船舶板架结构动力优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
‘结构动力优化设计是当前工程结构设计研究领域中的前沿性课题之一,是诸多学科相互交叉、有机结合的产物,开展对它的研究具有着重要的理论意义与实用价值。对船舶板架结构进行动力优化设计,可以改善结构和相关设备在外载荷作用下的动态特性,减小结构振动,降低结构上的动位移与动应力,避免结构产生失效破坏,确保它们能够安全可靠地工作。
     本文以船舶板架结构为研究对象,考虑多种优化约束条件和实际工程需要,对其进行了动力特性优化与动力响应优化。另外,针对在船舶结构上应用越来越广泛的金属夹层结构,提出了一种新的强度分析理论研究方法,在此基础上,对波纹夹层板架结构进行了有效的动力优化设计。主要研究工作包括:
     (1)在船舶板架结构动力特性优化中,提出了将板架结构布局参数转化成子结构的长度参数的结构布局转化新方法,该方法具有较好的通用性,可以有效地计算结构固有频率对相关结构布局参数的灵敏度,并在优化迭代过程中引入了结构重分析算法以降低灵敏度分析的计算量。通过应用改进的共轭梯度优化算法,在板架结构动力优化中直接求出了满足相应约束条件的离散最优解。
     (2)提出了一种基于板架动力刚度法与离散方案库的船舶板架结构减振优化设计方法。通过将板架动力刚度法与等效静力算法相融合,能够快速计算出带有机械隔振装置的板架结构在动载荷作用下的动应力分布。建立了满足构件剖面尺寸搭配关系要求的构件尺寸离散方案库,可以在优化中直接得到满足实际工程需要的结构参数离散值。
     (3)针对金属夹层结构,提出了一种基于整体位移场与局部位移场叠加的夹层板结构理论分析新方法,可以在考虑结构几何特征的前提下以较高的精度和计算效率对夹层板结构的强度、总体稳定性与自由振动特性进行计算分析。计算实例表明:本文方法能够对结构的应力分布作出有效预测,避免了繁琐的有限元建模与分析,大大提高了运算效率,为对结构进行动力优化设计打下了良好基础。
     (4)对波纹夹层板架结构的强度、总体稳定性与自由振动特性进行了分析研究,另外,使用序列二次规划算法对波纹夹层板架结构进行了动力特性优化设计。在对波纹夹层板架结构的力学特性分析中,通过对比验证了夹层板架结构形式相对于传统板架结构的优势,还讨论了相关参数对波纹夹层板架结构力学特性的影响。
     本文在提出新的灵敏度分析方法的基础上,对船舶板架结构进行了快速有效的动力优化设计。针对金属波纹夹层结构,本文也对其进行了相应理论分析与动力优化设计。本文的工作为结构动力优化设计提供了新的研究思路和途径,对今后的理论研究和工程设计具有一定的参考价值。
Structural dynamic optimization is an advanced subject in the field of engineering structure design at present, concerned with many different subjects. The dynamic optimization researches have important theoretical significance and practical value. The vibration of marine structures could be reduced by optimizing the dynamic characteristics of these structures. And the dynamic displacement and stress can also be decreased. Dynamic optimum design of structures is an effective method to improve the dynamic capability and ensure it working safety and reliably.
     This study investigates the dynamic characteristics and response optimization of ship grillage under several constraints considering practical engineering requirements. Besides, according to the metal sandwich structures which have been widely used in marine engineering, a new theoretical method has been proposed in the thesis. Based on this method, an effective dynamic optimum design of corrugated-core grillages has been carried out. The main works presented in the thesis are as follows:
     (1) In the dynamic characteristics optimization of ship grillage, a novel method is proposed to ingeniously transform the structural layout parameters into substructure length parameters, while the sensitivity of natural frequency to structural layout parameters can be obtained through the sensitivity of element stiffness matrix and mass matrix with respect to length parameters. Besides, the structural reanalysis algorithm is introduced into the process of optimization iteration to reduce the calculation burden. By using this new frequency analysis method and the improved conjugate gradient method, the discrete optimal solutions which satisfy the constraint conditions could be obtained easily.
