磁流变液:制备、性能测试与本构模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液是一种由软磁性颗粒、基液以及添加剂组成的悬浮液,在外加磁场作用下可形成有序结构,且该结构随外加磁场的变化而变化。作为一类性能可控的智能材料,因其独特的磁流变效应和良好的流变性能,被认为是最具发展潜力的新型材料之一,国外已有较多的工程应用,国内也有一些尝试性的使用,并展现出广阔的应用前景。
     随着磁流变液工程应用研究的深入,提供性能可靠的磁流变液材料和建立合理实用的理论模型显得尤为重要。本文基于国家自然科学基金资助项目“多场耦合下磁流变液特性的微结构机理及跨尺度分析”,从实验测试、理论计算和数值模拟三个方面对磁流变液的机理和性能进行了比较全面的研究。
     为了对磁流变液的力学性能进行评估,本文首先利用旋转碟片式磁流变液性能测试装置,测试了不同颗粒体积分数、不同载液及不同添加剂含量磁流变液样品的力学性能。然后利用自行研制的透明观测装置和图像采集及处理技术,观测了低体积分数磁流变液在不同外加磁感应强度下的微结构链化特点,以及在剪切条件下磁流变液动态微结构的演化规律。
     针对工程应用中对高性能磁流变液的需求,以解决磁流变液在应用研究中遇到的各种稳定性问题为目的,从材料设计的角度出发,以国内先进产品为对照,围绕改善磁流变液体系沉降稳定性的同时增强其屈服应力,全面优化各制备工艺及组合,制备了性能良好的BGS-1型系列磁流变液。
     基于磁性物理学的基本理论,推导了不简化情况下的偶极子理论,得到了两个偶极子之间的相互作用力,将其与简化偶极子理论和Maxwell理论的结果进行对比,分析得出简化偶极子理论在一定程度上更加简洁和实用,并运用有限元的手段对其进行了验证。然后从微观角度入手,考虑磁流变液的微结构形态和体系的磁能,建立了基于微结构和统计力学方法的磁流变液微-宏观特性分析模型,模型能考虑磁感应强度、颗粒尺寸、体积分数、剪应变率以及饱和磁化强度等因素,计算结果表明,此模型能较好的描述实验现象及各主要因素的影响,不仅可用于计算剪切应力,而且可为优化磁流变液设计参数提供参考依据。
     利用磁流变液的链化模拟程序,模拟了两个颗粒的运动规律,以及多个颗粒的链化情况,并对链化过程中系统磁能的变化趋势进行了分析,结果表明该数值模拟平台能有效模拟磁流变液的微结构。然后从能量的角度出发,对外加静磁场下磁流变液具有单链、多链密排、立方、面心立方和体心立方胞元的微结构的磁能进行了分析,依据最小能量原理,得出不同微结构的稳定性特点。通过对链化程序的分析,采用OpenMP方法开发了基于曙光4000A集群系统的并行数值模拟平台,模拟和分析了在外加静磁场作用下大颗粒数磁流变液样本的运动规律和宏观力学特性。
Magnetorheological fluids (MRFs) are dispersions composed of carrier liquid, ferromagnetic particles and additives. The apparent yield strength of MRFs can be changed significantly within milliseconds by the application of an external magnetic field. As a kind of designable and property-controllable smart materials, MRFs have been extensively used for different purposes in various fields and shown brilliant prospects.
     It is important to provide high-performance MRFs and establish reliable theoretical models for the design and engineering application of MRFs and MRF based devices. In this dissertation, consistent with the research of the project“Coupled-multi-field properties of magnetorheological fluids: microstructural mechanism and trans-scale analysis”, which was financially supported by the Natural Science Foundation of China, the properties of MRFs were systematically studied through experimental investigation, theoretical modeling and numerical simulation.
     In order to evaluate the mechanical properties of MRFs, the rheological properties of some MRFs were tested with a specially designed testing system, with which the effects of various influencing factors, such as the intensity of the applied magnetic field, the shearing strain rate, and the temperature, etc, can be investigated. On the other hand, the evolution of microstructures of MRFs subjected to static magnetic fields and shearing strain was also observed instantaneously with a specially developed device and a stereomicroscopy, as well as the image acquisition technology.
