聚合物基纳米复合材料制备及微结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子纳米复合材料是由分散相的大小为纳米级的微粒分散体系与聚合物复合所得的材料,它能明显提高体系的物性,所以聚合物基纳米复合材料迅速发展为最先进的复合材料之一。在聚合物基纳米复合材料中,其中聚合物/层状硅酸盐纳米复合材料在制备方法、结构、性能及应用方面优点突出,已成为当前基础研究和应用开发的热点。
     本文成功制备了一系列环氧树脂/累托土、环氧树脂/蒙脱土纳米复合材料,测量了复合材料的力学、热学性能,并用X射线衍射仪、红外分光光度计和正电子谱学技术研究了复合材料的微观结构,并对环氧树脂/累托土复合材料与环氧树脂/蒙脱土复合材料的微结构和宏观性能进行了比较。主要内容如下:
     1.制备了累托土重量百分比含量分别为0.2%、0.5%、0.8%、1.0%、1.2%、2.0%的环氧树脂/累托土纳米复合材料。XRD研究表明,累托土在环氧基体中较易被剥离成纳米片状。利用冲击、拉伸实验仪及DSC分析仪研究了复合材料的宏观性能,结果表明,只需添加0.5%的有机累托土,纳米复合材料的冲击性能、断裂伸长率、耐热性能就得到很大提高。利用正电子寿命谱技术研究了材料的自由体积及界面特性,结果表明,发现累托土的加入没有改变环氧树脂中的平均自由体积孔洞的大小,但减少了树脂的自由体积浓度。且累托土片层与环氧基体之间形成了界面层。
     2.制备了环氧当量分别为188、222、263、550、1110g/mol的环氧树脂/累托土纳米复合材料以研究环氧当量对复合材料微结构与宏观性能的影响。XRD研究表明,环氧当量越高,越易生成剥离型纳米复合材料。环氧当量较低时,生成以插层型为主的复合材料。利用冲击、拉伸实验仪及DSC分析仪研究了复合材料的宏观性能,结果表明,随着环氧当量的提高,无论是纯环氧树脂或纳米复合材料的冲击强度和玻璃化转变温度都下降,但纳米复合材料的力学和热学性能都优于纯环氧树脂,并且在环氧当量较大时,材料的力学性能得到更多的提高。利用正电子寿命谱研究材料微结构表明,随着环氧当量的增加,材料的自由体积浓度降低。但其平均自由体积孔洞大小基本不变。当复合材料从插层型过渡到剥离型时,复合材料的自由体积浓度急剧变化。符合多普勒展宽谱研究结果表明,S参数对累托土的加入很敏感。S参数的变化说明在复合材料中的累托土已经发生了结构变化。在多普勒展宽商
In this dissertation, the epoxy/rectorite and epoxy/montmorillonite nanocomposites were prepared successfully. The effects of clay content, epoxide equivalent and curing temperature on microstructure of the nanocomposites were studied by X-ray diffraction (XRD), infrared spectrometry and positron annihilation lifetime spectroscope (PALS), and the properties of the nanocomposite also were investigated. The main results are as follows.1. Nanocomposites with different rectorite content were prepared. At low contents, mechanical and thermal properties of the nanocomposites have significant improvements in terms of the impact strength, the breaking elongation and the glass transition temperature compared to the neat epoxy, and it is found that the rectorite with low content is easier to form exfoliation structure compared to that with high contents. FT-IR spectra showed that the reaction between the rectorite and epoxy matrix occurred, and at the same time, the PALS measurements indicate that the free-volume concentration in nanocomposites is decreased with the increase of the clay content and the size of free volume holes isn't affected by the clay content.2. The epoxy/rectorite nanocomposites with different epoxide equivalent ranged from 188g/mol to 1110g/mol were prepared. In nanocomposites, the formation of exfoliated structure was observed from XRD pattern at epoxide equivalent > 263. The PALS measurements indicate that the fraction of free volume holes in nanocomposites was strongly affected by epoxide equivalent, in paticular, the free-volume concentration was dramatically decreased with the increasing epoxide equivalent from 188 to 263. And the interface layer between epoxy and rectorite layers was formed and rapidly increased also from epoxide equivalent 188 to 263. The increased percentage of impact strength in nanocomposite compared with neat epoxy is bigger with the increase of epoxide equivalent , and this result can be explained as the proportion of exfoliated structure in epoxy matrix become higher with the increase of epoxide equivalent, and because exfoliated nanocomposites have higher phase homogeneity than the intercalated counterpart, the exfoliated structure is more desirable in enhancing the properties of the nanocomposites. The S parameter indicates the rectorite structure change and the high sensitivity of positron annihilation to the entry of rectorite into epoxy. The low momentum part of CDB ratios of the nanocomposite of epoxy 1110 can be ascribed to the contribution of the momentum of electrons in polymer, and the high momentum part can be ascribed to the contribution of the momentum of electrons in rectorite.
