救援后送机器人对人体的作用力分析和新型执行机构结构与运动综合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以城市、丛林等地域军事行动和大型公共场所生化恐怖袭击、爆炸等突发公共卫生事件中对伤员实施救援所面临的卫勤保障难题为背景,研究救援后送机器人对人体的作用分析和新型执行机构结构与运动综合方法。全文取得了如下创造性成果:
     (1)以分形理论为工具,研究了利用CT扫描影像准确建立人体脊柱有限元模型的快速建模方法。提出了一种考虑像素邻域特征的最佳阈值求解方法,该方法弥补了二维Otsu法在Mimics中的应用局限以及软件自身在分割阈值选取上的不足且建立的脊柱几何模型为灰度值模型,便于使用密度-CT数的弹性模量模型对骨组织材料进行非线性赋值,提高有限元模型的分析精度。
     (2)运用接触分析理论,研究了人体脊柱有限元分析中关节接触面的处理与求解方法。较好地实现了关节互不侵入、关节接触力法向量只能是压力、关节切向量与摩擦系数密切相关等特征的仿真模拟。通过对典型救援工况下的人体脊柱受力的分析,揭示了人体脊柱各组成部分在不同操作条件下的应力变化规律和影响因素并提出了执行机构综合需注意的几个问题。
     (3)突破现有执行机构对人体的作用方式,从人体零自由度实现条件出发,提出了一种以滑动担架为基础机构,以6-DOF操作臂为附加机构的新型执行机构构想。以自由度性质分析为基础,以速度雅可比行列式中不含折断点参数为评价指标,提出一种通用运动自由度解耦折叠操作臂构型与优选方法。
     (4)运用旋量理论研究了6-DOF操作臂位置正、逆解的解析求解法与双臂主从映射关系,提出了一种能直接映射操作臂末端运动空间到关节空间的速度与加速度建模方法;以无量纲速度雅可比矩阵条件数倒数为性能评价指标,结合操作点各向同性条件,提出了一种操作臂结构参数优化方法。
     本文研究成果对丰富和发展救援后送机器人对人体的作用力分析方法和执行机构综合理论,推进救援后送机器人的社会应用具有重要的理论意义和实用价值。
This dissertation presents a systematic package for the human stress analysis andstructure, kinematic synthesis of a novel handling mechanism for Rescue andEvacuation Robot to meet demand of reducing the human stress and avoiding thesecondary injury in the special events such as military operations and citybiochemical terrorist attacks, explosions and other public health emergencies. Thefollowing contributions have been made.
     (1) A fast finite element modeling process for the human spine is presented byCT image segmentation and minimum-error thresholding method using the fractaltheory. This method makes up application limitation of the two-dimensional Otsumethod in the Mimics software and deficiency in the segmentation threshold selectionof the software itself, considering the pixel neighborhood characteristics. Accordingto the relationship of the CT Hounsfield value and Young’s modulus, the spinegeometry gray value model is established and the nonlinear material parameters of thebone tissue are acquired. These nonlinear material parameters are benefit to improvethe analytical accuracy of finite element model.
     (2) The joint contact surface processing and solving methods of the human spinefinite element analysis are carried out by inserting script in the ANSYS based uponthe contact analysis theory. The methods are easy to solve the finite element contactinterface problem that caused by the unknown position and status and thetime-varying phenomenon. Through a systematic analysis of the typical rescueevacuation robot execution mechanism, the human spine stress rule and the influencefactors are revealed.
     (3) Consideration of the realizing conditions from zero degree of freedom ofhuman body, a novel handing mechanism is proposed by treating sliding stretcher asbasic mechanism and dual6-DOF manipulators as auxiliary mechanism, thatbreakthrough the working principle of conventional handing mechanism. At the same time, a method for the structure synthesis of the kinematic decoupling and collapsible6-DOF manipulators having orthogonal joints is presented by freedom nature analysisand the nullity of the dimensional parameters caused by the point of the folding in thedeterminant of the Jacobian.