     (2) A structural dynamic optimization method which based on the grillage dynamic stiffness (GDS) algorithm and discrete scheme database has been presented. And the equivalent static load method together with the GDS algorithm is further used to obtain dynamic displacement and stress distributions of the grillage system with isolators. With the help of which, good calculation accuracy and higher calculation efficiency are reached compared with the traditional FEM method. A scheme database which consists of all possible T-shape girder design schemes satisfying section design requirements is built and further used to get an optimal grillage design scheme meeting the practical engineering requirements.
     (3) Aiming at the metal sandwich structures, this thesis presents a novel semi-analytical method based on the superposition of the global displacement field and local displacement field. The discrete geometric nature of the sandwich structures has been taken into account and the bending, global buckling, and free vibration characteristics have been calculated quickly and efficiently. Results from the proposed method agree well with those from detailed finite element analysis and the structural stress fluctuation can be captured with sufficient accuracy. This method lays a good foundation for the dynamic optimization of metal sandwich structures and can be extended to sandwich structures with other kind of cores.
     (4) The bending, global buckling, and free vibration properties of corrugated-core grillage are analyzed and the structural dynamic characteristics have been optimized using the sequential quadratic programming algorithm. The advantage of the sandwich structures contrasted with the solid plates has been validated by the comparison of the mechanical characteristics of these structures. The effects of some geometrical parameters of the corrugated-core grillage on the mechanical properties are also discussed in the analysis.
     In this thesis, some novel theoretical methods are proposed and the dynamic optimization of ship grillage structures is carried out efficiently by utilizing these methods. These methods and research findings can be employed to supply new ideas and approaches for improvement of structural dynamic optimization and have reference value for the further research and engineering design.
引文
[1]Niordson F I. The optimum design of a vibrating beams. Quarterly of Applied Mathematics,1965,23(1):47-53
    [2]Grandhi R. Structural optimization with frequency constraints—a review. Journal AIAA,1993,31(12):2296-2303
    [3]陈建军,车建文,崔明涛,等.结构动力优化设计述评与展望.力学进展,2001,31(2):181-192
    [4]Karihaloo B L, Niordson F I. Optimum design of vibrating cantilevers beam. Journal of Optimization Theory and Applications,1973,6:705-712
    [5]Zarghamee M S. Optimum frequency of structures. Journal AIAA,1968,6(6): 749-750
    [6]Kiusalaas J, Shaw R C J. An algorithm for optimal structural design with frequency constraints. International Journal for Numerical Methods in Engineering,1978, 13(2):283-295
    [7]林家浩.有频率禁区的结构优化设计.大连工学院学报,1981,20(1):27-36
    [8]钱令希.工程结构优化设计.北京:水利水电出版社,1983
    [9]柴山.频率约束下离散变量的结构优化设计.计算结构力学及其应用,1989,6(4):55-60
    [10]王健.结构优化设计中关切频率对优化结果的影响.工程力学,1990,7(3):106-111
    [11]彭细荣,隋允康.有频率禁区的连续体结构拓扑优化.固体力学学报,2007,28(2):145-150
    [12]夏人伟,汪丽平,含静.动力约束的复合材料结构的优化设计.复合材料学报,1989,6(2):78-83