    3. The epoxy/rectorite nanocomposites at different curing tempeature ranged from 70°C to 200°C were prepared. We find that the formation of exfoliated structure is difficult when the curing temperature is low(<90°C). At the range from 90°C to 200°C, the clay in matrix can all be exfoliated . The nanocomposite cured at medium temperature possess highest storage modulus and high glass transition temperature . The PALS measurements show that the size of free volume holes isn't affected by curing temperature and the free-volume concentration was decreased with the increasing cure temperature. The positron lifetime distribution in nanocomposite has been obtained by the new computer program-MELT, and the results suggest that the distribution of free-volume-hole size is narrower when the composite is cured with medium temperature.4. The epoxy/rectorite nanocomposites and epoxy/ montmorillonite with different clay content were prepared. The rectorite is more easily exfoliated compared with montmorillonite. Only small amount of rectorite(<0.8%) can improve the mechanical and thermal properties of the nanocomposites, but in order to improve the properties of composite , higher montmorillonite content is needed(>2%). The size of free volume hole isn't affected by the two kinds of clay. Rectorite with higher surface area has more chances to interact with epoxy matrix, so it has stronger restriction on the motion of the molecule chain, which lead to smaller free volume concentration. Only small amount of rectorite(3.0%) can prevent the phase seperation.
引文
1. R Kubo, A Kawabata, S Kobayashi, Annu Rev Mater Sci., 1984, 14, 49
    2. Gleiter H,[J]. Acta Metalurgica Sinica, 1997, 33(2), 30
    3.许并社,《纳米材料及应用技术》,化学工业出版社,2004,p16
    4.苏品书,《超微粒子材料技术》,复汉出版社,1989
    5. Yeh T S, Sacks M D, J. Am. Ceram. Soc., 1988, 71(10), 841
    6. Birringer R, Gleiter H, Klein H P, et al., phys. Lett., 1984, 102, 365
    7. Zhang L D, Mo C M, Wang T, et al., phys. Stat. Sol., 1993, 136, 291
    8. Hahn H, Logas J, Averbaek R S, J. Mater. Res., 1990, 5(3), 609
    9. Du Y W, J. Appl. Phys., 1988, 63, 4100
    10.都有为、徐明详、吴坚等,物理学报,1992,41(10),1620
    11. Jawb I S, Bean C P, Phys. Rev., 1955, 100, 1060
    12. Ohshiner K Z, IEEE Trans., 1987, MAG-23, 2826
    13. Apai G, Hamilton J F, Stohr J, et al., Phys. Rev. Lett., 1979, 43, 165
    14. Staduik Z M, Griesbaoh P, Debe G, et al., Phys. Rew. B, 1987, 35, 6588
    15. Mo C M, Yuan Z, Zhang L D, et al., Nanostruetured Mater., 1993, 2, 113
    16. Ball P, Garwin L, Nature, 1992, 355, 761
