施工技术规范[S]. JTG F30-2003.
    [22]中华人民共和国行业标准.水泥混凝土路面设计规范[S]. JTG D40-2002.
    [23]刘伯莹,姚祖康.水泥混凝土路面的结构组合设计[J].公路,2002,8.
    [24]张誉等.混凝土结构耐久性概述[M].上海:上海科学技术出版社,2003.
    [25]张誉.结构耐久性研究的展望.现代土木工程的新发展.东南大学出版社,199888-96.
    [26]Papadakis VG, Vayenas C G. A reaction engineering approach to the problem of concrete carbonation. Journal of American Institute of Chemical Engineering,1989, 35:1639-1650
    [27]Papadakis VG, Vayenas C G. Physical and chemical characteristics affecting the durability of concrete. ACI Material Journal,1991,88:186-196
    [28]Papadakis VG, Vayenas C G. Fundamental modeling and experimental investigation of concrete carbonation. ACI Materials Journal,1991,88:363-373
    [29]Papadakis VG, Vayenas C G. Experimental investigation and mathematical modeling of the concrete carbonation problem, Chemical Engineering Science,1991,46 1333-1358
    [31]中国工程院土木建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构物耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [32]万小梅.混凝土的传质过程及其理论[J].海岸工程,2001,2.
    [33]Christensen, Bruce J Mason, Thomas J. Comparison of Measured and Calculated Permeabilities for Hardened Cement Pastes[J].Cement and Concrete Research, 1996.9.
    [34]Sommer.H,冯乃谦.高性能混凝土的耐久性[M].北京:科学出版社,1998.
    [35]杨钱荣,朱蓓蓉.混凝土渗透性的测试方法及影响因素[J].低温建筑技术,2003,5.
    [36]吴中伟.高性能混凝土[M].北京:中国铁道出版社,1999.
    [37]P A M Basheer, A E Long, F R Montgomery. An interaction model for causes of deterioration and permeability of concrete [J].Concrete Technology,1994.
    [38]T Zhang, O E Gjorv. Diffusion behavior of chloride ions in concrete[J]. Cement Concrete Research,1996.
    [39]李椒进.混凝土的渗透性与耐久性研究[D].青岛:青岛建筑工程学院,2000.
    [40]Konin A, Francois R, Arliguie G. Analysis of progressive damage to reinforced ordinary and high performance concrete in relation to loading[J].Materials and Structures, 1998,3.
    [41]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学,2000.
    [42]邢锋,冷发光,冯乃谦,李伟文.高性能混凝土骨料数量效应研究[J].四川建筑科学研究,2001,2.
    [43]Maher A Bader. Performance of concrete in a coastal environment[J].Cement and Concrete Composites,2003.
    [44]余红发,刘连新,曹敬党.东西部氯盐环境中混凝土的耐久性和服役寿命[J].沈阳建筑大学学报(自然科学版),2005,6.
    [45]Clifton J R. Predicting the service life of concrete[J].ACI Material Journal,1993,9.
    [46]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].南京:东南大学,2006.
    [47]黄士元.按服务年限设计混凝土的方法[J].混凝土,1994,6.
    [48]余红发,孙伟,鄢良慧,麻海燕.混凝土使用寿命预测方法的研究[J].硅酸盐学报,2002.
    [49]Peter Schiessl, Christoph Gehlen. New approach of service life design for concrete structure[J].Durability of reinforced concrete under combined mechanical and climatic loads,2005.
    [50]O'Conner J P, Cutts J M. Evaluation of historic concrete structures. Concrete International,1997,19 (8):57-61.
    [51]ISECKE B. Failure analysis of the collapse of the Berlin Hall. Corrosion of Reinforcement jn Concrete construction,1985.
    [52]Hausman D A. Steel corrosion in concrete. Materials Prot.1967,6 (11):19-23
    [53]Lambert, P. Investigation of reinforcement corrosion 2. Electrochemical monitoring of steel in chloride contaminated concrete. Materials and Structure,1991.24 (143): 351-358.
