铝合金表面化学镀Ni-Mo-P镀层制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用酸性化学镀液在铝合金表面获得Ni-Mo-P合金镀层。利用X荧光光谱分析(XRF)、场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线衍射分析(XRD)、能谱仪(EDS)和激光共聚焦显微镜(LSCM)、差示热扫描仪(DSC)等现代分析手段,探讨了Na_2MoO_4浓度和施镀温度对镀层中Mo含量、镀层形貌、沉积速度、显微硬度、结合力等性能的影响。研究了不同热处理温度对镀层的结构、结合力以及硬度的影响。
     结果表明:以柠檬酸钠为络合剂的酸性化学镀镀液可很好的实现Ni、Mo、P的共沉积。XRF分析表明:在试验范围内,随着Na_2MoO_4浓度的增加,镀层中Mo含量增加,P含量降低,还原剂的消耗增加,镀层形成能力下降。最佳Na_2MoO_4浓度范围为0.5 g/L~0.6 g/L,温度为90℃。TEM分析证明:镀态镀层主要为非晶结构,随Na_2MoO_4浓度变化镀层中出现混晶态和纳米晶态两种微观结构。
     此外研究表明:温度为90℃,Na_2MoO_4浓度为0.5 g/L左右时,镀层的沉积速率最大为9.5μm/h;镀层表面HV硬度最大为458.70;镀层结合力最高达30 N;表面粗糙度最小,Rz<3040。
     化学镀机理研究表明:随着热处理温度的提高,Ni-Mo-P合金镀层大体上经历结构驰豫+晶态Ni的析出→Ni_3P相的析出→晶态Ni、Ni_3P的聚集长大等过程。热处理可使镀层的结合力有所增加。300℃保温1 h镀层的结合力达到最大,达到40 N以上;退火温度超过300℃后,镀层的结合力迅速下降;硬度随热处理温度升高而增加。400℃热处理后,Ni-Mo-P镀层横截面硬度为15.12 GPa,表面HV硬度为774.23。热处理温度超过400℃,Ni-Mo-P镀层镀层硬度开始下降。
In this thesis, Ni-Mo-P alloy coating was deposited by electreless plating using acidic plating solution on the substrate of aluminum alloy. The effects of bath temperature and concentration of Na_2MoO_4 on the composition, structure, properties, such as microhardness, deposition rate and adhesion of the Ni-Mo-P alloy deposits were studied by Thermal Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectrometer (EDS), X-Ray Fluorescence (XRF), Transmission Electron Microscope (TEM), X-ray Diffractometer (XRD), Differential Scanning Calorimetry (DSC) and Laser Confocal Scanning Microscope (LCSM). The influence of heat treatment temperature on the structure, microhardness and adhesion of the Ni-Mo-P alloy deposits were also discussed.
     The experimental results show that the Ni-Mo-P alloy coating could be obtained using the acidic plating solution in which the C6H5Na3O7·2H2O was used as the complex agent.XRF results indicate that the Mo contents and the deposition rate would be increased with the increase of MoO42- concentration, corresponding with the decrease of P contents in the bath solution. The key plating factors, bath temperature and the concentration of Na_2MoO_4 were around 90℃and in the range from 0.5 g/L to 0.6 g/L, respectively. It was found that the maximum deposition rate was 9.5μm/h, the maximum microhardness was 458.70 HV, the maximum adhesion was 30 N, the minimum surface roughness (Rz) was less than 3040 ? obtained at the bath temperature of 90℃, the Na_2MoO_4 concentration of 0.5 g/L.
     TEM results demonstrate that amorphous structure was the main structure of Ni-Mo-P alloy coating. The microstructure of as plated coatings would be changed from amorphous to nanocrystalline and mix-crystalline structure with the change of the Na_2MoO_4 concentration.