    17.蔡树芝、牟季美、张立德等,物理学报,1992,41(10),1620
    18. Tabagi H, Ogawa H, Appl. Phys. Lett., 1990, 56(24), 2379
    19. Brus L, Nature, 1991, 351, 301
    20.日本科学与技术编辑部编,《日本的科学与技术》,长春日报社第二印刷厂(1985)
    21. Yoneyama H, Cryt. Rev. Solid State Mater. Sci., 1993, 18, 69
    22. Rothenberger G, Moser J, Gratzel M, J. Am. Chem. Soc., 1985, 107, 8054
    23. Fox M A, Nouv. J. Chem., 1987, 11, 129
    24. Wu W, Herrman J M, Piehat P, Catal., 1989, 3, 73
    25. Frank S N, Bard A J., J. Phys. Chem., 1977, 81, 1484
    26. Leland J K, Bard A J, J. Phys. Chem., 1987, 91, 5076
    27. Li Q S, Chem, Lett., 1983, 135, 321
    28. Albery W J, Bartlett P N, J. Electrochem. Soc., 1984, 131, 315
    29. Ross H, Bending J, Hecht S, Solar Energy Mater. Solar Cells, 1994, 33, 475
    30. Bahneman D W, J. Phys. Chem., 1994, 98, 1025
    31. Choi W Y, Angew. Chem., 1994, 33, 1091
    32.胡春、王怡中、汤鸿宵,《环境科学进展》,1995,3(1),55
    33.符小荣、张枝刚、宋世庚等,《应用化学》,1997,4(14),77
    34. Sukharev V, Wold A, Cao Y M, et al., J. Solid State Chem., 1995, 119, 339
    35. Kraeutler K B, Bard A J, J. Am. Chem. Soc., 1978, 100, 5985
    36. Bard A J, J. Electroehem. Soc., 1979, 10, 59
    37. Cui H, Dwight K, Soled S, et al., Solis State Chem., 1995, 115, 187
    38. Papp J, Soled S, Dwight M, et al., Chem. Matter., 1994, 6, 496
    39. Gleiter H, Progress in Mater. Sci., 1989, 33, 223
    40.王广厚、韩民,物理学进展,1989,10(3),248
    41. Hahn H, Averback R S, J, Appl. Phys., 1990, 87(2), 1113
    42.加藤昭夫、森满由纪子,日化,1984,60,221
    43.月馆隆明,津久间孝次,陶瓷(日文),1982,17,816
    44. Vollater D, Aerosol Methods and Advanced Techiques for Nanoparticle Science and Nanopowder Technology. in: Fijian H, Karow H V, Kauffeldt Th. Proc. of the ESF Exploratory Workshop. Duisburg, Germany, 1993, 15
    45. Johnson D W, Am. Ceram. Soc. Bull., 1981, 60, 221
    46. Mazadiyaski K S, Dolloff R T, Smith J S, J. Am. Ceram. Soc., 1969, 52, 52
    47. Haberko K, Ceramic Intl., 1979, 5, 148
    48. Blendell J E, Bowen H K, Coble R L, Am. Ceram. Soc. Bull., 1984, 63(6), 797
    49. Shi J L, Gao J H, Lin Z X, Solid State Ionics, 1989, 32/33, 537
    50. Van de Graaf M A C G, Keizer K, Burggraaf A J, Science of Ceramics, 1980, 10, 83
    51. Roosen A, Hausner H, Ceramic Powders. Amsterdam: Elservier, 1983, 773
    52. Lackey W J. Nucl. Tech., 1980, 49, 321
    53. Woodhead J L, Science of Ceramics, 1968, 4, 105; 1983, 12, 179
    54. Chatterjee A, Chakravorty D, J. of Mater. Sci., 1992, 27, 4115
    55.钱逸泰、朱英杰、张曼维等,微米纳米科学与技术,1995,1(1),27
    56.徐国财、张立德,《纳米复合材料》,化学工业出版社,2001,P4
    57.张留成、瞿雄伟、丁会利,《高分子材料基础》,化学工业出版社,2002,P4