     (4) The forward and inverse displacement, velocity and acceleration analysis ofthe dual6-DOF manipulators are carried out by screw theory. The dimensionaloptimization method is proposed by a dimensionless conditioning index representedby the characteristic length under Isotropic operating point. Finally, a kind of pathplanning method of generating zero velocity and zero acceleration in a finite intervalendpoints is study.
     The results of this dissertation are useful for developing the rescue andevacuation robot to enhance the ability of medical service support in public healthemergencies and the capability of military forces.
引文
[1]高红卫,陶春,后现代战争与世界新秩序,北京:人民出版社,2007
    [2]中国人民解放军总后勤部卫生部,高技术局部战争与野战卫生装备,北京:解放军出版社,2000
    [3] Bowden, Mark, Black Hawk Down: A Story of Modern War, Atlantic Monthly Press,1999
    [4] Chouvy, Pierre-Arnaud, Opium: uncovering the politics of the poppy, Harvard UniversityPress,2010
    [5] Malik, Muhammad Asim, Mountain warfare: the need for specialized training, MilitaryReview,2004,84(5):94-102
    [6] Pierce, Scott W, Mountain and cold weather warfighting: critical capability for the21stcentury, SAMS Monograph. Fort Leavenworth, Kans.: School of Advanced MilitaryStudies, United States Army Command and General Staff College
    [7] Terror attacks in Mumbai;80dead, over200injured. Times of India. November27,2008
    [8] CASPER J, MURPHY T, Human-robot interaction during the robot-assisted urban searchand rescue response during the robot-assisted urban search and rescue response at theWorld Trade Center, IEEE Transaction on System, Man and Cybernetics-Part B:Cybernetics,2003,33(3):367-383
    [9]王传中,刘保池,河南3起重大灾害事件紧急医疗救援的启示,中国急救复苏与灾害医学杂志,2008,9(3):538-540
    [10] Murphy R, Rats robots and rescue, IEEE Intelligent Systems,2002,17(5):7-9
    [11] Micire M, Analysis of Robotic-assisted Search and Rescue Response to the World TradeDisaster[D].University of South Florida,2002
    [12] Davids A, Urban Search and Rescue Robots: From Tragedy to Technology. IEEEIntelligent Systems.2002,17(2):81-83
    [13] Snyder R, Robots Assist in Search and Rescue Efforts at WTC, IEEE RoboticsAutomation Magazine,2001,8:26-28
    [14] CasPer J, Murphy R, Human-Robot Interactions During the Robot-Assisted Urban Searchand Rescue Response at the World Trade Center. IEEE Trans on Systems, Man,andCybernetics-Part B,2003,33(3):367-385
    [15] Murphy R, Human-Robot Interaction in Rescue Robotics, IEEE Trans. on Systems,Man,and Cybermetics-PartC, Applications and Reviews,2004,34(2):138-153
    [16]刘金国,王越超,李斌,等,灾难救援机器人研究现状、关键性能及展望,机械工程学报,2006,42(12):1-12
    [17] MURPHY R, Marsupial and shape-shifting robots for urban search and rescue, IEEEIntelligent systems,2002,15(2):14-20
    [18] SESCHA A S, PAUL BB,MARIA G, Autonomous stair-hopping with scout robots, IEEEInternational Conference on Intelligent Robotics and systems, Sep.30-Oct.4, SwissFederal Institute of Technology, Lausanne,2002:721-728
    [19] LARSON A, VOYLES R, TerminatorBot: a novel robot with dual-use mechanism forlocomotion and maniputation, ASM Transactions on Mechatronics,2005,10(1):17-25
