亚洲季风区深对流系统特征及其成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深对流系统能够快速地把边界层的水汽及污染物等垂直输送到对流层上层,有些甚至能突破对流层顶直接进入平流层,从而在全球能量交换、水物质的重新分配以及对流层和平流层之间的物质交换中起着至关重要的作用。对流强烈的深对流系统还伴随着强降水、大风、冰雹和闪电等灾害性天气现象,对人们的生活造成严重影响。青藏高原与亚洲夏季风的相互作用使得亚洲季风区成为对流层物质进入平流层的重要通道。TRMM卫星因其多传感器的同步观测,为我们研究热带、副热带地区深对流系统的三维结构及强度特征提供了宝贵资料。本论文主要基于TRMM卫星观测资料,系统分析了全球尤其是亚洲季风区内20dBZ回波顶高大于14km的深对流系统的时空分布、对流属性和对流结构等特征,结合NCEP再分析资料,进一步对喜马拉雅山脉南麓附近区域内深对流系统形成的动力条件及水汽输送过程进行了研究。主要得到以下结论:
     1)深对流系统与闪电密度的分布基本一致,主要发生在热带地区的陆地上,并集中分布在非洲中部、南美洲北部以及亚洲南部至大洋洲北部之间的海洋性大陆区域。深对流系统对流深度(用云顶高度与20dBZ回波顶高来反映)和对流强度(用40dBZ强回波顶高、闪电频数以及极化修正温度来反映)的分布存在明显的区域差异。对流强度较大的深对流系统除非洲中部外,主要分布在副热带地区,例如:北美洲南部、南美洲南部以及亚洲季风区;而云顶较高的深对流系统主要分布在非洲中部、北印度洋—海洋性大陆—赤道西太平洋区域,其次是南美洲,与对流有效位能的分布一致。
     2)亚洲季风区内深对流系统的分布与夏季风活动密切相关且存在显著的区域性特征。夏季风爆发前(3-5月)深对流系统主要分布在20°N以南,集中在印度半岛东海岸附近;夏季风期间(6-9月),深对流系统的分布向中纬度移动并在青藏高原南麓地区最活跃。青藏高原上的深对流系统的对流强度较弱,水平尺度小,但发生频数较中国中东部高;而中国中东部的深对流系统虽然频数低但对流强度大。洋面上的深对流系统云顶高度最高(红外亮温最低)、40dBZ回波水平尺度比陆地上大,但40dBZ回波顶高较低且闪电频数较少。亚洲季风区陆地上的深对流系统存在明显的日变化特征,主要集中发生在午后至午夜,青藏高原上的深对流更集中地发生在午后至傍晚;而洋面上的深对流系统没有明显的日变化,热带海洋性大陆区域深对流系统的日变化与大陆上类似。
     3)深对流系统和40dBZ回波顶高超过10km的强深对流系统主要发生在陆地上。喜马拉雅山脉南麓的深对流系统约23.0%能够发展成为强深对流系统,其次是青藏高原上(20.8%)以及南亚季风区陆地上(15.3%),洋面上的最少(2.2%)。强深对流系统平均20dBZ回波顶高超过16km,其中有9%能超过了18km。深对流系统和强深对流系统主要发生在4一10月份,但深对流的峰值出现在8月份而强深对流系统在5月份。从青藏高原到喜马拉雅山脉南麓、南亚季风区陆地及洋面上,深对流系统的云顶高度依次升高;喜马拉雅山脉南麓附近区域内深对流系统的对流强度最强,且水平尺度也比南亚季风区陆地上的大;青藏高原深对流系统频发且更易达到对流层上层,但40dBZ强回波发展与闪电活动较弱且水平尺度较小。
     4)喜马拉雅山脉南麓区域(SSH)强深对流系统的发生与沿喜马拉雅山脉从孟加拉湾向西北方向绕流的水汽输送通道的建立密切相关。强深对流系统主要发生在湿度适中(6—16g kg-1)且有较强湿度梯度的陆地上,太大或太小均不利于其发生。对流抑制能约为-60J kg-1的环境有利于强深对流系统的形成。南亚夏季风爆发前(3—5月)洋面上风速较小,受洋面上湿空气影响,在孟加拉湾北部陆地上比湿与对流有效位能较大,强深对流系统主要发生在SSH东部;夏季风爆发期间(5、6月)洋面上风速开始增大,水汽输送通道开始形成并延伸到SSH中部,此时的强深对流系统较均匀地分布在整个SSH区域;夏季风爆发后(6—9月),强的西南夏季风将洋面上的水汽向西北一直输送到SSH最西端,而此时强深对流系统集中发生在SSH最西端凹痕区域。
Deep convective systems (DCSs) transport water vapor and pollutants vertically to upper troposphere, some even penetrate tropopause and transport water vapor and pollutants into stratosphere directly, which are vital in terms of global energy exchange, hydrological cycle and stratosphere-troposphere exchanges. Some intense DCSs associated with heavy rain, strong winds, hails and lightning, resulting in a serious impact on people's lives. The Asian monsoon region is an important pathway for water vapor and pollutants entering the stratosphere, due to the physical interaction of the Tibetan Plateau and the Asian summer monsoon. TRMM data is valuable for analyzing3-D structure and intensity of DCSs over tropical and sub-tropical regions because of the simultaneous observations of its onboarded multi-sensors. Based on TRMM data and NCEP Climate Forecast System reanalysis data, this thesis studied the spatiotemporal distributions, convective properties and structure features of DCSs with20dBZ echo top height exceeding14km over the world, especially the Asian monsoon region. Finally, a dynamic condition as well as transportation of water vapor and convective available potential energy (CAPE) for the forming of DCSs near southern slope of the Himalayas were investigated. The main conclusions are as follows:
     1) DCSs and lightning are both mainly distributed over the tropical continental regions, e.g., central Africa, northern South America and maritime continent between the Asia and the Oceania. It was found that the distributions of DCSs are different significantly in terms of convective depth (expressed by cloud top height and20dBZ echo top height) and convective intensity (represented by40-dBZ echo top height, lightning flash rate). DCSs with stronger convective intensity preferred to locate in the mid-latitude regions, e.g., southern North America, southern South America and the Asian monsoon region, except over Central Africa. While, DCSs with higher cloud top are mainly distributed over the northern India Ocean-maritime continent-western equatorial Pacific and central Africa, followed by South America, which is consistent with the distribution of convective available potential energy. Distribution of DCSs over the Tibetan Plateau-Asian monsoon region showed a significant particularity.