    58.柯杨船、皮特·斯壮(美国),《聚合物-无机纳米复合材料》,化学工业出版社,2002,P13
    59. Okada A, Kawasumi M, Kurauchi T. et al, Polymer Prepfint, 1987, 28, 447
    60. Giannelis E P. Adv Mater. 1996, 8, 29
    61. Wang M S, Pirmavaia T J. Chem Mater. 1994, 6, 468
    62. Vaia R A, Giannelis E P, et al. J Am Chen Soc. 1995, 117
    63.漆宗能,李强,赵竹第等,中国发明专利 ZL 96105362.3,1996
    64.漆宗能,王胜杰,李强等,中国发明专利 CN 1163288A,1997
    65.漆宗能,柯扬船,李强等,中国发明专利 申请号:97104055.9,1997
    66.漆宗能,刘立敏,朱晓光等,中国发明专利 申请号:97112237.7,1997
    67.漆宗能,柯扬船,丁幼康等,中国发明专利 CN1187506A,1998
    68.漆宗能,王佛松,马永梅,陈光明,中国发明专利 申请号:98103038.6
    69.漆宗能,王佛松,马永梅,陈光明,张树范 中国发明专利:申请号:98103041.6
    70.梁宏斌等,聚合物/纳米复合材料研究进展,化学工程师,2001,V84(13),p26
    71. Gilman Jeffrey W, Applied Clay Science, 1999, V15(1-2), p31
    72. Shang S. W., et al., Journal of Materials Science, 1992, vo127, no. 18, p4949
    73. M. Zhang, S. J. Wang et al., Radiation Physics and Chemistry, 2003, V68, 565
    74.洪新华,李保国.溶胶凝胶(Sol-gel)方法的原理与应用.天津师范大学学报,2001(1),5
    75. Mark J E, Pan S J.: A New Method for Preparation of Filled Elastomers[J]. Maknomol Chem, Rapid Commune, 1982, 3, 681
    76. Guillermo Jimenez, Noboo Cyata. J. AppI. Poly. Sci, 1997, 64(11), 2211
    77.谢择民,王金亭,漆宗能.硅橡胶/蒙脱土复合材料的制备、结构与性能【J】.高分子学报 1998,2,149
    78.王胜杰,李强等,聚苯乙烯/蒙脱土熔融插层复合的研究【J】,高分子学报,1998,2.129
    79. Yoshida M, Lal M N, DEEpak Kumar N, J Mater Sci, 1997, 32(15), 4047
    80. Ole Becker, Yi-Bing Cheng, Russell J. Varley, et al., Macromolecules 2003, 36, 1616
    81. Carsten Zilg, Rolf Mülhaupt, Jürgen Finter, Maeromol. Chem. Phys,1999, 200, 661
    82. Mendelson M I, J Am Ceram Soc, 1969, 52(8), 443
    83.牟季美,张立德,赵铁男,物理快报,1994,43(6),1000
    84.张青岭,杜滨阳,何天白,高分子学报,2000,5,654
    85. Ole Becker, Russell Varleyb, George Simona, Polymer 2002, 43, 4365
    86. Debasis Majumdara, Thomas N. Blantona, Dwight W. Sehwark, Applied Clay Science 2003, 23, 265
    87. Stribeck, N., Ruland, W, Journal of Applied Crystallography, 1978, vol. 11, 535
    88. Hiura H., et al., Chemical Physics Letters, 1993, V202(6), 509
    89. Y. C. Lean, Microchem J., 1990, 42, 72
    90. S. J. Wang, Z. L. Peng, et al., Phys. Stat. Sol(a). 1996, 155, 299
    91. Wang Shaojie, Zhang Ming, Liu Liming, Fang Penfei, Wang Bo. The Microstructure of EPOXY-Layered Silicate Nanocomposite Studied by Positron Annihilation. In: P. G. Coleman. 13thlnternational Conference on Positron Annihilation, Terrsa Hall, Kyoto, Japan, 2003. 101
    92. Usuki A, Kawasumi M, Kojima Y, et al. Mater. Res. 1993, 8, 1174
    93. Moet A, Akelah A. Mater Lett. 1993, 18, 97
    94.陈光明,漆宗能,高等学校化学学报,1999,20,1987