    [54]Kayyali OA. The C1-/OH-ration in chloride-contaminated concrete—a most important criterion. Magazine of Concrete Research,1995,47 (172):235-242
    [55]Arya C. Effect of cement type on chloride binding and corrosion of steel in concrete. Cement and Concrete Research,1995,25 (4):893-902.
    [56]Page C I. The influence of Different Cements on chloride-indeced corrosion of reinforcing steel. Cement and Concrete Research,1986,16(1):79-86.
    [57]Lopez W. Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement. Cement and Concrete Research,1993, 23:368-376.
    [58]Rasheeduzzafar. Corrosion cracking in relation to bar diameter, cover and concrete quality. Journal of Materials in Civil Engineering,1992,4(4):327-342.
    [59]Al-Saadoun S S. Corrosion of reinforcing steel in fly ash blended cement co ncrete. Journal of Materials in Civil Engineering,1993.5(3):356-371.
    [60]Al-Gahtani A S. Rebar corrosion and sulfate resistance of blast-furnace slag cement. Concrete,1994,6(2):223-239.
    [61]Khedr S A. Resistance of silica-fume concrete to corrosion-related damaga. Journal of Materials in Civil Engineering,1995,7 (2):102-107.
    [62]Grimalde G. Factors influencing electrode potential of steel in concrete. British Corrosion Journal,1986,21 (1).
    [63]Sagoe K K. Electrochemical characteristics of reinforced concrete corrosion as d etermined by impedance spectroscopy. Rritish Corrosion Journal,1992,27 (2).
    [64]Dhir R K. Measurement of reinforcement corrosion in concrete structures. ACI Concrete Journal,1991,25(1):15-19.
    [65]Feliu S. Confinement of electrical signal for in-situ measurement of polarization resistance in reinforced concrete. ACI Materials Journal,1990,87 (5):457-460.
    [66]Newton C J. A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corrosion Science,1988,28 (11):1051-1073.
    [67]Bazant Z P, Physical mode for steel corrosion in concrete sea structures-theory. ASCE Journal of Structural Division.1977,105 (ST6):1137-1153.
    [68]Bazant Z P, Physical mode for steel corrosion in concrete sea structures-application ASCE Journal of Structural Division.1977,105 (ST6):1155-1166.
    [69]叶青.UEA掺量对混凝土抗氯离子渗透性能的影响[J].建筑材料学报,2005,4.
    [70]赵尚传,宋国栋.高抗氯离子渗透性能混凝土试验研究[J].公路,2003,3.
    [71]曹芳.混凝土的渗透性能及测试方法的对比分析[J].混凝土.2003,3.
    [72]王兆利.混凝土抗冻性及其与渗透性关系[D].青岛:青岛建筑工程学院,2003,6.
    [73]廉慧珍,路新瀛.按耐久性设计高性能混凝土的原则和方法[J].建筑技术,2001,1.
    [74]ACI Committee 201.Proposed revision of "guide to durable concrete"[J].ACI materials Journal,1991,5.
    [75]欧洲混凝土委员会.CEB耐久性混凝土结构设计指南[M].北京:中国建筑工业出版社,1989.
    [76]Powers T C, Helmuth R A. Theory of volume changes in hardened Portland cement paste during freezing Proceedings[J].Highway Research Board,1953.
    [77]Power T C. Void spacing as a basis for producing air-entrained concrete[J].ACI Journal Proceedings,1954,9.
    [78]李金玉.混凝土冻融破坏机理的研究[J].水利学报,1999,1.
    [79]吴学礼,杨全兵.混凝土抗冻性的评估[J].建筑材料学报,2000.5.
    [80]许丽萍,吴学礼.抗冻混凝土的设计[J].上海建材学院学报,1993.6.
    [81]蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998.
    [82]卫军.受冻融循环作用混凝土耐久性劣化过程的研究[D].武汉:华中科技大学,2002.