    [13]Takewaki I. Optimal frequency design of tower structures via an approximation concept. Computers & structures,1996,58(3):445-452
    [14]Zhao C B, Steven G P, Xie Y M. Simultaneously evolutionary optimization of several natural frequencies of a two dimensional structure. Structural Engineering and Mechanics,1999,7(5):447-456
    [15]Azid I A, Kwan A S K, Seetharamu K N. An evolutionary approach for layout optimization of a three-dimensional truss. Structural and Multidisciplinary Optimization,2002,24(4):333-337
    [16]谭林森,曾广武,张小铭.船舶甲板板架稳定性分析与结构优化设计.华中工学院学报,1984,14(1):53-58
    [17]黄文波,张圣坤,蔡荫林.工字型截面构件的船体板架结构可靠性优化.上海交通大学学报,2000,34(1):67-71
    [18]郝清,赵德有.一种海洋平台甲板结构有频率约束的动力拓扑优化方法.中国海洋平台,2007,22(6):11-15
    [19]Pritchard J I, Adelman H M, Haftka R T. Sensitivity analysis and optimization of nodal point placement for vibration reduction. Journal of sound and vibration,1987, 119(2):277-289
    [20]向锦武,张呈林,周传荣,等.有频率、振型节线位置要求的结构动力学优化设计.计算结构力学及其应用,1995,12(4):401-407
    [21]陈怀海,周传荣.一种满足多阶固有频率和节线位置要求的结构动力学设计方法.应用力学学报,1996,13(1):59-63
    [22]陈建军,车建文,陈勇.具有频率和振型概率约束的工程结构动力优化设计.计算力学学报,2001,18(1):74-80
    [23]Czyz J A, Lukasiewicz S A. Multimodal optimization of structures with frequency constraints. AIAA journal,1995,33(8):1496-1502
    [24]Tenk L H, Hagiwara I. Static and vibration shapes & topology optimization using homogenization and mathematical programming. Computer Methods in Applied Mechanics and Engineering,1993,109(1-2):143-154
    [25]Dutla A, Ranakriahnan C V. A curate computation of design sensitivities for structures under transient dynamic loads with constraints on stresses. Computers & Structures,1998,66(4):463-472
    [26]邹时智,宋天霞.非线性结构动力响应中的灵敏度分析.华中理工大学学报,1996,24(9):71-74
    [27]张德文.减少特征向量导数计算空间与时间的探索.强度与环境,1997,(1):35-44
    [28]张美艳,韩平畴,唐国安.子结构灵敏度综合在结构动力重分析中的应用.振动与冲击,2008,27(4):27-29
    [29]Fonseca I M, Bainum P M. Integrated Structural and Control Optimization. Journal of Vibration and Control,2004,10:1377-1391
    [30]宋洁,国凤林,谷涛.利用二次灵敏度的渐进结构频率优化算法.上海交通大学学报,2008,42(11):1935-1938
    [31]Du J, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization,2007,34(2):91-110
    [32]Kirsch U, Bogomolni M, Sheinman I. Efficient structural optimization using reanalysis and sensitivity reanalysis. Engineering with Computers,2007,23(3): 229-239
    [33]Cassis J H, Schmit L A. Optimum structural design with dynamic constraints. Journal of the Structural Division,1976,102(10):2053-2071
    [34]Lin J H, Che W Y, Yu Y S. Structural optimization on geometrical configuration and element sizing with statical and dynamical constraints. Computers & Structures, 1982,15(5):507-515
    [35]Pantelides C P, Tzan S R. Optimal design of dynamically constrained structures. Computers & Structures,1997,62(1):141-150
    [36]孙焕纯,石连栓,柴山.考虑动应力、动位移约束的离散变量结构优化设计.计 算力学学报,1997,14(增刊):723-726
    [37]石连拴,孙焕纯,冯恩民.具有动应力和动位移约束的离散变量结构形状优化设计方法.计算力学学报,2001,18(4):419-423
    [38]李福松,陈建军.射流发电机机械振动系统的动力优化设计.兵工学报,2000,21(1):46-49
    [39]Min S, Kikuchi N, Park Y C, et al. Optimal topology design of structures under dynamic loads. Structural Optimization,1999,17(2):208-218
    [40]Du J, Olhoff N. Minimization of sound radiation from vibrating bi-material structures using topology optimization. Structural and Multidisciplinary Optimization,2007,33(4):305-321
    [41]Kang B S, Park G J, Arora J S. A review of optimization of structures subjected to transient loads. Structural and Multidisciplinary Optimization,2006,31(2):81-95