    [20] NANIEL M H, STERGIOS I R, MICHAE C M, et al, Multi-sensor, high speedautonomous stair climbing, IEEE/RSJ International Conference on Intelligent Roboticsand Systems, Sep.30-Oct.4, Swiss Federal Institute of Technology, Lausanne. Piscataway,2002:733-742
    [21] WOLF A, BROWN H B, CASCIOLA R, et al, A mobile hyper redundant mechanism forsearch and rescue tasks, International Conference on Intelligent Robotics and Systems,Oct.27-31,2003, Bally’s Lasvegas Hotel, Las. Piscataway,2003:889-899
    [22] SHEN W M, SALEMI B, WILL P, Hormone-inspired adaptive communication anddistributed control for CONORO self-reconfigurable robots, IEEE Transactions onRobotics and Automation,2002,18(5):700-712
    [23] http://media.nasaexplores.com/lessons/02-014/fullarticle.pdf
    [24] YIM M, ZHANG Y, LAMPING J, et al, Distributed control for3-D metamorphosis,Autonomous Robots,2001,10(1):41-56
    [25]李斌,蛇形机器人的研究及其在灾难救援中的应用,机器人技术与应用,2003,3:22-26
    [26]沈阳自动化所旋翼飞行机器人完成全功能自主飞行试验,工业控制计算机,2008,12:81
    [27] YUGUCHI Y, SATOH Y, Development of a robotic system for nuclear facility emergencypreparedness-observing and work-assisting robot system, Advanced Robotics,2002,16(6):481-484
    [28]郭瑞璜,日本新一代救援机器人T-53援龙,消防技术与产品信息,2011,(4):25
    [29] http://www.bostondynamics.com
    [30] MarcRaibert,Kevin, Blankespoor, GabrielNelson, et al, BigDog, theRough-TerrainQuadruped Robot, The International Federation of Automatic Control, Seoul, Korea,2008:10822-10825
    [31]日本推出升级版营救机器人,机器人技术与应用,2009(4):45
    [32] http://bbs.hqew.com/viewthread.php?tid=403588
    [33] http://news.cnet.com/Photos-Robot-rescuer-for-wounded-soldiers/2300-11394_3-6118143.html#2300-11394_3-6118143-1.html?&_suid=1342349369406011762895227106307
    [34]“Military.” Internet: http://www.es.northropgrumman.com/remotec/military.htm
    [35]“iRobot WARRIOR.” Internet: http://irobot.com/sp.cfm?pageid=150
    [36]“Simulaids.” Internet: http://www.simulaids.com
    [37]“Robotics:Autonomous Casualty Care Programs.” Internet: http://www.tatrc.org/
    [38] Chen, et al,“Mobile robot,”US patent6,144,180, Patent and Trademark Office,Washington, D.C.,2000
    [39]刘雷,人体运动仿真建模方法研究,计算机仿真,2009,26(1):166-168
    [40] Hanavan E. P, A Mathematical Model of the Human Body,1964
    [41]休斯顿,刘成群,生物系统的动力分析,发展趋势及研究课题,力学与实践,1990,12(6):21-28
    [42] Hill, A. V, The heat of shortening and the dynamic constants of muscle. Proc. R. Soc.Lond. B126,136-195
    [43] Delp, Surgery Simulation: A Computer Graphics System to Analyze and DesignMusculoskeletal Reconstructions of the Lower Limb, Stanford: Stanford University,1990
    [44] http://www.musculographics.com/
    [45] http://www.anybodytech.com/
    [46] http://www.lifemodeler.com/
    [47] Brekelmans W A, Poort H W, Slooff TJ, A new method to analyse the mechanicalbehaviour of skeletal parts, Acta Orthop Scand,1972:43(5):301-317
    [48] Goel V K, Kong W Z, Han J S, Winstein J N, Gilbertson L G, A combined finite elementand optimization investigation of lumbar spine mechanics with and without muscles,Spine,1994(18):1341-1351
    [49] Iatridis J C, Weidenbaum M, Setton L A, Mow V C, Is the nucleus pulpous a solid or afluid? Mechanical behaviors of the nucleus pulpous of the human intervertebral disc?,Spine,1996,21:1174-1184
    [50]陈伯华,孙鹏,Natarajan N,等,颈椎三维有限元模型的建立及意义,中国脊柱脊髓杂志,2002,12(2):105-108