     Making use of the knowledge of physical chemistry and material design, some high-performance MRFs of good sedimentation stability were studied, the effects of the influencing parameters, such as ferromagnetic particles, the carrier liquids and additives, are investigated systematically and optimized for the purpose of achieving better mechanical properties and sedimentation stability.
     The interaction between two dipolar particles based on the exact dipolar model was formulated, under the consideration that the conventional simplified dipolar model may involve remarkable error when the spacing between two dipolar particles is much less than the sizes of the particles. However, the comparison between the results obtained with the exact dipolar model, the simplified dipolar model and that obtained with FE approach based on the Maxwell theory showed that the simplified dipolar model may provide better approximation. Then, considering the microstructures under magnetic field fields and shearing deformation, a micro-macro model was developed for the constitutive behavior of MRFs and the effects of the main influencing factors, such as the intensity of magnetic induction, the size and the volume fraction of dispersed particles, shearing strain rate and saturation magnetization on the macroscopic behavior of MRFs can be considered.
     The mechanism of chain formation was analyzed based on the simulation of the movement of two dipolar particles. Then the chain formation process and the variation of the magnetic energy in a 600-particle system under an applied magnetic field were simulated. The magnetic energy of some typical microstructures of dipolar particles in a static magnetic field was analyzed. It shows that, among the microstructures composed respectively of single-column, compact two-column, compact three-column, cubic-lattice, BCT and FCC cells, the average magnetic potential energy of the microstructure with cubic-lattice cells is the largest and that with BCT cells is the lowest. It indicates that the microstructures composed of BCT cells and compact multi-column cells are the most possible microstructures in MRFs under static magnetic fields. Through the analysis of the chain formation program, a parallel algorithm was developed based on the OpenMP method. With the developed approach, the response of MRF samples with a large number of particles subjected to applied magnetic field and shear deformation were numerically simulated on a Dawning 4000A cluster. The obtained overallτ–γrelationship and the microstructures are in reasonable agreement with that obtained in experiment and other analyrical approach, demonstrating the validity of the proposed approach.
引文
[1] F. Gordaninejad, O. A. Graeve, A. Fuchs, et al edit. Proceedings of the 10th international conference on electrorheological fluids and magnetorheological suspensions[C]. Lake Tahoe: World Scientific, 2006.
    [2] K. B. Hathaway, A. E. Clark. Magnetostrictive materials [J]. MRS Bulletin, 1993, 97: 34-37.
    [3] C. M. Wayman. Shape memory and related phenomena [J]. Progress in Material Science, 1992, 36: 203-224.
    [4] W. G. Yan, S. Y. Liu, J. J. Li, et al. Passive magnetorheological fluid filled hydraulic engine mount [J]. Journal of Beijing Institute of Technology, 2000, 9(4): 434-438.
    [5] A. Milecki, D. Sedziak, J. Ortmann, et al. Controllability of MR shock absorber for vehicles [J]. International Journal of Vehicle Design, 2005, 38: 222-233.
    [6] B. Kavlicoglu, F. Gordaninejad, C. Evrensel, et al. A semi-active, high-torque, magnetorheological fluid limited slip differential clutch [J]. Journal of Vibration and Acoustics, 2006, 128: 604-610.
    [7] G. Yang, B. F. Spencer, J. D. Carlson, et al. Large-scale MR fluid dampers: Modeling and dynamic performance considerations [J]. Engineering Structures, 2002, 24(3): 309-323.
    [8] K. Karakoc, E. J. Park, A. Suleman. Design considerations for an automotive magnetorheological brake [J]. Mechatronics, 2008, 18(8): 434-447.
    [9] J. Rabinow. The magnetic fluid clutch [J]. AIEE Transaction, 1948, 67: 1308-1315.
    [10] W. M. Winslow. Induced fibration of suspensions [J]. Journal of Applied Physics, 1949, 20: 1137-1140.
    [11] W. A. Bullogh edit. Proceedings of the 5th international conference on ER Fluids, MR suspensions and associated technology [C]. Singapore: World Scientific, 1996.
    [12] M. Nakano, K. Koyama edit. Proceedings of the 6th international conference on ER fluids, MR suspensions and their applications[C]. Yonezawa: World Scientific, 1998.
    [13] R. Tao, G. D. Roy edit. Proceedings of the 7th international conference on Electrorheological Fluids and Magnetorheological suspensions [C]. Hawaii: World Scientific, 2000.