     2) The distribution of DCSs over the Asian monsoon region showed significant regional features and closely related to the Asian summer monsoon. DCSs are mainly distributed in south of20°N and concentrated near the India's east coast during the pre-monsoon season (March to May), further move markedly to mid-latitude area and most frequent near the Himalayan foothills in monsoon (June to September). DCSs over the Tibetan Plateau is weak in convective intensity and small in horizontal size, but occurred more frequent than over central and eastern China. While, intensity of DCSs over central and eastern China is more intense. Convective intensity of oceanic DCSs is weak, but the cloud top height is tallest and horizontal size is larger than continental DCSs significantly. DCSs over the terrestrial Asian monsoon region showed obvious diurnal variation, mainly appeared in the afternoon until midnight, while DCSs over the Tibetan Plateau are more concentrated in the afternoon until evening, consistent with the solar radiation. There is no obvious diurnal variation over the ocean. The diurnal variation of DCSs over Maritime Continent is similar with that over the mainland.
     3) DCSs and intense DCSs (IDCSs, with40-dBZ echo tops exceeding10km) occur more frequently over the continental regions than over the ocean. About23.0%of total DCSs develop into IDCSs in the SSH, followed by the TP (20.8%) and the SAMR (15.3%), and the least over the ocean (2.2%). The average20-dBZ echo-top height of IDCSs exceeds16km asl and9%of them even exceeds18km asl. Although most of both DCSs and IDCSs occur between April and October, DCSs have a peak in August, while IDCSs have a peak in May. The cloud top heights of DCSs increase from the Tibetan Plateau, to the Himalayan foothills nearby, the south Asian monsoon region, and to the ocean. Oceanic DCSs is tallest in cloud top but convective intensity is weak. The most intense DCSs are more concentrated near the Himalayan foothills, and the horizontal size is larger than that over the south Asian monsoon region (terrestrial). DCSs over the Tibetan Plateau occur frequently and can grow up to upper troposphere easier than adjacent lower regions due to its higher elevation and strong sensible heat flux in boreal summer, but its convective intensity is weaker.
     4) The distribution of IDCSs (the1000most intense DCSs) is closely related to the establishment of the water vapor transport passage, which flows from the Bay of Bengal along the Himalayas to northwest and reaches the westernmost in monsoon. IDCSs mainly occur over continental regions with moderate humidity (6-16g kg-1) and accompanied by a strong moisture gradient. Moreover, the environment with convective inhibition about-60J kg-1is conducive to the formation of IDCSs. Wind speed over the ocean is weak before the onset of Indian Summer Monsoon (March to May), impacted by the oceanic moisture, the specific humidity and convective available potential energy (CAPE) over north of the Bay of Bengal is larger than other continental regions, as a result, IDCSs mainly located in eastern SSH. During the onset of Indian Summer Monsoon (May and June), wind speed begin to increase and the water vapor transport passage is formed and extends to the middle of the SSH, then, IDCSs more evenly distributed throughout the Himalayan foothills. During the Indian Summer Monsoon (June to September), strong southwest wind transport water vapor from the Bay of Bengal to the westernmost SSH, which ultimately lead to IDCSs concentrated over the concave indentation region in the westernmost SSH.