    95. Vaia R A, Jandt K D, Kramer E J, et al. Macromolecules, 1995, 28, 8080
    96. Vaia R A, Giannelis E P, Macromolecules, 1997, 30, 8000
    97. Vaia R A, Ishii H, Giannelis E P, Chem Mater., 1993, 5, 1694
    98.马继盛,张树范,漆宗能,高分子学报,2001,3,325
    99.马继盛,插层聚合制备聚丙烯/蒙脱土、聚氨酯/蒙脱土纳米复合材料的结构与性能,中国科学院化学研究所博士学位论文,2001
    100. Kawasumi M, Hasegawa N, Usuld A, Okada A, Mater. Sci. Eng., 1998, 6, 135
    101.吴秋菊,薛志坚,漆宗能,王佛松,高分子学报,1999,5,551
    102. Fang Peng-fei, Liu Li-ming, Wang Shao-jie, et al., Wtthan University Journal of Natural Sciences, 2003, VS, No. 3A, 817
    103.刘黎明,张明,王少阶等,高分子学报,2005,1,128
    104. Balazs A C. Singh C, Zhulina E, Lyatskaya Y, Ace. Chem. Res, 1999, 32, 651
    105. Lyatsksya Y, Balazs A C, Macromolecules, 1998, 31, 6676
    106. Balazs A C, Singh C, Zhulina E, Macromolecules, 1998, 31, 8370
    107. C. D. Anderson, Energies of Cosmic-Ray Particles, Phys. Rev. 1932, V41, 405
    108. M. Deutsch, Three-Quantum Decay of Positronium, Phys. Rev. 1951, V83, 866
    109. P. J. Schulz, K. G. Lynn, Rev. Mod. Phys. 1988, 60, 701
    110. W. Brandt, R. Paulin, Phys. Rev. 1977, B15, 2511
    111. P. J. Schultz and K. G. Lynn, Rev. Mod. Phys. 1988, V60, 701
    112.E.塞格雷,《核与粒子》,(沈子威等译),科学出版社,1984,p90
    113. P. A. M. Dirac, Proc. Camb. Phil. Soc., Math. Phys. Sci., 1930, V26, 361
    114. W. Brandt and A. Dupasquier, Eds., Positron Solid-State Physics, 1983, North-Holland, Amsterdam
    115. L. I. Schiff, Quantum Mechanics, 1961, 3rd. ed, egraw-Hill, Newyork
    116. A. Ore, J. L. Powell, Phys. Rev., 1949, 75, 1969
    117. O. E. Mogenson, J. Chem. Phys., 1974, 64, 998
    118. W. Brandt, S. Berko, W. Walker, Phys. Rev., 1960, 120, 1289
    119. P. Hautojarvi(Ed.) Positron in Solids,(Springer-Verlag, Berlin, 1979)
    120. Shukla A, Hoffmann L, Manuel A A, et al., Materials Science Forum, 1995, 175-178, 939
    121. Harndy F. M. Mohamed, Polymer Degradation and Stability, 2001, Vol. 71, 93
    122. J. Hirschfelder, D. Stevenson and H. Eyring, J. Chem. Phys. 1937, V5, 896
    123. F. Beuche, J. Chem. Phys., 1953, V21, 1850
    124. F. Beuche, J. Chem. Phys., 1956, V24, 418
    125. F. Beuche, J. Chem. Phys., 1959, V30, 748
    126. A. Bondi, J. Phys. Chem. 1954, V58, 929
    127. M. H. Cohen and D. Turnbull, J. Chem. Phys. 1959, V31, 1164
    128. D. Turnbull and M. H. Cohen, J. Chem. Phys., 1961, V34, 120
    129. Grabchev Ivo, Bojinov Vladimir, A: Chemistry, 2001, V139(2-3), pp. 157
    130. R. J. Samuels, J. Polym. Sci. A, 1968, V6, 1101
    131. W. Wiegand and R. Ruland, Prog. Colloid Polym. Sci. 1978, V64, 147