    [51]陈新民,郎继孝,陈德喜,等,应用三维有限元模型研究颈椎不同工况下的生物力学变化,临床骨科杂志,2003,6(4):294-296
    [52] http://www.ulb.ac.be/project/vakhum/
    [53]魏高峰,人体骨肌系统的整体生物力学建模与仿真分析研究,上海交通大学,2010
    [54]付裕,阮狄克,刘斌,等,现实与虚拟互动的第3-7颈椎应力分析比较,内蒙古医学杂志,2006,38(4):305-308
    [55]张美超,张志凌,夏虹,等,枢椎齿突骨折的有限元分析,中国临床解剖学杂志,2005,23(1):96-99
    [56]张美超,廖进民,李敏,等,激光三维扫描系统重建下颌骨,第一军医大学学报,2004,24(7):756-757
    [57]徐明志,王燕一,徐薪,等,应用三维激光扫描技术建立下颌固定义齿的三维有限元模型,口腔医学研究,2006,22(2):159-161
    [58]李安安,刘谦,龚辉,等,“虚拟中国人男性一号”高精度骨骼系统的三维建模,中国临床解剖学杂志,2006,24(3):292-294
    [59]顾卫平,殷新民,吴凤鸣,等,利用中国数字化可视人体图像建立牙齿及牙列的三维实体和有限元模型,口腔医学,2005,25(1):1-2
    [60]陈琼,三维有限元建模方法的研究现状,口腔医学,2006,26(2):154-155
    [61]袁野,靳安民,何丽英,等,利用CT扫描及CAD技术建立腰椎活动节段的有限元模型,中国临床解剖学杂志,2002,20(4):298-300
    [62]胡小春,郭松青,叶铭,基于CT图像建立人体足部骨骼三维有限元模型的研究,合肥工业大学学报:自然科学版,2006,28(9):1189-1191
    [63] CARRICATO M,PARENTI C, A family of3-DOF translational parallel manipulators,Proc. of the ASME Design Automation Conference, Pittsburgh, PA.2001,DETC2001/DAC-21035
    [64] FRISOLI A,CHECCACC F,SALSEDO F,et al, Synthesis by screw algebra oftranslating in-parallel actuated mechanisms, Advance in Robot Kinematics,2000:433-440
    [65] HUANG Zhen,LI Qinchuan, General methodology for type synthesis of lower-mobilitysymmetrical parallel manipulators and several novel manipulators, Int. J. Robot. Res.,2002,21:131-145
    [66]黄真,赵永生,赵铁石,高等空间机构学,北京:高等教育出版社,2006
    [67] KONG X,GOSSELIN C M, Type synthesis of4-DOF sp-equivalent parallel manipulators:A virtual-chain approach, Mechanism and Machine Theory,2006,41(11):1306-1319
    [68] KONG X W, GOSSELIN C M, Type synthesis of parallel mechanisms, Springer,2007
    [69] FANGHELLA P, GALLETTI C, Mobility analysis of single-loop kinematic chains: Analgorithmic approach based on displacement groups, Mech. Mach. Theory,1994,29:1187-1204
    [70] FANGHELLA P,GALLETTI C, Metric relations and displacement groups in mechanismand robot kinematics, ASME Journal of Mechanical Design,1995,117:470-478
    [71] HERVE J M, The Lie group of rigid displacement tool for mechanism design, Mech.Mach. Theory,1999,34:719-730
    [72] MENG Jian,LIU Guanfeng,LI Zexiang, A geometric theory for analysis and synthesis ofsub-6DOF parallelmanipulators, Trans. on Robotics,2007,23(4):625-649
    [73] LEE Chungching, HERVE J M, Uncoupled actuation of overconstrained3T-1R hybridparallel manipulators, robotica, Cambridgeshire: Cambridge University Press,2008
    [74] RICO J M,AGUILERA L D,GALLARDO J,et al, A more general mobility criterion forparallel manipulators, ASME Journal of Mechanical Design,2006,128:207-219
    [75] RICO J M, Mobility of single loop linkages:A final word?, Proc. of ASME MechanismsConf.,2007,DETC2007-34936
    [76] YANG Tingli,LIU Anxin,JIN Qiong,et al, Position and orientation characteristicequation for topological design of robot mechanisms, ASME Journal of MechanicalDesign,2009,131:1-17
    [77]杨廷力,机器人机构拓扑结构学,北京:机械工业出版社,2004
    [78] YANG Tingli, Topology structure design of robot mechanisms, Beijing:China MachinePress,2004
    [79] YANG Tingli,SUN Dongjin, A general formula of degree of freedom of parallelmechanisms, Proceeding of theASME32nd Annual Mechanisms and RoboticsConference,2008, DETC2008-49077
    [80]杨廷力,现代机构学进展,北京:高等教育出版社,2007