引文
Alcala, C. M., and A. E. Dessler.2002:Observations of deep convection in the tropics using the tropical rainfall measuring (TRMM) precipitation radar. J. Geophys. Res.,107 (D24),4792, doi:10.1029/2002JD002457.
    Anderberg, M.R.,1973.Cluster Analysis for Applications. Academic Press, New York (359 pp.).
    Avila, E. E., R. E., Burgesser, N. E., Castellano, et al.,2010:Correlations between deep convection and lightning activity on a global scale. Journal of Atmospheric and Solar-Terrestrial Physics,72(14):1114-1121.
    Baker, M.B., Blyth, A.M., Christian, H.J., Latham, J., Miller, K.L., Gadian, A.M.,1999: Relationships between lightning activity and various thundercloud parameters:satellite and modeling studies. Atmos. Res.51,221-236.
    Baker, M.B., Christian, H.J., Latham, J.,1995:A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Met. Soc.121, 1525-1548.
    Bao, X., F. Zhang, and J. Sun,2011:Diurnal variations of warmseason precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev.,139,2790-2810.
    Barros, A. P., G. Kim, E. Williams, and S. W. Nesbitt,2004:Probing orographic controls in the Himalayas during the monsoon using satellite imagery.Nat. Hazards Earth Syst. Sci.,4, 29-51.
    Bian, J., L. L. Pan, L. Paulik, H. VOmel, H. Chen, and D. Lu,2012:In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophys. Res. Lett.,39, L19808, doi:10.1029/2012GL052996.
    Blanchard, David O., Assessing the Vertical Distribution of Convective Available Potential Energy. Wea. Forecasting,1998,13,870-877.
    Boccippio, D. J., S. J. Goodman, and S. Heckman,2000:Regional differences in tropical lightning distributions, J. Appl. Meteorol.,39,2231-2248.
    Boccippio, D. J.,Koshak, W. J., Blakeslee, R. J.2002:Performance assessment of the optical transient detector and lightning Imaging sensor. Part Ⅰ:Predicted diurnal variability, J Atmos Ocean Tech,19(9),1318-1332.
    Boccippio, D.J.,2001:Lightning scaling relations revisited. J. Atmos. Sci.59,1086-1104.
    Cecil D. J.,2009:Passive microwave brightness temperatures as proxies for hailstorms. Journal of Applied Meteorology and Climatology,48(6):1281-1286.
    Cecil D. J., D. E., Buechler, R. J., Blakeslee,2014:Gridded lightning climatology from TRMM-LIS and OTD:Dataset description. Atmospheric Research, doi:10.1016/j.atmosres. 2012.06.028.
    Cecil D. J., E. J. Zipser, and S. W. Nesbitt, Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands, part Ⅰ:Quantitative description, Mon. Weather Rev., 2002,130,769-784.
    Cecil, D. J., and C. B. Blankenship,2012:Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers.J. Climate,25,687-703.
    Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt,2005:Three years of TRMM precipitation features. Part Ⅰ:Radar, radiometric, and lightning characteristics. Mon. Wea. Rev,133,543-566.
    Christian H. J, Blakeslee R J, Goodman S J, et al., The Lighting Imaging Sensor. Proc.11th Int. Conf. on Atmospheric Electricity, Guntersville, AL. ICAE,1999,746-749.
    Christian, H. J., R. J., Blakeslee, D. J., Boccippio, et al.,2003:Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res.,108 (D1),4005, doi:10.1029/2002JD002347.
    Christian,2000:Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma, Geophys. Res. Letters,27,1703-1706.
    Cifelli, E., W. A. Peterson, L. D. Carey, S. A. Rutledge, and M. A. F. Silva Dias,2002:Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA.J. Geophys. Res.,107,8077, doi:10.1029/2000JD000264.
    Compagnucci, R. H., and Richman, M. B.2008:Can principal component analysis provide atmospheric circulation or teleconnection patterns?.International Journal of Climatology, 28(6),703-726.
    Compo,G.P., J.S. Whitaker, and P.D. Sardeshmukh.2006:Feasibility of a 100 year reanalysis using only surface pressure data. Bull. Amer. Met. Soc.,87,175-190.
    De, U. S., R. K. Dube, and G. S. P. Rao,2005:Extreme weather events over India in the last 100 years. J. Indian Geophys. Union,9,173-187.637
    DeMott, C. A., and S. A. Rutledge,1998:The vertical structure of TOGA COARE convection. Part Ⅰ:Radar echo distributions.J. Atmos. Sci.,55,2730-2747.
    Dessler A E, Sherwood S C.2004:The effect of convection on the summertime extratropical lower stratosphere. J. Geophys. Res.,109,D23301, doi:10.1029/2004JD005209.