     After heat-treatment at differernt conditions, the structure of Ni-Mo-P alloy coating experience a series of transformations, such as structural relaxation, formation of Ni nanocrystal, bulk formation of Ni_3P nanoerystal, especially, the grain aggregation and growth of Ni and Ni_3P may be increased with the increase of heat treatment temperature. The adhesion strength of as-plated coating reaches its maximum value (40 N) after heat treatment at 300℃, 1 h. The microhardness determined at the conditions of 400℃and 1 h on the cross section and surface were about 15.12 GPa and 774.23 HV, respectively.
引文
1 G. O. Mallory, J. B. Hajdu, Electroless Plating Fundamentals & Applications, New York, Noyes Publications/William Andrew Publishing, LLC. 2000
    2 A.Wurtz, C. R. Seances. Acad. Sci. 1989, 12, 44(2): 702-705
    3 H. Wang, S. Yao and S. Matsumura. Electrochemical pre-paration and characterization of Ni/SiC gradient deposit. Mater. Process. Technol. 2004, 9, 25(8): 299-311
    4 B. A. Riddell, GE. Proc. Amer. Electropl, Soc. J. Res. NBS. 1947, (39): 385
    5张敬尧. Ni-P基多元化学沉积及其镀层组织结构转变的研究.洛阳工学院. 2001: 50-60
    6熊宽.铝合金表面Ni-Cu-P镀层的制备及其性能研究.西安电子科技大学. 2008: 3-9
    7 G. Gutzeit, An outling of the chemistry involved in the process of catalytic nickel deposition from aqueous solution, plating. 1959(10): 1158-1164
    8许姣姣,胡信国,余强.电化学沉积技术的新发展.南方金属. 2007, 02, 39(4): 33-38
    9 M. Pavnovic, Electrochemical aspects of electroless deposition of metals, plating. 1968(12): 1161-1167
    10 N. Feldstein. A new technique for investigating the electrochemical behavior of electroless plating bath and the mechanism of electroless nickel plating, J. Electrochem. Soc. 1971(118): 869-874
    11白栓堂.化学镀镍合金及电子工业中的应用.电镀与环保. 1999, 19(5): 7-9
    12郭慧林,司云森.低磷化学镀镍层性能的研究.电化学. 1996, 01, 35(4): 45-50
    13赵文轸.材料表面工程导论.西安交通大学出版社. 1998: 2l-211
    14 N. V. Mandich, G. A. Krulik. A novel biogenic nickel source for electroless nickel plating. Metal Finishing. 1992, 09, 12(3): 9-10
    15贾韦,宣天鹏.化学镀镍在微电子领域的应用及发展前景.稀有金属快报. 2007, 03, 12(5): 11-14
    16梅建庭,刘华. Ni-P-Sic化学复合镀层耐磨性与显微硬度的研究.电镀与涂饰.2004, 01, 33(5): 27-32
    17高进.化学镀Ni-P合金在金属材料表面处理上的特殊应用.机械制造. 2000, 09, 24(1): 49-54
    18夏传义.化学镀在电子工业中的应用.电镀与涂饰. 1999, 04, 31(4): 32-37
    19黎永钧.化学镀镍合金在电子工业中的应用.电子工艺技术. 1998, 05, 14(2): 19-25
    20贺英,桑文斌,王均安.化学镀工艺在微电子材料中的研究和应用.微纳电子技术. 2003, 05, 22(3): 49-54
    21崔国峰,李宁,黎德育.化学镀镍和镍合金在微电子领域中的应用及展望.电镀与环保. 2003, 04, 21(6): 31-35
    22俞世俊.化学镀镍磷及镍磷-碳化硅复合涂层的研究. 2003, 06: 26-31
    23李青.化学镀镍合金的特性及在石化工业中的应用.石油化工腐蚀与防护. 1999, 02, 33(7): 32-38
    24张放,段英贤.化学镀在模具上的应用及修复.表面技术. 2003, 04, 22(9): 59-63