    [81]杨廷力,金琼,刘安心,等,基于单开链单元的欠秩并联机器人机构型综合的一般方法,机械科学与技术,2001,20(3):321-325
    [82] YANG Tingli, Kinematic structural analysis and synthesis of over-constrained spatialsingle loop chains,Proc. Of the19th Biennial Mechanisms Conf.. Columbus:ASME,1986:86-189
    [83]汪洋,张玉茹,曹永刚,基于任务灵活性的脑外科机器人机构设计,机械设计与研究,2007,23(2):47-51
    [84]刘达,王田苗,张玉茹,等.面向微创手术的医疗外科机器人构型综合,机器人,2003,25(2):132-135
    [85]周玉林,高峰,仿人机器人构型,机械工程学报,2006,42(11):66-74
    [86] Yang G, Chen I M, Task-based optimization of modular robot configurations: minimizeddegree-of-freedom approach, Mechanism and Machine Theory,2000,35(4):517-540
    [87] Ozgoren M K, Topological analysis of6-joint serial manipulators and their inversekinematic solutions, Mechanism and Machine Theory,2002,37(5):511-547
    [88] Alizade R, Bayram C, Gezgin E. Structural synthesis of serial platform manipulators,Mechanism and Machine Theory,2007,42(5):580-599
    [89] Tsai L.W, Systematic enumeration of parallel manipulators, Parallel kinematic machine:theoretical aspects and industrial requirement, New York: Springer,1999:33-49
    [90] Tsai L.W, Solving the inverse dynamics of parallel manipulators by the principle ofvirtual work, in ASME Design Eng. Tech. Conf.(DETC/MECH-5865), Sept.1998:451-457
    [91] Zein m, Wenger P, Chablat d, An exhaustive study of the workspace topologies of all3Rorthogonal manipulators with geometric simplifications, Mechanism and Machine Theory,2006,41(8):971-986
    [92] Gogu G, Families of6R orthogonal robotic manipulators with only isolated andpseudo-isolated singularities, Mechanism and Machine Theory,2002,37(11):347-1375
    [93] Y C Tsai, A H Soni, The effect of link parameter on the working space of general3R robotarms, MechanicalMachine Theory,1984,19:9-16
    [94] Y C Tsai, A H Soni, Workspace synthesis of3R,4R,5R and6R robots,MechanicalMachine Theory,1985,20:555-563
    [95] Marco Ceccarelli, Chiara Lanni, A multi2objective op timum design of general3Rmanipulators for p rescribed workspace limits, MechanicalMachine Theory,2003,39:119-132
    [96] P R Bergamaschi, A C Nogueira, S P Saramago, Design and optimization of3Rmanipulators using the workspace features, Applied Mathematics and Computation,2006,172:439-463
    [97] zg ren M K, Topological analysis of6-joint serial manipulators and their inversekinematic solutions, Mechanism and Machine Theory,2002,37(5):511-547
    [98] Balkan T, zg ren M K, Ar kan M A S, et al, A kinematic structure-based classificationand compact kinematic equations for six-DOF industrial robotic manipulators,Mechanism and Machine Theory,2001,36(7):817-832
    [99] Balkan T, zg ren M K, Ar kan M A S, et al, A method of inverse kinematics solutionincluding singular and multiple configurations for a class of robotic manipulators,Mechanism and Machine Theory,2000,35(9):1221-1237
    [100]赵杰,王卫忠,蔡鹤皋,可重构机器人封闭形式的运动学逆解计算,机械工程学报,2006,42(8):210-214
    [101]钱东海,王新峰,赵伟,等.基于旋量理论和Paden-Kahan子问题的6自由度机器人逆解算法,机械工程学报,2009,45(9):72-76
    [102]姜铭,易红,李鹭扬,等. RGRR-Ι构造混联6R机器人,机械工程学报,2010,46(1):30-36
    [103] Qiao S, Liao Q, Wei S, et al, Inverse kinematic analysis of the general6R serialmanipulators based on double quaternions, Mechanism and Machine Theory,2010,45(2):193-199