    [83]Fagerlund G. The critical degree of saturation method of assessing the freeze/thaw durability of concrete[J].Materials and Structures,1977,10.
    [84]D R Schwartz.D-cracking of concrete pavements[J].Highway Research Record.1997,4.
    [85]Cohen M D, Zhou Yi-xia, Dolch W L. Non-air-entrained concrete, is it frost resistant?[J].ACI Materials Journal,1992,2.
    [86]H Cai, X Liu. Freeze-thaw durability of concrete:ice formation process in Pores[J].Cement and Concrete Research,1998,9.
    [87]曹建国,李金玉等.高强混凝土抗冻性的研究[J].建筑材料学报,1999,2.
    [88]巴恒静.寒冷地区机场道面混凝土破坏机理研究[J].哈尔滨建筑大学学报,2002,10.
    [89]Verbeck C J, Kiieger P. Studies of salt scaling of concrete[J].Highway Research Board Bulletin,1957,1.
    [90]杨全兵,黄士元.去冰盐对混凝土剥落的物理机理[J].上海建材学院学报,1991,6.
    [91]R E Beddoe, M J Setzer. A low temperature DSC investigation of hardened cement paste subjected to chloride action[J].Cement and Concrete Research,1988,2.
    [92]Cameron MacInnis, James D Whiting. The frost resistance of concrete subjected to a deicing agent[J].Cement and Concrete Research,1979,9.
    [93]Dirch H Bager, Erik J sellevold. Ice formation in hardened cement paste, part Ⅰ:room temperature cured pastes with variable moisture contents[J].Cement and Concrete Research,1986,5.
    [94]Jochen Stark, Horst Michael Ludwig. Freeze-thaw and freeze-deicing salt resistance of concrete containing cement rich in granulated blast furnace slag[J].ACI Materials Journal,1997,1.
    [95]J J Volkl, R E Beddoe, M J Setzer. The specific surface of hardened cement paste by small angle X-ray scattering effect of moisture content and chlorides [J].Cement and Concrete Research,1987,1.
    [96]K Hazrati, C Abesque, M Pigeon, T Sedran. Efficiency of sealers on the scaling resistance of concrete in presence of deicing salts[J].Proceedings of the international workshop in the resistance of concrete to scaling due to freezing in the presence of deicing salt,1997.
    [97]J Marchand, M Pigeon, D Bager, C Talbot. Influence of chloride solution concentration on deicer salt scaling deterioration of concrete[J].ACI Materials Journal,1999,4.
    [98]Mitsuru Saito, Minoru Hota, Hiroshi Ishimori. Chloride permeability of concrete subjected to freeze-thaw damage[J].Cement and Concrete Composites,1994,2.
    [99]Christiane Foy, Michel Pigeon, Nemkumar Banthia. Freeze-thaw durability and deicer salt scaling resistance of a 0.25 water-cement ratio concrete [J]. Cement and Concrete Research,1988,4.
    [100]D J Janssen, M B Snyder. Mass loss experience with ASTM C666:with and without Deicing salt[J].FTDOC, Proceedings of the international workshop in the resistance of concrete to scaling due to freezing in the presence of deicing salt,1997.
    [101]Beaupre D, Talbot C, Gendreau M, Pigeon M, et al. Deicer salt scaling resistance of dry and wet process shotcrete[J].ACI Materials Journal,1994,5.
    [102]刘清泉.路面防滑机理与应用研究[D].南京:东南大学,2004.
    [103]GF Salt. Research on Skid Resistance at the Transport and Road Research Laboratory(1927-1977)[J].TRRL Supplementary Report,1977.
    [104]Lon S. Advanced Test Methods and Specifications in Europe [J]. Ingram Superior Materials,2004.
    [105]陈瑜.道路粉煤灰高性能混凝土耐磨性试验研究[J].公路,2000,11.
    [106]高英力.复合超细粉煤灰高性能道路混凝土的试验研究[J].公路交通科技,2005,6.