    [42]Cheng G Z, Kang M, Wang G Dynamic optimization of a turbine foundation. Structural and Multidisciplinary Optimization,1997,13(4):244-249
    [43]Xu B, Jiang J S. Integrated optimization of structure and control for piezoelectric intelligent trusses with uncertain placement of actuators and sensors. Computational Mechanics,2004,33(5):406-412
    [44]张军,兆文忠,张维英.振动板速度最小化减振优化设计研究.振动与冲击,2007,26(3):111-114
    [45]任文敏,汪正兴.结构振动控制参数多目标满意优化方法.清华大学学报(自然科学版),2007,47(5):714-717
    [46]王伟,赵庆海,张海燕.动力减振器参数优化分析.振动与冲击,2006,25(5):180-182
    [47]Craig K J, Stander N, Balasubramanyam S. Worst-case design in head impact crashworthiness optimization. International Journal for Numerical Methods in Engineering,2003,57(6):795-817
    [48]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件耐撞性优化设计.应用 力学学报,2003,20(3):61-65
    [49]隋允康,白海波.基于中心点精确响应面法的板壳结构优化.机械设计,2005,22(11):10-12
    [50]隋允康,张轩,宇慧平.结构形状优化响应面方法的改进与应用.北京工业大学学报,2008,34(1):31-36
    [51]Choi W S, Park G J. Structural optimization using equivalent static loads at all time intervals. Computer Methods in Applied Mechanics and Engineering,2002, 191(19-20):2077-2094
    [52]Park G J, Kang B S. Validation of a structural optimization algorithm transforming dynamic loads into equivalent static loads. Journal of Optimization Theory and Applications,2003,118(1):191-200
    [53]Hong E P, You B J, Kim C H, et al. Optimization of flexible components of multibody systems via equivalent static loads. Structural and Multidisciplinary Optimization,2010,40(1):549-562
    [54]张升明,潘旭初.板架结构的振动噪声研究.噪声与振动控制,1995(5):9-13
    [55]邹春平,陈端石,华宏星.船舶结构振动特性研究.船舶力学,2003,7(2):102-115
    [56]林哲,赵德有.船体板架动力优化设计.船舶工程,1998(6):9-11
    [57]Sakata S, Ashida F, Zako M. Eigenfrequency optimization of stiffened plate using Kriging estimation. Computational Mechanics,2003,31(5):409-418
    [58]张柱国,姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法.南京航空航天大学学报,2008,40(4):497-500
    [59]Tang B. Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams. Journal of Sound and Vibration,2008,309(3-5):868-876
    [60]王兴国,贾默伊,周晶.地震作用下的导管架海洋平台动力优化设计研究.海洋工程,2003,21(2):16-19
    [61]张大勇,李刚,岳前进.海洋平台优化设计的研究进展.海洋工程,2005,23(1):107-113
    [62]顾元宪,马红艳,姜成.海洋平台结构动力响应优化设计与灵敏度分析.海洋工程,2001,19(1):7-13
    [63]马红艳,刘书田,顾元宪.海洋平台结构形状与拓扑优化设计.海洋工程,2001,19(4):21-28
    [64]Lassen T. Optimum Design of Three-Dimensional Framework Structures. Journal of Structural Engineering,1993,119(3):713-727
    [65]Clauss G F, Birk L. Hydrodynamic shape optimization of large offshore structures. Applied Ocean Research,1996,18(4):157-171
    [66]康海贵,李法新.近海导管架平台的模糊选型优化.中国海洋平台,2000,15(6):10-16
    [67]马永涛,周炎.舰船浮筏隔振技术综述.舰船科学技术,2008,30(4):22-26
    [68]Bondaryk J E. Vibration of truss structures. The Journal of the Acoustical Society of America,1997,102(4):2167-2175
    [69]吴铭,尹文生,李世其.舰载小尺寸隔振器的优化设计.华中科技大学学报(自然科学版),2004,32(1):13-15
    [70]李俊,高宪智,鑫咸定.船体艉部减振的非线性碟簧动力吸振器的宽带优化设计.船舶工程,2000(4):21-25
    [71]毛为民,曹跃云,朱石坚.船舶动力机械混合隔振系统的优化设计.海军工程大学学报,2004,16(6):78-82
    [72]汪玉,陈国钧,华宏星,等.船舶动力装置双层隔振系统的优化设计.中国造船,2001,42(1):45-49
    [73]梁子冀,尚国清.舰船隔振系统设计参数对辐射噪声影响关系的研究.噪声与振动控制,2007,27(5):21-23
    [74]毛为民,伍先俊,朱石坚.遗传算法在船舶动力机械混合隔振系统优化设计中的应用.中国造船,2005,46(4):19-25
    [75]Noor A K, Burton W S, Bert C W. Computational models for sandwich panels and shells. Applied Mechanics Reviews,1996,49(3):155-199
    [76]中国科学院力学研究所.夹层板壳的弯曲、稳定和振动.北京:中国科学出版社,1977
    [77]Cote F, Deshpande V S, Fleck N A, et al. The out-of-plane compressive behavior of metallic honeycombs. Materials Science and Engineering A,2004,380(1-2): 272-280