    132. Y. Tanabe, N. Miller and E. Wisher, Polym. J. 1984, V16, 445
    133. Kluver. W, Ruland. W, Prog. Colloid Polym. Sci. 1978, V64, 255
    134. Y. C. Jean, Microchem. J. 1990, V42, 72
    135. S. J. Wang, B. Wang, S. Q. Li, Z. L. Peng, Journal of Radioanalytical and Nuclear Chemistry, 1996, 211, 127
    136. M. Debowska, A. Jezierski, A. Pasternak, et al, Radio. Phy. Chem, 2000, 58, 575
    137. T. C. Merkel, B. D. Freeman et al, Chem. Mater., 2003, 15. 109
    138. M. Eldrup, D. Lightbody and J. N. Sherwood, Chem. Phys. 1981, V63, 51
    139. W. Brandt, in: Positron Annihilation, 1967, ed. A. T. Stewart, Academic, New York,
    140. D. C. Connors and R. N. West, Phys. Lett. A, 1969, V30, 24
    141. A. V. Goldanskii, V. A. Onishuk, V. P. Shantarovich, Phys. Stat. Sol.(a), 1987, V102, 559
    142. B. Wang, C. L.Wang, S. J. Wang, Phys. Stat. Sol.(a), 1994, V144, 263
    143. B. Wang, C. Q. He, J. M. Zhang, S. Q. Li, S. J. Wang et al., Phys. Lett. A, 1997, V235, 557
    144.林东,王少阶,物理学报,1992,41,380
    145. C. L. Wang, S. J. Wang, Z. N. Qi, J Polym. Sci. B, 1996, V34, 193
    146. Z. L. Peng, B. G. Olson, et al., J Polym. Sci. B, 1998, V36, 861
    147. K. Suvegh, A. Domjan et al., Macromolecules, 1999, V32(4), 1147
    148. G. Dlubek, T. Lupke, J. Stejny et al., Macromolecules, 2000, V33, 990
    149. S. J. Wang, C. L. Wang, X. G. Zhu and Z. N. Qi, Phys. Stat. Sol.(a), 1994, V141, 253
    150. B. Wang, M. Zhang, S. J. Wang, et al., Physics Letter A, 1999, 262, 347
    151. H. Nakanishi, Y. C. Jean, E. G. Smith, T. C. Sandreczki, J. Polym. Sci. B, 1989, V27, 1419
    152. H. L. Li, Y. Ujihira, T. Yoshino, K. Yoshi, T. Yamashita and K. Horie, Polymer, 1998, V39(17), 4075
    153. Z. Yu, U. Yahsi, J. M. MeGerrey, A. M. Jamieson, et al., Polym. Sci. B, 1994, V32, 2637
    154. Y. C. Jean, T. C. SANDRECZKI, D. P. AMES, Journal of Polymer Science: Part B: Polymer Physics, Vol. 24, 1247
    155. T. Suzuki, Y. Oki, M. Numajiri, et al., Polymer, 1996, V37(14), 3025
    156. B. Haldar, R. M. Singru, et al., Phys. Rev. B ,1996, V54(10), 7143
    157. Y. Kobayashi, C. L. Wang, et al., Phys. Rev. B 1998, V58(9), 5384,
    158. Hyla M, et al., Journal of Non-Crystalline Solids, 1998, V232-234, pp. 446
    159. T. Hirade, F. H. J. Maurer and M. Eldrup, Radia. Phys. Chem. 2000, V58, 465
    160. T. Suzuki, et al., Radia. Phys. Chem. 2000, V58, 485
    161. O. Sausa, J. Zrubcovca, et al., Radia. Phys. Chem. 2000, V58, 479
    162. Y. C. Jean, R. Zhang, et al., Phys. Rev. B. 1997, V56(14), 8459
    163.吴波,王采林,王少阶等,武汉大学学报,1995,41,329