    Dessler, A. E.2002:The effect of deep, tropical convection on the tropical tropopause layer, J. Geophys. Res.,107(D3),4033, doi:10.1029/2001JD000511.
    Duan, A. M., and G. X. Wu,2005:Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn.,24, doi:10.1007/s00382-004-0488-8.
    Erfani, R., Chouinard, L.,2012:Automated synoptic typing of freezing rain events for hazard analysis. Atmos. Res. 111,58-70.
    Feng, S., Y. Fu, and Q. Xiao,2011:Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data, J. Geophys. Res.,116, D21121, doi:10.1029/2011JD016140.
    Forster, P. M. de F., and K. P. Shine,2002:Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett.,29,1086, doi:10.1029/2001GL013909.
    Fu Y F, and Liu G S.2007:Possible misidentification of rain type by TRMM PR over Tibetan plateau, J. Appl. Meteorol. Climatol.,46:667-672,doi:10.1175/JAM2484.1.
    Fu Y, Hu G,2003:Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI, J Meteor Soc Japan,81,1353-1369.
    Fu Y, Hu G,2001:The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data, J Appl Meteor,40,2130-2143.
    Fu, R., Y. Hu, J. S. Wright, J. H. Jiang, R. E. Dickinson, M. Chen, M. Filipiak, W. G. Read, J. W. Waters, and D. L. Wu,2006:Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. U. S. A., 103,5664-5669.
    Garcia-Ortega, E., L6pez, L., Sanchez, J.L.,2011:Atmospheric patterns associated with hailstorm days in the Ebro Valley, Spain. Atmos. Res.100,401-427.
    Gauthier M L, Petersen W A, Carey L D, et al.,2006:Relationship between cloud-to-ground lightning and precipitation ice mass:A radar study over Houston. Geophys. Res. Lett.,33: L20803, doi:10.1029/2006GL027244.
    Gettelman A, Kinnison D E, Dunkerton T J, et al.,2004:Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res.,109:D22101, doi:10.1029/ 2004JD004878
    Gettelman A, Salby M L, Sassi F.2002:Distribution and influence of convection in the tropical tropopause region. J. Geophys.Res.,107:D10,10.1029/2001JD001048.
    Gettelman, A., and P. Forster,2002:A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan,80,911-924.
    Hall, T. J., and T. H. Vonder Haar.1999:The diurnal cycle of west Pacific deep convection and its relation to the special and temporal variations of tropical MCSs, J. Atmos. Sci.,56,3401-3415.
    Hirose, M., and K. Nakamura,2005:Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res.,110,D05106, doi:10.1029/2004JD004815.
    Holton J R, Haynes P H, McIntyre M E, et al.,1995:Stratosphere-troposphere exchange. Rev. Geophys.,33:403-439.
    Hong, G., G. Heygster, J. Miao, and K. Kunzi,2005:Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res.,110, D05205, doi:10.1029/2004 JD004949.
    Houze, R. A.,2004:Mesoscale convective systems.Rev. Geophys.,42, RG4003, doi:10.1029/2004RG000150.
    Houze, R. A., D. C. Wilton, B. F. Smull,2007:Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc.,133,1389-1411.
    Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynova, M., Kysel'y, J., and Tveito, O. E.2008:Classifications of at-'mospheric circulation patterns, Ann. NY Acad. Sci., 1146,105-152.
    Huth, R.1996:An intercomparison of computer-assisted circulation classification methods, Int. J. Climatol.,16,893-922.
    Jackson, D. R., S. J. Driscoll, E. J. Highwood, J. E. Harries, J. M. Russell Ⅲ,1998:Troposphere to stratosphere transport of low latitudes as studied using HALOE observations of water vapor 1992-1997. Q. J. R. Meteorol. Soc.,124,169-192.
    Jensen, E. J., and L. Pfister.2004:Transport and freeze-drying in the tropical tropopause layer, J. Geophys. Res.,109, D02207, doi:10.1029/2003JD004022.
    Jiang, J. H., B. Wang, K. Goya, K. Hocke, S. F. Eckermann, J. Ma, D. L. Wu, and W. G. Read, 2004:Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses.J. Geophys. Res.,109, D03111, doi:10.1029/2003 JD003756.
    Johnson R H, Houze R A Jr.1987:Precipitating cloud systems of the Asian monsoon. InMonsoon Meteorology.Oxford Monographs on Geology and Geophysics No.7. C-P Chang and TN Krishnamurti (eds.) Oxford University Press:New York; 298-353.
    Kalnay E, Kanamitsu M, Kistler R, et al,1996:The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc.,77:437-470.
    Khain, A., D. Rosenfeld, and A.Pokrovsky,2005:Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. R. Meteorol. Soc.,131,2639-2663.