    [14] G. Bossis edit. Proceedings of the 8th international conference on electrorheological fluids and magnetorheological suspensions [C]. Nice: World Scientific, 2002.
    [15] F. D. Goncalves, M. Ahmadian, J. D. Carlson. Investigating the magnetorheological effect at high flow velocities [J]. Smart Materials and Structures, 2006, 15(1): 75-85.
    [16] J. D. Carlson. Critical factors for MR fluids in vehicle systems [J]. International Journal of Vehicle Design, 2003, 33(1): 207-217.
    [17] J. D. Carlson. What makes a good MR fluid [J]. Journal of Intelligent Material Systems and Structures, 2002, 13(7): 431-435.
    [18] S. J. McManus, K. A. Clair, P. E. Boileau, et al. Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper. Journal of Sound and Vibration, 2002, 253(1): 313-327.
    [19] M. R. Jolly, J. W. Bender, J. D. Carlson. Properties and applications of commercial magnetorheological fluids [J]. Journal of Intelligent Material Systems and Structures, 2000, 10(1): 5-13.
    [20] C. W. Maranville, J. M. Ginder. Small-strain dynamic mechanical behavior of magnetorheological fluids entrained in foams [J]. International Journal of Applied Electromagnetics and Mechanics, 2005, 22(1): 25-38.
    [21] G. Jin, M. K. Sain, B. E. Spencer. Nonlinear blackbox modeling of MR-dampers for civil structural control [J]. IEEE Transactions on Control Systems Technology, 2005, 13(3): 345-355.
    [22] Z. H. Soltanian, D. J. Peck. Feature space analysis: Effects of MRI protocols [J]. Medical Physics, 2001, 28(11): 2344-2351.
    [23] M. D. Jaeger, R. E. Soltis, J. A. Thomas, et al. Growth characteristics of Au/SiO2 nanocomposites [C]. Advanced Catalytic Materials-1998, 1999, 549: 173-178.
    [24] J. M. Ginder. Behavior of magnetorheological fluids [J]. MRS Bulletin, 1998, 23(8): 26-29.
    [25] C. Kormann, H. M. Laun, H. J. Richter. MR fluids with nano-sized magnetic particles technology [J]. International Journal of Modern Physics B, 1996, 10(23): 3167-3172.
    [26] H. M. Laun, C. Kormann, N. Willenbacher. Rheometry on magnetorheological fluids. I. Steady shear flow in stationary magnetic fields [J]. Rheologica Acta, 1996, 35(5): 417-423.
    [27] H. Janocha. Application potential of magnetic field driven new actuators [J]. Sensors and Actuators, 2001, 91(1): 126-132.
    [28] O. Stefan, B. Dmitry. Special issue: 11th international conference on electrorheological fluids and magnetorheological suspensions [J], Journal of Intelligent Material Systems and Structures, 2010, 21(15): 1461-1462.
    [29]姚金光,晏华.高性能磁流变液研究的进展[J].材料开发与应用, 2009, 24(2): 62-67.
    [30]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景[J].化工进展, 2005, 24(2): 132-136.
    [31]赵素玲,苏良碧,官建国,等.羰基铁粒子的制备与表征[J].武汉理工大学学报, 2004, 26(2): 7-10.
    [32]刘奇,唐龙,张平.实用型磁流变体材料研究[J].功能材料, 2004, 35(3): 291-292.
    [33] J. Popplewell, R. E. Rosensweig. Magnetorheological fluid composites [C]. Journal of Physics D: Applied Physics, 1996, 29(9): 2297-2303.
    [34]胡林,张元应,汤嘉伟,等.表面活性剂对磁悬浮液体稳定性的影响[J].贵州大学学报, 1999,16(4): 270-274.
    [35] M. S. Kin, M. S. Cho, H. J. Choi. PMMA coated carbonyl iron microbeads and their magnetic characteristics [J]. Physica Status Solidi (a), 2007, 204(12): 4198-4201.
    [36]金宝炎,包小倩,张茂才,等.表面改性对磁流变液稳定性和磁流变性能的影响[J].磁性材料及器件, 2007, 38(4): 51-54.
    [37]曹建,曹学峰.表面活性剂在材料工程中的应用[J].材料科学与工程, 1998, 16(4): 58-60.