    164. A. Vértes, K. Süvegh, M. Bokor, et al., Radiation Physics and Chemistry, 1999, 55, 541
    165. Kenji Ito, Yoshinori Kobayashi, Appl. Phys. Lett, 2003, 82, 654
    166. G. B. DeMaggio, W. E. Frieze, et al., Phys. Rev. Lett. 1997, V78(8), 1524
    167. T. C. Merkel, B. D. Freeman, et al., membranes, Science, 2002, V296, 519
    168. Ch. He, E. Hamada, T. Suzuki, et al., Journal of Radioanalytical and nuclear Chemistry, 2003, 255, 431
    169. T. C. Merkel, Z. J. He, et al., Macromoleeules, 2003, V36(18), 6844
    170. T. C. Merkel, Z. J. He, et al., Macromolecules, 2003, V36(22), 8406
    171. Z. F. Wang, B. Wang, N. Qi, et al., Polymer, 2005, 46, 719
    172. P. M. G. Nambissan, P. Sen, Physics Letters A, 2000, 272, 412
    173. M. Mukherjee, D. Chakravory and P. M. G. Nambissan, Phys. Rev. B. 1998, V57, 848
    174. M. Forsyth, D. R. MacFarlane, A. Best. et al., Solid State Ionics, 2002, 147, 203
    175. Ying Gev Hsu, I Lin Chang, Jung Fung Lo, et al., J. Appl. Poly. Sci., 2000, 78, 1179
    176.王立新,袁金凤等,合成树脂塑料,2000,17(2),19
    177. Dong C L, Lee W J, J. Appl. Polym. Sci, 1998, Vol. 68. 1997
    178.吕建坤,柯毓才,漆宗能,苏小益,高分子通报,2000.Vol6.18
    179. C. oriakhi, Chem. Eng. J, 2000, 34(6), 59
    180. Wang Z, Pinnavaia T, J. Chem. Mater., 1998, 10, 1820
    181.曾戎,宇航材料工艺,1999,1,1
    182.吕建坤,复合材料学报,2002,19(1),117
    183. Pinnavaia T J, Lan T, Wang Z. ACS Symp. Ser, 1996, 622, 250
    184. Lan T, Pinnavaia T J, Chem. Mater, 1994, 6, 2216
    185. Lee D C, Jang LW, J. Appl. Polym. Sci 1997, 68, 1997
    186.杨学稳,田中华,郑俊萍等,材料工程,2002,4,3
    187. Lan Tie, KaviratanP. D, Pinnavia T. J, Chem. Mater, 1999, 2(7), 2144
    188. C. Zilg, R. Muchaupt, J. Finter, Macromel.[J]. Chem Phys, 1999, 19(200), 661
    189. Shi Hengzhen, Lan T., PinnavaiaT. J. Chem. Mater, 2000, 2(7), 84
    190. PinnaviaT. J., LanTie.[P]. US5, 760, 106
    191. Ke Yucai, Lu Jiankun, Yi Xiaosue al., J. Appli. Polym. Sci, 2000, 18(17), 808
    192.徐卫兵,高分子材料科学与工程,2002,18(2),183
    193. Wang Zhen, Pirmavia T. J. Polymer Material Science Engineering, 2000, 8(12), 274
    194. Gamldtak, SueHungJue, TexasA. Polym. Mater. Sci. Eng., 2000,(82), 288
    195.张楷亮,塑料工业,2001,29(3),27
    196.张楷亮,中国塑料,2001,15(3),37
    197. Bown J. M. Polym. Mater. Sci. Eng, 2000, 8(12), 278
    198. Jong Hyun Park and Sadhan C. Jana. Macromolecules, PAGE EST: 10.2 Published on Web 00/00/0000
    199. Carsten Zilg, Ralf Thomann, Maeromol. mater. eng., 2000, 280/281, 41
    200.宋焕成,赵时熙编著,《聚合物基复合材料》,国防工业出版社(1986)
    201. Phillip B. Messersmith and Emmanuel P. Giannelis., Chem. Mater., 1994(6), 1719