    Kodama, Y.-M., A. Ohta, M. Katsumata, S. Mori, S. Satoh, and H. Ueda,2005:Seasonal transitions of predominant precipitation type and lightning activity over tropical monsoon areas derived from TRMM observations. Geophys. Res. Lett.,32, L14710, doi:10.1029/2005GL022986.
    Krishnamurti T N, Kanamitsu M, Ross W J,et al.,1973:Tropical east-west circulations during the northern winter. J. Atmos. Sci.,30:780-787.
    Krishnamurti TN.1985:Summer Monsoon Experiment-a review. Mon. Weather Rev.113: 1590-1626.
    Kumar, R. P., and A. K. Kamra,2012:The spatiotemporal variability of lightning activity in the Himalayan foothills, J. Geophys. Res.,117, D24201, doi:10.1029/2012JD018246.
    Kummerow C, Simpson J, Thiele O, et al.,2000:The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J.Appl. Meteorol.39:1965-1982.
    Kummerow, C., Barnes, W., T. Kozu, J. Shiue, and J. Simpson,1998:The tropical rainfall measuring mission (TRMM) sensor package, J. Atmos. Oceanic Technol.,15,809-817.
    Kurosaki Y, Kimura F.2002:Relationship between topography and daytime cloud activity around Tibetan Plateau. Journal of the Meteorological Society of Japan.80(6):1339-1355.
    Lang, T. J., S. A. Rutledge, and R. Cifelli,2010:Polarimetric radar observations of convection in northwestern Mexico during the North American Monsoon Experiment.J. Hydrometeor.,11, 1345-1357.
    Lemone, M.A., Zipser, E.J.,1980:Cumulonimbus vertical velocity events in gate:Part I. Diameter, intensity and mass flux. J. Atmos. Sci.37,2444-2457
    Liu C T, and Zipser E J.2005:Global distribution of convection penetrating the tropical tropopause, J. Geophys. Res.,110:D23104, doi:10.1029/2005JD006063.
    Liu C T, Zipser E J, Cecil D J, et al.,2008:A cloud and precipitation feature database from nine years of TRMM observations. J Appl Meteor Climatol,47:2712-2728.
    Liu C, Williams E R, Zipser E J, et al.,2010:Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit. Journal of the atmospheric sciences,67(2).
    Liu G, Fu Y,2001:The characteristics of tropical precipitation profiles as inferred from satellite radar measurements, J Meteor Soc Japan,79,131-143.
    Liu C. T., E. J. Zipser, D. J. Cecil, et al.,2008:A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol.,47,2712-2728.
    Liu C., and E. J. Zipser,2005:Global distribution of convection penetrating the tropical tropopause, J. Geophys. Res.,110, D23104, doi:10.1029/2005JD006063.
    Liu C., cited 2007:University of Utah TRMM precipitation and cloud feature database description, v1.0. [Available online at http://www.met.utah.edu/trmm/TRMM_database_description_v1.0.pdf.].
    Liu C., D. J. Cecil, E. J. Zipser, K. Kronfeld, and R. Robertson,2012:Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics, J. Geophys. Res.,117, D06212, doi:10.1029/2011JD017123.
    Liu C., E. J. Zipser, S. W. Nesbitt,2007:Global Distribution of Tropical Deep Convection: Different Perspectives from TRMM Infrared and Radar Data. J. Climate,20,489-503.doi: http://dx.doi.org/10.1175/JCLI4023.1.
    Lucas C., E. Zipser, M. LeMone,1994:Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci.51,3183-3193.
    Luo Y. L., R. Zhang, W. Qian, et al.,2011:Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Clim.,24,2164-2177.
    Manohar, G. K., S. S. Kandalgaonkar, and M. I. R. Tinmaker,1999:Thunderstorm activity over India and the Indian southwest monsoon. J. Geophys. Res.,104,4169-4188.
    Mapes, B. E., and R. A. Houze,1993:Cloud clusters and superclusters over the oceanic warm pool.Mon.Wea.Rev.,121,1398-1416.
    Medina S, Houze RA, Kumar A, Niyogi D.2010. Summer monsoon convection in the Himalayan region:Terrain and land cover effects.Q. J. R. Meteorol. Soc.136:593-616. DOI:10.1002/qj.601
    Merino, A., Garcia-Ortega, E., Lopez, L., Sanchez, J.L., Guerrero-Higueras, A.M.,2013:Synoptic environment, mesoscale configurations and forecast parameters for hailstorms in Southwestern Europe. Atmos. Res.122,183-198.
    Merino, A., Wu, X., Gascon, E., Berthet, C., Garcia-Ortega, E., & Dessens, J.2014:Hailstorms in southwestern France:Incidence and atmospheric characterization. Atmos. Res.61-75.
    Michaud, L.1996:Comments on "Convective available potential energy in the environment of oceanic and continental clouds". J Atmos Sci,53:1209-1211.