    [104] Rocco S D, Eklund D, Sommese A J, et al, Algebraic C*-actions and the inversekinematics of a general6R manipulator, Applied Mathematics and Computation,2010,216(9):2512-2524
    [105] Husty M L, Pfurner M, Schr cker H, A new and efficient algorithm for the inversekinematics of a general serial6R manipulator, Mechanism and Machine Theory,2007,42(1):66-81
    [106] Regnier S, Ouezdou F B, Bidaud P, Distributed method for inverse kinematics of all serialmanipulators, Mechanism and Machine Theory,1997,32(7):855-867
    [107] Manseur R, Doty K L, Structural kinematics of6-revolute-axis robot manipulators,Mechanism and Machine Theory,1996,31(5):647-657
    [108] Chiddarwar S S, Babu N R, Comparison of RBF and MLP neural networks to solveinverse kinematic problem for6R serial robot by a fusion approach, EngineeringApplications of Artificial Intelligence,2010,23(7):1083-1092
    [109] K ker R, z C, akar T, et al, A study of neural network based inverse kinematicssolution for a three-joint robot, Robotics and Autonomous Systems,2004,49(3):227-234
    [110] Kalra P, Mahapatra P B, Aggarwal D K, An evolutionary approach for solving themultimodal inverse kinematics problem of industrial robots, Mechanism and MachineTheory,2006,41(10):1213-1229
    [111] Chapelle F, Bidaud P, Closed form solutions for inverse kinematics approximation ofgeneral6R manipulators, Mechanism and Machine Theory,2004,39(3):323-338
    [112] Stanisic MM, Goehler CM, Singular planes of serial wrist-partitioned manipulators andtheir singularity metrics, Mechanism and Machine Theory,2007,42(2):889-902
    [113]徐文福,梁斌,刘宇,等,一种新的PUMA类型机器人奇异回避算法,自动化学报,2008,34(6):670-676
    [114] Hasan AT, Ismail N, Hamouda A, Artificial neural network-based kinematics Jacobiansolution for serial manipulator passing through singular configurations, Advances inEngineering Software,2009,41(2):359-367
    [115]于靖军,机器人机构学的数学基础,北京:机械工业出版社,2008
    [116]杨廷力,刘安心,罗玉峰,等,机器人机构结构综合方法的基本思想、特点及其发展趋势,机械工程学报,2010,46(9):1-11
    [117] Jin Z, Ge Q J, Computer aided synthesis of piecewise rational motions for planar2R and3R robot arms, Journal of mechanical design,2007,129(10):1031-1036
    [118] Hu Z X, Marshall C, Bicker R, et al, Automatic surface roughing with3D machine visionand cooperative robot control, Robotics and autonomous systems,2007,55(7):552-560
    [119] Erkorkmaz K, Yeung C H, Altintas Y. Virtual CNC system. Part II. High speed contouringapplication, International journal of machine tools&manufacture,2006,46(10):1124-1138
    [120] Hofer M, Pottmann H, Ravani B, Geometric design of motions constrained by acontacting surface pair. Computer aided geometric design,2003,20(8-9):523-547
    [121] Jin Wen, Chen-Lu Yang, Ying-Kang Shi, et.al, A retrospective study of geriatric trauma ata large teaching hospital after the2008WENCHUAN earthquake, International Journal ofGerontology,2010,4(3):115-119
    [122] Zhi-hui Dong, Zhi-gang Yang, Tian-wu Chen, et.al, Thoracic Injuries inearthquake-related versus nonearthquake-related trauma patients: differentiation viaMulti-detector Computed Tomography, Clinics,2011,66(5):817-822