    [38]陈维清,杜成斌,万发学.表面活性剂与触变剂对磁流变液沉降稳定性的影响[J].磁性材料及器件, 2010,41(2): 55-65.
    [39] P. P. Phulé. Magnetorheological (MR) fluids principles and applications [J]. Smart Materials Bulletin, 2001, 2001 (2): 7-10.
    [40]汪建晓,孟光.磁流变液研究进展[J].航空学报, 2002, 23(1): 6-12.
    [41] C. Rinaldi, A. Chaves, S. Elborai, et al. Magnetic fluid rheology and flows [J]. Current Opinion in Colloid & Interface Science, 2005, 10(3): 141-157.
    [42] J. Liu. Magnetorheological fluids: From basic physics to application [C]. Fluids and Thermal Engineering, 2002, 45(3): 55-60.
    [43]黄巍,齐飞霞,李蓉,等.硅油基磁流变液的制备及其特性[J].机械工程材料, 2008, 32(7): 68-74.
    [44] E. Lemaire, A. Meunier, G. Bossis, et al. In?uence of the particle size on the rheology of magnetorheological ?uids [J]. Journal of Rheology, 1995, 39(5): 1011-1020.
    [45] O. Volkova, G. Bossis, E. Lemaire. Magnetorheology of model suspensions [A]. In: M. Nakano, K. Koyama. Proceedings of the 6th international conference on ER fluids, MR suspensions and their applications[C]. Yonezawa: World Scientific, 1998, 98-104.
    [46] O. Volkova, G. Bossis, M. Guyot, et al. Magnetorheology of magnetic holes compared to magnetic particles [J]. Journal of Rheology, 2000, 44(1): 91-104.
    [47] J. M. Ginder, L. D. Elie, L. C. Davis. Magnetic fluid-based magnetorheological fluids [P]. United States: No.5549837, 1996.
    [48] R. E. Rosensweig. Ferrohydrodynamics [M]. New York: Cambridge University Press, 1985.
    [49]李德才.磁性液体理论及应用[M].北京:科学出版社, 2003.
    [50] T. Shiga, A. Okada. T. Kurauchki. Magnetroviscoelastic behavior of composite gels [J]. Journal of Applied Polymer Science, 1995, 58(4): 787-792.
    [51]陈琳,龚兴龙,孔庆合.天然橡胶基磁流变弹性体的研制与表征[J].实验力学, 2007,22(3): 372-378.
    [52]余淼,夏永强.基于链化分析的磁流变弹性体剪切模量模型[J].功能材料, 2009, 40(11): 1794-1797.
    [53]周伯成.聚氨酯基磁流变弹性体的制备及表征[D].武汉:武汉理工大学, 2008.
    [54]魏克湘.磁流变弹性体减振器的设计与振动特性研究[D].上海:上海交通大学, 2009.
    [55] K. A. Kintz, J. D. Carlson, B. C. Munoz, et al. Magnetorheological grease composition [P]. United States: No. 6547986, 2003.
    [56] M. J. Chrzan, J. D. Carlson. MR fluid sponge devices and their use in vibration control of washing machines [J]. The International Society for Optical Engineering, 2001, 4331: 370-378.
    [57] F. Gordaninejad, M. Miller, X. J. Wang, et al. Study of a magneto-rheological grease (MRG) damper [C]. The International Society for Optical Engineering, 2007, 6525: 65250G.
    [58] W. H. Li, G. Z. Yao, G. Chen, et al. Testing and steady state modeling of a linear MR damper under sinusoidal loading [J]. Smart Material Structure, 2000, 9(1): 95-102.
    [59] Y. L. Xu, W. L. Qu, J. M. Ko. Seismic response control of frame structures using magnetorheological/electrorheological dampers [J]. Earthquake Engineering and Structural Dynamics, 2000, 29(5): 557-575.
    [60] F. Gandhi, K. W. Wang, L. Xia. Magnetorheological fluid damper feedback linearization control for helicopter rotor application [J]. Smart Material and Structure, 2001, 10(1): 6-103.
    [61] J. Wang, G. Meng, N. Feng, et al. Dynamic performance and control of squeeze mode MR fluid damper-rotor system [J]. Smart Materials and Structures, 2005, 14(4): 529-539.