    Molteni, F., Tibaldi, S., Palmer, T.N.,1990:Regimes in the Wintertime Circulation Over Northern Extratropics. I:Observational Evidence. Q. J. R. Meteorol. Soc.116 (491),31-67.
    Negri, A. J., T. L. Bell, and L. Xu,2002:Sampling of the diurnal cycle of precipitation using TRMM.J. Atmos. Oceanic Technol.,19,1333-1344.
    Nesbitt, S. W., E. J. Zipser, and D. J. Cecil,2000:A census of precipitation features in the Tropics using TRMM:Radar, ice scattering, and lightning observations. J. Climate,13,4087-4106.
    Nesbitt, S. W., R. Cifelli, and S. A. Rutledge,2006:Storm morphology and rainfall characteristics of TRMM precipitation features.Mon. Wea. Rev.,134,2702-2721.
    Nesbitt, S.W., and E.J.Zipser,2003:The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate,16 (10),1456-1475.
    Nesbitt, S.W., E. J. Zipser, and D.J. Cecil,2000:A census of precipitation features in the tropics using TRMM:Radar, ice scattering, and lightning observations. J. Climate,13 (23), 4087-4106.
    Nesbitt, S.W., E.J. Zipser, and C.D. Kummerow,2004:An examination of Version-5 rainfall estimates from the TRMM Microwave Imager, Precipitation Radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor.,43,1016-1036.
    Oltmans, S. J., and D. J. Hofmann,2002:Increase in lower stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994.Nature,374,146-149, doi:10.1038/374146a0.
    Pant GB, Kumar KR.1997:Climates of South Asia. John Wiley and Sons:Chichester, UK.
    Park, M., Randel, W. J., Emmons, L. K., Bernath, P. F., Walker, K. A., and Boone, C. D.,2008: Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data, Atmos. Chem. Phys.,8,757-764, doi:10.5194/acp-8-757-2008
    Park, M., W. J. Randel, A. Gettelman, S. T. Massie, and J. H. Jiang,2007:Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res.,112, D16309, doi:10.1029/2006JD008294.
    Park, M., W. J. Randel, L. K. Emmons, and N. J. Livesey.2009:Transport pathways of carbon monoxide in the Asiansummer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART),J. Geophys. Res.,114,D08303, doi:10.1029/2008JD010621.
    Petersen, W. A., and S. A. Rutledge,2001:Regional variability in tropical convection: Observations from TRMM.J. Climate,14,3566-3586.
    Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge,2002: TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate,15,1278-1294.
    Qie, X. S., R. Toumi, Y. J. Zhou,2003a:Lightning activity on the central Tibetan Plateau and its response to convective available potential energy. Chin. Sci. Bull.,48,296-299.
    Qie, X., R. Toumi, and T. Yuan,2003b:Lightning activities on the Tibetan Plateau as observed by the Lightning Imaging Sensor. J. Geophys. Res.,108,4551, doi:10.1029/2002JD003304.
    Qie, X., T. Zhang, C. Chen, G. Zhang, T. Zhang, and W. Wei,2005:The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett.,32, L05814,doi:10.1029/2004GL022162.
    Randel, W.J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. Walker, C. Boone and H. Pumphrey,2010:Asian monsoon transport of pollution to the stratosphere. Science,328, 611-613, doi:10.1126/science.1182274.
    Rao YP.1976:Southwest Monsoon. Meteorological Monograph No.1/1976. India Meteorological Department:Delhi.
    Rasmussen, K. L., and R. A. Houze Jr.,2011:Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev.,139,2399-2420.
    Richman MB.1986:Rotation of principal components.International Journal of Climatology6: 293-335.
    Riehl, H., and J. S. Malkus.1958:On the heat balance in the equatorial trough zone, Geophysica, 6,503-538.
    Riemann-Campe, K., Fraedrich, K., & Lunkeit, F.,2009:Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis. Atmospheric Research,93(1),534-545.
    Romatschke, U., S. Medina, R. A. Houze,2010:Regional, seasonal, and diumal variations of extreme convection in the South Asian region. J. Climate,23,419-439.
    Rosenfeld, D., and I. M. Lensky,1998:Satellite-based insights into precipitation formation processes in continental and maritime convective clouds.Bull. Amer. Meteor. Soc.,79,2457-2476.
    Rosenlof, K. H.1995:The seasonal cycle of the residual mean meridional circulation in the stratosphere, J. Geophys. Res.,100,5173-5191.
    Rotunno, R., J. B. Klemp, and M. L. Weisman,1988:A theory for strong, long-lived squall lines.J. Atmos. Sci.,45,463-485.
    Saha, S., and Coauthors,2010:The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc.,91,1015-1057. doi:10.1175/2010BAMS3001.1.