    [78]Chang W S, Krauthammer T, Ventsel E. Elastic-plastic analysis of corrugated-core sandwich plates. Mechanics of Advanced Materials and Structures,2006,13(2): 151-160
    [79]Xue Z Y, Hutchinson J W. A comparative study of impulse-resistant metal sandwich plates. International Journal of Impact Engineering,2004,30(10):1283-1305
    [80]Liu T, Deng Z C, Lu T J. Design optimization of truss-cored sandwiches with homogenization. International Journal of Solids and Structures,2006,43(25-26): 7891-7918
    [81]Ferreira A, Barbosa J T, Marques A T, et al. Non-linear analysis of sandwich shells: the effect of core plasticity. Computers & Structures,2000,76(1-3):337-346
    [82]Barut A, Madenci E, Heinrich J, et al. Analysis of thick sandwich construction by a {3,2}-order theory. International Journal of Solids and Structures,2001,38(34-35): 6063-6077
    [83]Barut A, Madenci E, Anderson T, et al. Equivalent single-layer theory for a complete stress field in sandwich panels under arbitrarily distributed loading. Composite Structures,2002,58(4):483-495
    [84]Cook G M, Tessler A. A{3,2}-order bending theory for laminated composite and sandwich beams. Composites Part B:Engineering,1998,29(5):565-576
    [85]Hao B, Cho C, Lee S W. Buckling and postbuckling of soft-core sandwich plates with composite face sheets. Computational Mechanics,2000,25(5):421-429
    [86]Reissner E. On bending of elastic plates. Quarterly of Applied Mathematics,1947, 5(1):55-68
    [87]Burton W S, Noor A K. Assessment of continuum models for sandwich panel honeycomb cores. Computer methods in applied mechanics and engineering,1997, 145(3-4):341-360
    [88]Frostig Y. Buckling of sandwich panels with a flexible core-high-order theory. International Journal of Solids and Structures,1998,35(3-4):183-204
    [89]Frostig Y. Classical and high-order computational models in the analysis of modern sandwich panels. Composites Part B:Engineering,2003,34(1):83-100
    [90]Hohe J, Librescu L. Recent results on the effect of the transverse core compressibility on the static and dynamic response of sandwich structures. Composites Part B:Engineering,2008,39(1):108-119
    [91]Hause T, Librescu L, Johnson T F. Nonlinear response of geometrically imperfect flat and curved sandwich panels subjected to thermo mechanical loading. International Journal of Non-Linear Mechanics,1998,33(6):1039-1059
    [92]Librescu L, Hause T, Camarda C J. Geometrically nonlinear theory of initially imperfect sandwich curved panels incorporating nonclassical effects. AIAA journal, 1997,35(8):1393-1403
    [93]Carrera E. A refined multilayered finite-element model applied to linear and non-linear analysis of sandwich plates. Composites science and technology,1998, 58(10):1553-1569
    [94]Gibson L J, Ashby M F. Cellular Solid Structures and Properties. Cambridge: Cambridge University Press,1997
    [95]富明慧,尹久仁.蜂窝芯层的等效弹性参数.力学学报,1999,31(1):113-118
    [96]Wicks N, Hutchinson J W. Performance of sandwich plates with truss cores. Mechanics of Materials,2004,36(8):739-751
    [97]Fung T C, Tan K H, Lok T S. Elastic Constants for Z-Core Sandwich Panels. Journal of Structural Engineering,1994,120(10):3046-3055
    [98]王红霞,王德禹,李喆.三角形夹芯板夹心层的等效弹性常数.固体力学学报,2007,28(2):178-182
    [99]Burton W S, Noor A K. Assessment of continuum models for sandwich panels honeycomb cores. Computer methods in applied mechanics and engineering,1997, 145(3-4):341-360