    [62] J. Huang, J. M. He, J. Q. Zhang. Viscoplastic flow of the MR fluid in a cylindrical valve [J]. Key Engineering Materials, 2004, 274: 969-974.
    [63] K. Yoshida, Y. Jung, S. Yokota. A microvalve using MR fluid valve-body [J]. Transactions of the Japan Society of Mechanical Engineers. C, 2003, 69(682): 1633-1639.
    [64] P. Kulkarni, C. Ciocanel, S. L. Vieira, et al. Study of the behavior of MR fluids in squeeze, torsional and valve modes [J]. Journal of Intelligent Material Systems and Structures, 2003, 14(2): 99-104.
    [65]单慧勇,王太勇.圆盘式磁流变调速风扇离合器的理论研究[J].润滑与密封, 2006, 4: 78-80.
    [66] V. A. Neelakantan, G. N. Washington. Modeling and reduction of centrifuging in magnetorheological (MR) transmission clutches for automotive applications [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(9): 703-711.
    [67] A. L. Smith,J. C. Ulicny,L. C. Kennedy. Magnetorheological fluid fan drive for trucks [J].Journal of Intelligent Material Systems and Structures, 2007, 18(12): 1131-1136.
    [68] U. Lee, D. Y. Kim, N. Hur, et al. Design analysis and experimental evaluation of an MR fluid clutch [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(9): 701-707.
    [69] E. J. Park, D. Stoikov, et al. A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller [J]. Mechatronics, 2006, 16(7): 405-416.
    [70] S. Ye, K. Williams. Torsional vibration control with an MR fluid brake [C]. Smart Structures and Materials 2005: Damping and Isolation, 2005, 5760: 283-292.
    [71] W. H. Li, H. Du. Design and experimental evaluation of a magnetorheological brake [J]. International Journal of Advanced Manufacturing Technology, 2003, 21(7): 508-515.
    [72] T. Saito, H. Ikeda, M. Oguro. An application of magnetorheological suspension Seal to pressure relief device [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(4): 341-345.
    [73] V. Iyengar, A. A. Alexandridis, S. C. Tung, et al. Wear testing of seals in magneto-rheological fluids [J]. Tribology Transactions, 2004, 47(1): 23-28.
    [74] T. Fujita, K. Yoshimura, Y. Seki, et al. Characterization of magnetorheological suspension for seal [J]. Journal of Intelligent Material Systems and Structures, 2000, 10(10): 770-774.
    [75] W. Kordonski, D. Golini. Progress update in magnetorheological polishing [A]. In: M. Nakano, K. Koyama. Proceedings of the 6th international conference on ER fluids, MR suspensions and their Applications [C]. Yonezawa: World Scientific, 1998, 837-844.
    [76] S. N. Lee, J. I. Lee, W. B. Kim, et al. Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method [J]. Microwave and Optical Technology Letters, 2004, 42(5): 405-407.
    [77] S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, et al. Details of the polishing spot in magnetorheological finishing [C]. The International Society for Optical Engineering, 1999, 3782: 92-100.
    [78]张先舟,王琪民,张培强.基于磁流变液相变技术的柔性夹具[J].实验力学, 2003, 18(2): 185-192.
    [79] F. Gordaninejad, A. Fuchs, U. Dogrour, et al. A new generation of magneto-rheological fluid dampers [R]. USA: Univemity of Nevada Rew, 2004.
    [80] M. Mao, W. Hu, N. M. Wereley, et al. Shock load mitigation using magnetorheological energy absorber with bifold valves [C]. Industrial and Commercial Applications of Smart Structures Technologies 2007, 2007, 6527: 52710.
    [81] Lord公司官方网站: http://www.lord.com.
    [82] QED公司官方网站: http://www.qedmrf.com.
    [83]张峰,余景池,张学军,等.磁流变抛光技术[J].光学精密工程, 1999, 7(5): 1.
    [84]尤伟伟.磁流变抛光的关键技术研究[D].长沙:国防科技大学, 2004.
    [85] J. D. Carlson. Magnetorheological fluid actuators [A]. In: H. Janocha. Adaptronics and smart structures [M]. Berlin: Springer Verlag, 1999. 180-195.
    [86] R. Sheng, G. A. Flores, J. Liu. In vitro investigation of a novel cancer therapeutic method using embolizing properties of magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials, 1999, 194: 167-175.