    25于同敏,刘贵昌,路全胜.化学镀Ni-P合金镀层在模具上的应用.机械工程材料. 1998, 05, 12(8): 54-59
    26王永红,何焕杰,詹适新.化学镀技术在油田井下工具上的应用.材料保护. 1997, 09, 32(4): 8-14
    27梁平. PVC塑料低温碱性化学镀Ni-P合金工艺.电镀与环保. 2005, 03, 16(9): 73-77
    28张刚,陆柱.热处理对化学镀Ni-Mo-P合金耐蚀性能的影响及其机理.华东理工大学学报. 1994, 20(3): 373-377
    29闫洪.化学沉积Ni-Mo-P合金结构和耐蚀性的关系.化工机械. 1994, 21(2): 98-100
    30 Y. Gao, Z. J. Zheng, M. Zhu, C. P. Luo. Corrosion Resistance of E1ectrolessly Deposited Ni-P and Ni-W-P A1loys with Various Structures.MaterialS Science and Engineering A. 2004: 98-103
    31 A. Grosjean, M. Rezrazi, P. Bercot. Hardness, friction and wear characteristics of nickel-SiC electroless composite deposits, Surface & Coatings Technology. 2001(137): 92-96
    32 I. Apachitei, F. D. Tchelear, J. Duszczyk. Solid-state reactions in low-phosphorus autocatalytic NiP-SiC coatings Technology. 2001(148): 284-295
    33 Y. J. Li. Investigation of electroless Ni-P-SiC composite coatings, Plating and Surface Finishing. 1997, 84(11): 77-81
    34李义和,傅圣利. Ni-P-SiC化学复合镀,国防科技大学学报. 2000, 22(5): 33-36
    35罗驰,叶冬,刘建华,刘欣.圆片级封装的无铅焊料凸点制作技术研究.微电子学. 2005, 05, 1l(1): 22-25
    36谢华,陈文哲,钱匡武. Ni-P-金刚石化学复合镀层的组织结构及性能.表面技术. 2003, 04, 21(6): 15-19
    37周广宏,丁红燕,章跃. Ni-P-Nano-Al2O3化学复合镀层的磨损机理.金属热处理. 2004, 07, 29(1): 21-25
    38陈增辉,谢华. Ni-P-PTFE化学复合镀的工艺研究.表面技术. 2007, 03, (3): 34-38
    39 S. L. Lee, H. H. Ling. The structure and hardness of electroless Ni-Mo-P alloy deposits. Plating&Surface Finishin. 1992, 09(2): 56-59
    40张立德,牟季美.纳米材料和纳米结构.科学出版社. 2002: 260-263
    41 S. M. Mooni R-Vaghefi, A. Saatchi and J. Hejazi. Deposition and properties of electroless nickel-phosphorus-molybdenum disulfide composites. Metal Finishing. 1997, 11, 21(5): 46-51
    42 P. Gyftou, E. A. Pavlato, N. Spyellis, et a1. Hardening modification of nickel matrix composite electrocoating scontaining SiC nanoparticles.Electroplating & Surface Treatment. 2001, 09, 11(9): 23-28
    43郭忠诚,刘鸿康,王志英.电沉积Ni-W-SiC复合镀层工艺.电镀与环保. 1996, 06, 18(1): 14-18
    44 S. L. Wang, H. H. Wu. The electroless plating Ni-Fe-P alloy and its Voltammetric behavior. Electro-chemistry. 2003, 03, 44(5): 327-335
    45 Z. A. Hamid, R. A. El-Adly, Mechanism of nickel-phosphorus-aluminum oxide composite coatings by electroless process, Plating & Surface Finishing. 1999(5): 136-139
    46谭风玲,姜秉元.化学沉积Ni-Mo-P台金工艺参数对性能的影响.材料开发与应用. 2001, 16(6): 26-28
    47张翼,林玉娟,方永奎.化学镀非晶Ni-Mo-P与Ni-P镀层性能的对比.东北林业大学学报. 2002, 30(4): 103-105
    48张翼,刘长海,王娅莉.化学镀非晶Ni-P/Ni-Mo-P合金形成机理.表面技术. 2003, 32(2): 50-52
    49姚允斌.物理化学手册.上海科学技术出版社. 1985: 42-44
    50 N. V. Mandich, G. A. Krulik. A novel biogenic nickel source for electroless nickel plating. Metal Finishing. 1992, 09, 12(3): 9-10