    [100]Isaksson P, Krusper A, Gradin PA. Shear correction factors for corrugated core structures. Composite structures,2007,80(1):123-130
    [101]刘均,程远胜.考虑几何特征的方形蜂窝夹层板总体屈曲载荷求解方法.工程力学,2009,26(7):245-250
    [102]Seong D Y, Jung C G, Yang D Y, et al. Quasi-isotropic bending responses of metallic sandwich plates with bi-directionally corrugated cores. Materials & Design,2010, 31(6):2804-2812
    [103]Liu J, Cheng Y S, Li R F, et al. A semi-analytical method for bending, buckling, and free vibration analyses of sandwich panels with square-honeycomb cores. International Journal of Structural Stability and Dynamics,2010,10(1):127-151
    [104]Yang P C, Norris C H, Stavsky Y. Elastic wave propagation in heterogeneous plates. International Journal of Solids and Structures,1966,2(4):665-684
    [105]Kant T. Vibrations of unsymmetrically laminated plates analyzed by using a higher order theory with a C° finite element formulation. Journal of sound and vibration, 1989,134(1):1-16
    [106]Peters J M, Burton W S. Three-Dimensional Solutions for Initially Stressed Structural Sandwiches. Journal of engineering mechanics,1994,120(2):284-303
    [107]Kant T, Swaminathan K. Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Composite Structures,2002,56(4):329-344
    [108]吴晖,俞焕然.四边简支正交各向异性波纹型夹心矩形夹层板的固有频率.应 用数学和力学,2001,22(9):919-926
    [109]王展光,单建,何德坪.金字塔栅格夹心夹层板动力响应分析.力学季刊,2006,27(4):707-713
    [110]Lok T S, Cheng Q H. Free and forced vibration of simply supported, orthotropic sandwich panel. Computers & Structures,2001,79(3):301-312
    [111]王海英,赵德有.芯板可压缩的夹层加筋板固有频率分析.中国造船,2010,51(1):106-114
    [112]Kalnins K, Eglitis E, Jekabsons G, et al. Metamodels for optimum design of laser welded sandwich structures. Proceedings of Welded Structures, Design, Fabrication, and Economy, Miskolc, April 2008:119-126
    [113]Tan X H, Soh A K. Multi-objective optimization of the sandwich panels with prismatic cores using genetic algorithms. International Journal of Solids and Structures,2007,44(15-17):5466-5480
    [114]Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending. International Journal of Solids and Structures,2001,38(36-37):6275-6305
    [115]Klanac A, Kujala P. Optimal design of steel sandwich panel applications in ships. 9th International Symposium on Practical Design of Ships and Other Floating Structures-PRADS, Travemuende-Luebeck, Sept 2004:907-914
    [116]Liu T, Deng Z C, Lu T J. Design optimization of truss-cored sandwiches with homogenization. International Journal of Solids and Structures,2006,43(25-26): 7891-7918
    [117]夏利娟,余音,金咸定.复合材料蜂窝夹层板结构的多工况优化设计研究.振动与冲击,2005,24(3):117-119
    [118]陈昌亚,郑晓亚,姜晋庆.卫星结构优化设计的建模问题.机械科学与技术,2005,24(1):66-69
    [119]周加喜,邓子辰,刘涛.受压夹层板的失效模式分析及优化设计,西北工业大学学报,2007,25(1):74-78
    [120]王伟,赵美英,赵锋,等.基于人工神经网络技术的结构布局优化设计.机械设计,2006,23(12):7-10
    [121]Kirsch U. A unified reanalysis approach for structural analysis, design, and optimization. Structural and Multidisciplinary Optimization,2003,25(2):67-85
    [122]曾广武.船舶结构优化设计.武汉:华中科技大学出版社,2004
    [123]Harris C M, Crede C E. Shock and Vibration Handbook. New York:McGraw-Hill, 1976
    [124]诺顿M P.工程噪声和振动分析基础.北京:航空工业出版社,1993
    [125]Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells. New York, US: McGraw-Hill; 1959
    [126]赵文龙,刘雪松,周玉龙.带有大开口的玻璃钢游艇舷侧夹层板架结构强度分析.船海工程,2011,40(1):16-18
    [127]董石麟,钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700