    [87]张进秋,张建,孔亚男,等.磁流变液及其应用研究综述[J].装甲兵工程学院学报, 2010, 24(2): 1-6.
    [88] B. C. Munoz, G. W. Adam, V. T. Ngo, et al. Stable magnetorheological fluids [P], United States: No. 6203717, 2001.
    [89] W. I. Kordonski, S. R. Gorodkin, Z. A. Novikova. The influence of ferroparticle concentration and size on MR fluid properties [A]. In: M. Nakano, K. Koyama. Proceedings of the 6th international conference on ER fluids, MR suspensions and their applications[C]. Yonezawa: World Scientific, 1998, 535-542.
    [90] M. R. Jolly, J. W. Bender, J. D. Carlson. Properties and applications of commercial magnetorheological fluids [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(1): 5-13.
    [91] P. P. Phule, J. M. Ginder. Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility [A]. In: M. Nakano, K. Koyama. Proceedings of the 6th international conference on ER fluids, MR suspensions and their applications[C]. Yonezawa: World Scientific, 1998, 445-453.
    [92] J. M. Ginder and L. C. Davis. Shear stresses in magnetorheological fluids: Role of magnetic saturation [J]. Applied Physics Letters, 1994, 65(26): 3410-3412.
    [93] D. W. Felt, M. Hagenbuchle, J. Liu, et al. Rheology of a magnetorheological fluid [A]. In: W. A. Bullogh. Proceedings of the 5th international conference on ER Fluids, MR suspensions and associated technology [C]. Singapore: World Scientific, 1996, 738-746.
    [94] J. M. Ginder, L. C. Davis, L. D. Elie. Rheology of magnetorheological fluids: Models and Measurements [A]. In: W. A. Bullogh. Proceedings of the 5th international conference on ER Fluids, MR suspensions and associated technology [C]. Singapore: World Scientific, 1996, 504-514.
    [95] Z. Y. Chen, X. Tang, G. C. Zhang, et al. A novel approach of preparing ultrafine magnetic metallic particles and the magnetorheology measurement for fluids containing these particles [A]. In: M. Nakano, K. Koyama. Proceedings of the 6th international conference on ER fluids,MR suspensions and their applications[C]. Yonezawa: World Scientific, 1998, 486-493.
    [96]潘胜,吴建耀,胡林,等.磁流变液的屈服应力与温度效应[J].功能材料, 1997, 28(2): 264-267.
    [97] G. Bossis, E. Lemaire, O. Volkova, et al. Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models [J]. Journal of Rheology, 1997, 41(3): 687-704.
    [98] F. Q. Jiang, Z. W. Wang, J. Y. Wu, et al. Magnetorheological materials and their application in shock absorbers [A]. In: M. Nakano, K. Koyama. Proceedings of the 6th international conference on ER fluids, MR suspensions and their applications[C]. Yonezawa: World Scientific, 1998, 494-50.
    [99] K. D. Weiss, T. G. Duclos, J. D. Carlson, et al. High strength magneto-and electro-rheological fluids [R]. SAE Paper: No.932451, 1993.
    [100] Y. Zhu, M. McNeary, N. Breslin, et al. Effect of structures on rheology in a model magnetorheological fluids [A]. In: M. Nakano, K. Koyama. Proceedings of the 6th international conference on ER fluids, MR suspensions and their applications[C]. Yonezawa: World Scientific, 1998, 478-485.
    [101] C. Kormann,H. M. Laun,H. J. Richter. MR fluids with nano-sized magnetic particles [J]. International Journal of Modern Physics B, 1996, 10: 3167-3172.
    [102] A. J. F. Bombard, I. Joekes.Temperature effect on magneto-rheological properties of MRF-132LD suspension [A]. In: R. Tao, G. D. Roy. Proceedings of the 7th international conference on electrorheological fluids and magnetorheological suspensions [C]. Hawaii: World Scientific, 2000, 286.
    [103] K. D. Weiss, T. G. Duclos. Controllable fluids: The temperature dependence of post-yield properties [A]. In: R. Tao. Proceedings of the 4th international conference on electrorheological(ER) fluids [C]. Feldkirch: World Scientific, 1994, 20-23.
    [104]龚兴龙,李辉,张培强.磁流变液的制备、机理和应用[J].中国科技大学学报, 2006, 1: 23-27.