    202. Brown, J. M.; Curliss, D.; Vaia, R. A. Chem. Mater. 2000(12), 3376
    203. Messersmith PD, Giannelis EP. Chem Mater 1994, 6(10), 1719
    204. Kelly P, Akelah A, Qutubuddin S, Moet A. J Mater Sci 1994, 29, 2274
    205. A. Kanapitsas, P. Pissis, R. Kotsilkova., Journal of Non-Crystalline Solids 2002(35), 204
    206. Zax D, Yang D, Santos R, Hegemann H, Giannelis H, Manias E. J Chem Phys 2000, 112(6), 1951
    207. AWDRE LEE, JOSEPH D. LICHTENHAN,. J. Appli. Polym. Sci, 1999(73), 1993
    208. CostasS. Tdantafillidis, PeterC. LeBaron, et al., Chem. Mater, 2002(14), 4088
    209.王立新,蹇锡高,袁金凤,任丽,张楷亮,大连理工大学学报,2000,40,681
    210. X. Kornmann, H. Lindberg, L. A. Berglund., Polymer, 2001(42), 4493
    211. Jinhwan Kim, Kyongho Lee, Kunwoo Lee, Jinyoung Bae, Jaeho Yang, Sanghyun Hong., Polymer Degration and Stability, 2003(79), 201
    212. Doil Kong and Chan Eon Park., Chem. Mater, 2003(15), 419
    213.湖北省地质矿产局编著,《累托土》,湖北科学技术出版社(1989)
    214. Peng ZL, et al., Polymer, 1999, V40(11), 3033
    215. Liu Yang, et al., Polymer, 1995, V36(21), 3997
    216. K. Doil, E. P. Chan, Chem. Mater. 2003, 15, 419
    217. Jong Hyun Park and Sadhan C. Jana. Macromolecules, PAGE EST: 10.2 Published on Web 00/00/0000
    218.张明,武汉大学博士学位论文《高分子纳米复合材料微结构的正电子研究》 2004.5,49
    219. Y. C. Jean, J. Polym. Sci: B: Polym. Phys., 1986, 24, 1247
    220. Z. Q. Chen, S. J. Wang, Nucl. Instr. & Meth. B, 1999, Vol. 149, 343
    221. He Chunqing, et al., Chemical Physics, 2003, Vo1: 286(2-3), pp. 249
    222. C. L. Wang, et al., Journal of Chemical Physics, 1998, V108(11), pp. 4654
    223. Dlubek. G, Eichler. Phys. Status. Solidi. A, 1998, V168(2), pp. 333
    224. G. Dlubek, et al., Journal of Polymer Science: Part B: Polymer Physics, 2003, V41, 3077
    225. Lvnn K G, Macdonald J R, Boie R A, Feldman L C, et al. Phys. Rev. Lett. 1997, 38, 41
    226. Kruseman A C, Schut H, Van Veen A and Mijnarends P E, et al. Applied Surface Science 1997, 116, 192
    227. Saarinen K, Kauppinen H, Laine T, Hautojaervi. Applied Surface Science. 1997, 116, 273
    228. Rempel A A, Sprengel W, Blaurock K, Reichle K J, et al.. Phys. Rev. Lett. 2002, 89(18)1
    229. K. Ito, Y. Kobayashi, Appl. Phys. Lett., 2003, 82, 654
    230. Asoka-Kummar P, Alatalo M, Ghosh V J, Kruseman A C, et al. Phys. Rev. Lett. 1996, 77(10), 2097
    231.吕建坤,柯毓才,漆宗能,苏小益,高分子学报,2000,2,85
    232.过梅丽,《高聚物与复合材料的动态力学热分析》,化学工业出版社,2002,42
    233.王德中,《环氧树脂生产与应用》,化学工业出版社,2001,474
    234.王凝秀,雅箐,绝缘材料,1994,2,26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700