    [123] Eisuke Ikuta, Michio Miyano, Fumio Nagashima, et.al,Measurement of the easurementof the human body damage caused by collapsed building,13th World Conference onEarthquake Engineering Vancouver, B.C., Canada Aug1-6,2004:628
    [124] http://baike.baidu.com/view/63223.htm
    [125]高士濂等,人体解剖图谱,上海:上海科学技术出版社,2000
    [126] White AA, Panjabi MM, Clinical biomechanics of the spine, Lippincott,1990
    [127] Schultz AB,Warwick DN, Berkson MH, Nachemson A, Mechanical properties of humanlumbar spine motion segment-Part I: Responses in flexion, extension, lateral bending andtorsion. J Biomech Engng,1979,101:46-52
    [128] Wei-Hua Su, H.Jafari, Dumitru Baleanu. Fractional complex transform method forwaveequations on Cantor sets within local fractional differential, Advances in DifferenceEquations,2013, Accepted
    [129] Wei-Hua Su, Dumitru Baleanu, H. Jafari. Damped wave equation and dissipative waveequation in fractal strings within local variational iteration method, Fixed Point Theoryand Applications,2013, Accepted
    [130] Carter DR. The compressive behavior of bone as a two-phase porous structure,. JBJS,1977,59(7):954-962
    [131] Dempster WT, Liddicoat RT, Compact bone as a non-isotropic material, Am J Anat,1952,91(3):331-362
    [132] Rohlmann A, Neller S, Bergmann G, Graichen F, Claes L, Wilke HJ. Effect of an internalfixator and a bone graft on inter segmental spinal motion and intradiscal pressure intheadjacent regions, Eur Spine J,2001(10):301-308
    [133] Pope MH, Wilder DG, Matteri RE, Frymoyer JW, Experimental measurements ofvertebral motion under load. Orthopedic Clinics of North America,1977,8(1):155-167
    [134]聂文忠,脊柱胸腰部的生物力学建模与应用研究-中国力学虚拟人的基本问题初[D],上海交通大学,2009
    [135] Rho JY, Hobatho MC, Ashman RB, Relations of mechanical properties to density and CTnumbers in human bone, Medical Engineering and Physics,1995,17(5):347-355
    [136] Kopperdahl DL, Morgan Ef, Keaveny TM, Quantitative computed tomography estimatesof the mechanical properties of human vertebral trabecular bone, J Orthop Res,2002,20(4):801-805
    [137] Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. Inter laminar shear stresses andlaminar separation in a disc: Finite element analysis of the L3-L4motion segmentsubjected to axial compressive loads, Spine,1995,20(6):689-698
    [138] Rohlmann A, Neller S, Bergmann G, et al, Effect of an internal fixator and a bone graft onintersegmental spinal motion and intradiscal pressure in the adjacent regions. Eur Spine J,2001(10):301-308
    [139] Zander T, Rohlmann A, Calisse J, Bergmann G. Estimation of muscle forces in the lumbarspine during upper-body inclination, Clinical Biomechanics,2001,16(S):73-S80
    [140] Takashima ST, Singh SP, Haderspeck KA, et al, A model for semi-quantitative studies ofmuscle actions, Journal of Biomechanics,1979,12(12):929-939
    [141] Zhong ZC, Wei SH, Wang JP, et al, Finite element analysis of the lumbar spine with a newcage using a topology optimization method. Medical Engineering and Physics,2006,28(1):90-98
    [142] Silva MJ, Wang C, Keaveny TM, Hayes WC, Direct and computed tomography thicknessmeasurements of the human, lumbar vertebral shell and endplate, Bone,1994,15(4):409-414
    [143] Takashima ST, Singh SP, Haderspeck KA, Schultz AB. A model for semi-quantitativestudies of muscle actions, Journal of Biomechanics,1979,12(12):929-939