    [105]邢志,吕建刚,李猛.磁流变液特性分析及实验研究[J].磁性材料及器件, 2005,36(3): 21-23.
    [106] L. Bitman, Y. T. Choi, N. M. Wereley. Electrorheological damper analysis using an eyring constitutive relationship.Journal of Intelligent Materia1 Systems and Structures, 2002, 13(10): 633-639.
    [107] L. Richter, L. Zipser, U. Lange. Properties of magnetorheological fluids [J]. Sensors and Materials, 2001, 13(7): 385-397.
    [108]翁建生,胡海岩,张庙康.磁流变液的流变力学特性试验和建模[J].应用力学学报, 2000, 17(3): 1-5.
    [109] I.A. Brigadnov, A. Dorfmann. Mathematical modeling of magnetorheological fluids [J]. Continuum Mechanics and Thermodynamics, 2005, 17(1): 29-42.
    [110] K.C. Chen and C. S. Yeh. Description of magnetorheological behavior with internal variables [J]. International Journal of Engineering Science, 2002, 40(4): 461-482.
    [111] K. von Pfeil, M. D. Graham, D. J. Klingenberg, et al. A two-fluid model for electro-and magnetorheological suspensions [A]. In: G. Bossis. Proceedings of the 8th international conference on electrorheological fluids and magnetorheological suspensions [C]. Nice: World Scientific, 2002, 759-765.
    [112] R. E. Rosensweig. On magnetortheology and electrortheology as status of unsymmetric stress [J]. Journal of Rheology, 1995, 39(1): 179-192.
    [113]司鹄,彭向和.磁流变材料的粘塑性本构模型[J].重庆大学学报, 2001, 24(3): 45-48.
    [114] Y. Zhu, M. Gross, J. Liu. Nucleation theory of structure evolution in magnetorheological fluid [J]. Journal of Intelligent Material Systems and Structures, 1996, 7(5): 594-598.
    [115] E. Lemaire, G. Bossis, and Y. Grasselli. Yield stress and structuration of magnetorheological suspensions [J]. Journal of Magnetism and Magnetic Materials, 1993, 122: 51-52.
    [116] Y. H. Hwang, X. I. Wu. Dynamics of glasslike transitions in a quasi-two-dimensional system [J]. Physical Review Letters, 1995, 74(12): 2284-2287.
    [117] E. Furst and A. Gast. Micromechanics of magnetorheological suspensions [J]. Physical Review E, 2000, 61(6): 6732-6739.
    [118] H. V. Ly. F. Reitich, M. R. Jolly, et al. Simulations of particle dynamics in magnetorheological fluids [J]. Journal of Computational Physics, 1999, 155(1): 160–177.
    [119] M. Mohebi, N. Jamasbi, J. Liu. Simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field [J]. Physical Review E, 1996, 54(5): 5407-5413.
    [120]杨仕清,龚捷,张万里,等.磁流变智能液场致微结构变化的Monte Carlo模拟[J].原子与分子物理学报, 1998, 15(3): 411-415.
    [121]李海涛,彭向和,陈伟民.磁流变液流变特性的数值模拟分析[J].功能材料, 2006, 37(5): 710-712.
    [122] M. R. Jolly, J. D. Carlson, B. C. Munoz. A model of the behaviour of magnetorheological materials [J]. Smart Materials and Structures, 1996, 5(5): 607-614.
    [123] C. Cioncanel, G. Lipscomb, N. G. Naganathan. A constitutive equation for magnetorheological fluid characterization [J]. Journal of Phase Equilibria and Diffusion, 2008, 29(4): 305-311.
    [124] J. M. Ginder and L. C. Davis. Shear stress in magnetoreological fluids: Role of magnetic saturation [J]. Applied Physics Letters, 1994, 65(26): 3410-3412.
    [125] O. Volkova, G. Bossis, P. Carletto, et al. Shear banded structures and nematic to isotropic transition in MR fluids [C]. International Journal of Modern Physics B, 2001, 15: 878-885.
    [126] X. Tang and H. Conrad. An analytical model for magnetorheological fluids [J]. Journal of Physics D: Applied Physics, 2000, 33(23): 3026-3032.