    Saha, S., and Coauthors,2013:The NCEP Climate Forecast System Version 2. J. Climate (early online release.) doi:abs/10.1175/JCLI-D-12-00823.1.
    Salby, M.,F.Sassi,P.Callaghan,W.Read,andH.Pumphrey.2003:Fluctuations of cloud, humidity, and thermal structure near the tropical tropopause, J. Clim.,16,3428-3446.
    Satori, G, E. Williams, and I. Lemperger,2009:Variability of global lightning activity on the ENSO time scale. Atmos. Res.,91,500-507.729
    Sherwood, S. C., A. E. Dessler,2000:On the control of stratospheric humidity. Geophys Res Lett, 27,2513-2516.
    Smith, C. A., R. Toumi, and J. D. Haigh,2000:Seasonal trends in stratospheric water vapour.Geophys. Res. Lett.,27,1687-1690.
    Spencer R. W., H. M. Goodman, and R. E. Hood.1989:Precipitation retrieval over land and ocean with the SSM/I:Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol.,6,254-273.
    Toracinta E. R., and E. J. Zipser,2001:Lightning and SSM/I-ice scattering mesoscale convective systems in the global tropics, J. Appl. Meteorol.,40,983-1002.
    Ushio Tomoo, Stan Heckman, kevin Driscoll et al.,2002:Cross-sensor comparison of the Lightning Imaging Sensor(LIS), Int J Remote Sensing,23(13),
    Uyeda, H., and Coauthors,2001:Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP.J. Meteor. Soc. Japan,79,463-474.
    Wang P K.2003:Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res.,108,D6,4194, doi:10.1029/2002JD002581,2003.
    Wang, C.-C., G. T.-J. Chen, and R. E. Carbone,2004:A climatology of warm-season cloud patterns over East Asia on GMS infrared brightness temperatures observations. Mon. Wea. Rev.,132,1606-1629.
    Wang, C.-C., G. T.-J. Chen, H.-L. Huang, R. E. Carbone, and S.-W. Chang,2012:Synoptic conditions associated with propagating and nonpropagating cloud/rainfall episodes during the warm season over the East Asian continent. Mon. Wea. Rev.,140,721-747.
    Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998:Monsoons:Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103(C7),14451-14510.
    Weisman, M. L., and J. B. Klemp,1984:The structure and classification of numerically simulated convective storms in directionally varying wind shears.Mon. Wea. Rev.,112,2479-2498.
    Weston K J,1972:The dry-line of northern India and its role in cumulonimbus convection. Quart. J. Roy.Meteor. Soc.,98:519-531
    Williams E R.2005:Lightning and climate:A review. Atmospheric research,76(1):272-287.
    Williams, E., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio,2005:Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res.,76,288-306.
    Williams, E. R., and Coauthors,2002:Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res.,107,8082.
    Williams, E. R., and S. Stanfill,2002:The physical origin of the land-ocean contrast in lightning activity.C. R. Phys.,3,1277-1292.
    Williams, E.R., Satori, G.,2004:Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Sol.-Terr. Phys.66,1213-1231.
    Wu, G. X., and Y. S. Zhang,1998:Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev.,126,913-927.
    Wu, X. K., X. S. Qie, T. Yuan,2013:Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Science China:Earth Sciences,56, 843-854.
    Xie, B., Q. Zhang, and Y. Wang,2010:Observed characteristics of hail size in four regions in China during 1980-2005 J. Climate,23,4973-4982.
    Xu W and E. J. Zipser,2012:Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys. Res. Lett.,39,L07802, doi:10.1029/2012GL051242.
    Xu W and E. J. Zipser, and C. Liu,2009:Rainfall characteristics and convective properties of mei-yu precipitating systems over South China, Taiwan, and the South China Sea. Part Ⅰ: TRMM observations. Mon. Wea. Rev.,137,4261-4275.
    Xu W, Zipser E J.2012:Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophysical Research Letters,39(7).
    Xu, W.,2011:East Asian summer monsoon precipitating systems:Rainfall characteristics, storm morphologies and convective properties. Ph.D. dissertation, University of Utah,293 pp.
    Xu, W., and E. J. Zipser,2011:Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate,24,448-465.
    Xu, Weixin,2013:Precipitation and Convective Characteristics of Summer Deep Convection over East Asia Observed by TRMM. Mon. Wea. Rev.,141,1577-1592.
    Xu, X. D., M. X. Zhou, J. Y.Chen, et al.,2002:A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Sci. China Ser. D-Earth Sci., 45,577-594.
    Yamane, Y, and T. Hayashi,2006:Evaluation of environmental conditions for the formation of severe local storms across the Indian subcontinent.Geophys. Res. Lett.,33,L17806, doi:10.1029/2006GL026823.
    Yarnal B.1993:Synoptic Climatology in Environmental Analysis. Belhaven Press:London; 195.