    [107]刘彦书.寒区路用水泥混凝土磨耗机理及试验[J].低温建筑技术,2006,1.
    [108]长沙理工大学.机制砂混凝土用于桥梁建设的研究[R].2006.
    [109]赵勤贤,混凝土结构工程耐久性研究的历史、现状及趋势,建筑技术开发2002,29(9)71-72
    [110]杨全兵.混凝土盐冻剥蚀破坏评定参数的研究[J].低温建筑技术,2004,5.
    [111]张国强,覃维祖.混凝土抗盐冻剥蚀试验方法研究[J].公路交通科技,2000,4.
    [112]D Whiting. U.S.A State-of-the-Art Report Control of Air Contention Concrete[R]. 1983.
    [113]赵铁军.高性能混凝土的渗透性研究[D].北京:清华大学,1997.
    [114]路新瀛,王晓睿,张华新.ASTM C1202实验方法浅析[J].工业建筑,2004,4.
    [115]陈红.不同龄期混凝土抗氯离子渗透性试验[J].水运工程,2007,7.
    [116]李天艳,杨晓虹,张亚挺.混凝土电通量的影响因素试验研究[J].江苏建筑,2006.
    [117]赵尚传,宋国栋.高抗氯离子渗透性能混凝土试验研究[J].公路,2003,7.
    [118]查旭东,韩春华.欧洲水泥混凝土路面综述[J].国外公路,1996,6.
    [119]程云虹,刘斌.基于BP网络的混凝土抗渗性研究[J].混凝土,2004,1.
    [120]杨再富.粗集料对混凝土强度影响的试验研究与数值模拟[D].重庆:重庆大学,2005.
    [121]Kejin Wang,Daniel C,Jansen,Surendra P,etc.Permeability Study on Cracked Concrete.Cement and Concrete Research,1997,27(3).
    [122]C M Aldea,S P Shah,A Ammouche,etal.Permeability of cracked concrete.Materails and Structures,1999,32.
    [123]Verbck G., Landgren R.Influence of physical characteristics of aggregates on frost resistance of concrete[J].Proceeding of the American Society for Testing and Materials,1955.
    [124]Charles Korhonen, Brian Charest.Assessing Cryogenic Testing of Aggregates for Concrete Pavements[R].FHWA Special Report,2003.
    [125]Christiane Foy, Michel Pigeon, Nemkumar Banthia, Freeze-thaw durability and deicer salt scaling resistance of a 0.25 water-cement ratio concrete, Cement and Concrete Research,1988,18(4):604~614
    [126]中华人民共和国行业标准.公路工程水泥及水泥混凝土试验规程[S].JTG E30-2005.
    [127]广西省基建局.广西地区水泥混凝土路面三轴式摊铺整平施工技术的研究[R].1996.
    [128]John E, Grady, William P, Chamberlin. Groove-Depth requirements for tine- textured pavement[J].TRR,1946.
    [129]蒋应军,戴学臻,陈忠达,戴经梁.重载水泥混凝土路面损坏机理及对策研究[J].公路交通科技,2005,7.
    [130]张晓峰,方亮.二体磨损与三体磨损间的关系[J].西安公路交通大学学报,2000,3.
    [131]陈瑜,张大千.水泥混凝土磨损机理及其耐磨性[J].混凝土与水泥制品,2004,6.
    [132]傅智.滑模水泥混凝土路面抗磨性的研究[J].公路交通科技,1997,12.
    [133]蓝才武.公路面层三性磨耗机理与建议[J].西部交通科技,2006,5.
    [134]Suh N P. The sliding wear behavior of Al-Sic particle composites—the characterization of subsurface deformation and correlation with wear behavior[J].Wear,1977,5.
    [135]中华人民共和国建设部行业标准.建筑气候区划标准(GB50178—1993)[S].北京:中国计划出版社,1993.
    [136]金伟良,吕清芳.混凝土结构耐久性设计区划标准的研究[J].第四届混凝土结构耐久性科技论坛文集,2006,7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700