    51贾韦,宣天鹏.化学镀镍在微电子领域的应用及发展前景.稀有金属快报. 2007, 03, 12(5): 11-14
    52吴玉程.电镀与涂饰.表面技术. 1996, 25(3): 12-13
    53翟金坤,黄子勋等.化学镀镍.北京航空学院出版社. 1987: 5-37
    54刘晋春,赵家齐.特种加工.第二版.机械工业出版社. 1993: 51-52
    55沃尔夫冈·里德尔.化学镀镍.上海交通大学出版社. 1996: 175-195
    56李宁,袁国伟,黎德育.化学镀镍基合金理论与技术.哈尔滨工业大学出版社. 2000: 26-31
    57卢忠铭.化学镀Ni-Mo-P合金工艺及镀层组织结构与性能的研究,华南理工大学硕士学位论文. 2005, 06: 4-7
    58 Y. M. Liu, Y. H. Sung, N. W. Pu, et al. Electroless deposition of nickel-phosphorous nano-dots for low-temperature crystallization of amorphous silicon.Thin Solid Films. 2008, 5, 17: 727-730
    59姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社. 2000:12-17
    60 K. G. Keong, W. Sha. Crystallisation and phase transformation behaviour of electroless nickel-phosphorus deposits and their engineering properties. Surface Engineering. 2002, 18(5): 329-343
    61 B. Father, E. Cadel, A. Menand. et a1. Phosphorus Segregation in Nanocrystalline Ni-3.6 at.% P Alloy InveStigated with the Tomographic Atom Probe. Acta Mater. 2000, 48: 789-796
    62 Y. Gao, Z. J. Zheng, M. Zhu. et a1. Corrsion resistance of electroless deposited Ni-P and Ni-W-P alloy with Various stractures. Mater. Sci. Eng. 2004, A38l: 98-103
    63卑多慧,宣天鹏,黄新民.化学镀Ni-Co-P薄膜的组织结构和生长机理研究.材料保护. 1999, 32(3): 1-3
    64吴自勤,王兵.薄膜生长.北京:科学出版社. 2001
    65渡边辙[日]著,于维平,李荻译.非晶态电镀方法及应用.北京,北京航空航天大学出版社. 1992: 116-149
    66张允诚,胡如南,向荣.电镀手册.国防工业出版社,第三版. 2007: 517-549
    67 L. Vargas Mendoza, A. Barba. Age hardening of Ni-P-Mo electroless deposit,Surface Engineering, 2006, 1(22): 57-62
    68 F. C. Walsh, C. Ponce de León. Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings, Surface & Coatings Technology. 2008: 5092-5102
    69于会生,罗守福,王永瑞.化学沉积Ni-P及Ni-Cu-P合金镀层晶化行为的比较.材料工程. 2002, (4): 19-23
    70 T. H. Hentschel, D. Isheim, R. Kirchheim. et a1. NanocrYStalline N-3.6 at.% P and ItS Transformation Sequence Studied by Atom-Probe Field-Ion Microscopy.Acta Mater. 2000, 48: 933-941
    71 B. P. Daly, F. J. Barry. Electrochemical Nicke-Phosphorus Alloy Formation. International MaterialS Reviews. 2003: 736-740
    72隋曼龄,卢柯.纳米晶体Ni-P合金晶粒微观结构的研究.金属学报. 1994, 30(9): 413-419
    73 Y. J. Hu, T. X. Wang, Structure and phase transformation behaviour of electroless Ni-W-P on aluminium alloy, Science Direct. 2006: 988-992
    74 L. Burzyńska, E. Rudnik. Electrodeposition and heat treatment of nickel/silicon carbide composites, Science Direct. 2008: 2545-2556
    75贾淑果.电沉积Ni-W-P多元合金材料性能的研究.洛阳工学院. 1999: 29-37
    76谭凤玲. Ni基/高分子材料复合涂镀的工艺与性能研究.洛阳工学院. 2002: 23-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700