    Yulaeva, E., J. R. Holton, and J. M. Wallace.1994:On the cause of the annual cycle in the tropical lower stratospheric temperature, J. Atmos. Sci.,51,169-174.
    Zhang, C., Q. Zhang, and Y. Wang,2008:Climatology of hail in China:1961-2005.J. Appl. Meteor. Climatol.,47,795-804.
    Zhou, S., and R. Zhang,2005:Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion. Geophys. Res. Lett.,32, L18705, doi:10.1029/2005GL023496.
    Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan,2008:Summer precipitation frequency, intensity, and diurnal cycle over China:A comparison of satellite data with rain gauge observations. J. Climate,21,3997-4010.
    Zipser, E.J.,1994:Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Weather Rev.122,1837-1851.
    Zipser, E.J., D.J.Cecil, C.Liu, S.W.Nesbitt. and D.P.Yorty,2006:Where are the most intense thunderstorms on earth? Bull, Amer. Meteor. Soc.,87,1057-1071.
    陈斌,徐祥德,卞建春,等.2010:夏季亚洲季风区对流层向平流层输送的源区、 路径及其时间尺度的模拟研究.大气科学,34:495-505.
    陈斌,徐祥德,卞建春,等.2010:夏季亚洲季风区对流层-平流层不可逆质量交换特征分析.地球物理学报,53(5):1050-1059.
    陈洪滨,卞建春,吕达仁.2006:上对流层-下平流层交换过程研究的进展与展望.大气科学.30:813-820.
    傅云飞,宇如聪,徐幼平,等.2003TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究.气象学报,61:421-431.
    傅云飞,张爱民,刘勇,等.2008:基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析.气象学报.66:730-746.
    吕达仁,卞建春,陈洪滨,等.2009:平流层大气过程研究的前沿与重要性[J].地球科学进展,24(3):221-228.
    马明,陶善昌,祝宝友等.2004:1997/1998El Nino期间中国南部闪电活动的异常特征.中国科学D辑,34(9),873-881.
    祁秀香,郑永光.2009:2007年夏季我国深对流活动时空分布特征.应用气象学报,20:286-294.
    郄秀书,周筠君,袁铁,2003a:卫星观测到的全球雷电活动及其地域差异.地球物理学报,46(6):743-750.
    郄秀书,周筠瑶,Ralf Toumi.2003b:青藏高原中部的闪电活动特征及其对对流最大不稳定能量的响应.科学通报,48:87-90.
    郄秀书,Ralf Toumi,2003:卫星观测到的青藏高原雷电活动特征.高原气象,22(3):288-294.
    郄秀书,袁铁,谢毅然,马耀明,2004:青藏高原闪电活动的时空分布特征.地球物理学报,47(6):997-1002.
    苏东玉,李跃清,蒋兴文.2006:南亚高压的研究进展及展望.干旱气象,24(3):68-74.
    吴国雄,毛江玉,段安民,等.2004:青藏高原影响亚洲夏季气候研究的最新进展.气象学报. 62:528-540.
    徐祥德,周明煜,陈家宜,等.2001:青藏高原地气过程动力、热力结构综合物理图像.中国科学(D辑),31:428-440.
    杨健,吕达仁.2004:2000年北半球平流层、对流层质量交换的季节变化.大气科学,28(2):294-300.
    叶笃正,高由禧.1979:青藏高原气象学.北京:科学出版社.
    袁铁,郄秀书.2004:卫星观测到的我国闪电活动的时空分布特征.高原气象,23(4):488-494.
    袁铁,郄秀书.2005:青藏高原中部闪电活动与相关气象要素季节变化的相关分析.气象学报,63(1),123-127.
    袁铁,郄秀书.2010:基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究.大气科学,34:58-70.
    张鸿发,郭三刚,张义军等.2003:青藏高原强对流雷暴云分布特征.高原气象,22(6):558-564.
    张庆云,金祖辉,彭京备.2006:青藏高原对流时空变化与东亚环流的关系.大气科学,30(5):802-812
    张廷龙,郄秀书,袁铁,张彤,2004:青藏铁路沿线闪电活动的时空分布特征.高原气象,23(5):488.-494.
    郑永光,王颖,寿绍文.2010:我国副热带地区夏季深对流活动气候分布特征.北京大学学报(自然科学版),46:793-804.
    周晓霞,丁一汇,王盘兴.2008:夏季亚洲季风区的水汽输送及其对中国降水的影响.气象学报.66:59-70.
    周秀骥,罗超,李维亮,等.1995:中国地区臭氧总量变化与青藏高原低值中心.科学通报,4,1396-1398.
    朱润鹏,袁铁,李万莉.2013:基于卫星观测资料的全球闪电活动特征研究.气候与环境研究.18(5):639-650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700