    [144] Panjabi MM, Greenstein G, Duranceau J, et al, Three-dimensional quantitativemorphology of lumbar spinal ligaments, J Spinal Disord,1991,4(1):54-62
    [145] KL, Deformation of the thoraco lumbar intervertebral joints in response to external loads:a biomechanical study using autopsy material, J Bone Joint Surg Am,1972,54(3):511-533
    [146] Tencer AF, Ahmed AM, Burke DL, Some static mechanical properties of the lumbarintervertebral joint: intact and injured, J Biomech Eng,1982,104(3):193-201
    [147]彼得艾伯哈特,胡斌,现代接触动力学,南京:东南大学出版社,2003
    [148] Dwyer A, Aprill C, Thalcott J, et al. Referred pain patterns from stimulation of thecervical zygo-apophysial joints, The14th Annual Meeting Cervical Spine ResearchSociety, Palm Beach, FL,1986,10:10-13
    [149] Brekelmans WA, Poort HW, Slooff TJ. A new method to analysis the mechanical behaviorof skeletal parts, Acta Othor Scand,1972,43(5):301-317
    [150] Kulak RF, Et al, Non-linear behavior of the human intervertebral disc under axial load,Biomech,1976,9(6):377
    [151] Liu YK, Ray G. The resistance of the lumbar spine to direct shear, Othop Clin NorthAm,1975,6:33-49
    [152] Liu YK. System identification scheme for the estimation of the liner viscoelasticproperties of inter vertebral disc, A viat Space Eviron Med,1978,49-175
    [153] Goel VK, Kong W, Han JS, et al, A combined finite element and optimizationinvestigation of lumbar spine mechanics with and without muscles, Spine,1993,18(11):1531-1541
    [154] Farfan HF, Mechanical disorders of the low back, Philadelphia-lea and Febiger,1973
    [155] Penning L, Pre vertebral hematoma in cervical spine injury, incidence and etiologicsignificance,1981,136-553
    [156] Alker GJ, Oh YW, Leslie EV, et al, Post mortem radiology of head/neck injuries in fataltraffic accident, Radiology,1975,114(3):611-615
    [157] Rhalmi s, Yahia LH, Newman N, Isler M, Immuno histochemical study of nerves inlumbar spine ligaments, Spine,1993,18(2):264-267
    [158] Lavaste F, Skalli W, Robin S, Camille R, et al,3D geometrical and mechanical modellingof the lumbar spine, J Biomech,1992,25(10):1153-66
    [159] Shirazi-Adl A, Parnianpour M, Nonlinear response analysis of the human ligamentouslumbar spine in compression, Spine,1993,18(1):147-58
    [160] Moe JH, Kettleson DN, Analysis of curve patterns and the preliminaryresults ofMilwaukee-brace treatment in one hundred sixty-nine patients, J Bone Joint Surg Am,1970,52(8):1509-1533
    [161] King HA, Moe JH, Bradford DS, et al, The selection of fusion levels in thoracicidiopathicscoliosis, J Bone Joint Surg Am,1983,65(9):1302-1313
    [162]黄真,刘婧芳,李艳文,论机构自由度-寻找了150年的自由度通用公式,北京:科学出版社,2011
    [163]陈恳,杨向东,刘莉等,机器人技术与应用,北京:清华大学出版社,2007
    [164]理查德莫雷,李泽湘,夏恩卡,机器人操作的数学导论,北京:机械工业出版社,1998
    [165]刘亚军,轻型六自由度生物采样操作臂结构设计理论、方法与应用[D],天津大学,2012
    [166] Jorge Angeles著,宋伟刚译,机器人机械系统原理理论、方法和算法,北京:机械工业出版社,2004
    [167] GJB831-90通用担架,中国人民解放军总后勤部,1990-10-01实施
    [168] Weihua Su, Xudong Ren, Fu Niu, Design for a3-DOF Cable-Driven AnthropomorphicArm, IJCSI International Journal of Computer Science Issues,2013,10(1):658-662

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700