    [127] D. J. Klingenberg, C. F. Zukoski. Studies on the steady-shear behavior of electrorheological suspensions [J]. Langmuir, 1990, 6(1): 15-24.
    [128] G. Bossis, E. Lemaire. Yield stresses in magnetic suspensions [J]. Journal of Rheology, 1991, 35(7): 1345-1354.
    [129]金昀,张培强,汪小华,等.磁流变液剪切屈服应力的数值计算[J].中国科学技术大学学报, 2001, 31(2): 168-173.
    [130]彭小强,尤伟伟,石峰.磁流变液剪切屈服应力模型的理论分析与实验[J].国防科技大学学报, 2006, 28(4): 110-114.
    [131] Z. P. Shulman, V. I. Kordonsky, E. A. Zaltsgendler, et al. Structure, physical properties and dynamics of magnetorheological suspensions [J]. International Journal of Multiphase Flow, 1986, 12(6): 935-955.
    [132] X. Peng, H. Li. Analysis of the magnetomechanical behavior of MRFs based on micromechanics incorporating a statistical approach [J]. Smart Materials and Structures, 2007, 16(6): 2477-2485.
    [133] National Science Foundation. Simulation-Based Engineering Science [R]. USA: NSF SBES Panel, 2006.
    [134] A. Shibayama, T. Otomo, Y. Akagami, et al. Preparation and abrasion properties of magnetorheological fluid of dispersed silica-coated iron [J]. International Journal of Modern Physics B, 2005, 19(7-9): 1121-1127.
    [135] J. Laeuger, K. Wollny, H. Stettin, et al. A new device for the full rheological characterization of magneto-rheological fluids [J]. International Journal of Modern Physics B, 2005, 19(7-9): 1353-1359.
    [136] F. D. Goncalves, M. Ahmadian, J. D. Carlson. Behavior of MR fluids at high velocities and high shear rates [J]. International Journal of Modern Physics B, 2005, 19(7-9): 1395-1401.
    [137] A. T. Skjeltorp. Colloidal crystals in magnetic fluid [J]. Journal of Applied Physics, 1984, 55(6): 2587-2588.
    [138]常建,杨运民,彭向和,等.一种磁流变液流变特性测试装置的研究[J].仪器仪表学报, 2001, 22(4): 354-358.
    [139] B. J. Park, M. S. Kim, H. J. Choi. Fabrication and magnetorheological property of core shell structured magnetic composite particle encapsulated with cross-linked poly (methyl methacrylate) [J]. Materials Letters, 2009, 63: 2178-2180.
    [140] H. B. Cheng, J. M. Wang, Q. J. Zhang, et al. Preparation of composite magnetic particles and aqueous magnetorheological fluids [J]. Smart Materials and Structures, 2009, 18(8): 085009.
    [141]胡林,张朝平,蔡绍平,等.蛋白质包裹型磁流变液的研制及其性能[J].中国学术期刊文摘, 2000, 6(2): 192.
    [142] G. T. Ngatu, N. M. Wereley, J. O. Karli, et al. Dimorphic magnetorheological fluids Exploiting partial substitution of microspheres by nanowires [J]. Smart Materials and Structures, 2008, 17(4): 045022.
    [143] M. T. Lopez, G. Vertelov, G. Bossis, et al. New magnetorheological fluids based on magnetic fibers [J]. Journal of Materials Chemistry, 2007, 17(36): 3839-3844.
    [144] G. Dodbiba, H. S. Park, K. Okaya, et al. Investigating magnetorheological properties of a mixture of two types of carbonyl iron powders suspended in an ionic liquid [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(7): 1322-1327.
    [145]金宝炎.磁流变液的成分、制备及性能研究[D].北京:北京科技大学, 2007.
    [146]侯鹏.磁流变液稳定性的评价研究[D].武汉:武汉理工大学, 2008.
    [147] S. R. Gorodkin, W. I. Kordonski, E. V. Medvedeva, et al. A method and device for measurement of a sedimentation constant of magnetorheological fluids [J]. Review of Scientific Instruments, 2000, 71(6): 2476-2480.
    [148] R. Tao, X. Xu. Viscosity reduction in liquid suspensions by electric or magnetic fields [C]. International Journal of Modern Physics B, 2005, 19: 1283-1289.
    [149] Yu. D. Varlamov, A. B. Kaplun. Measurement of viscosity of weakly clustering magnetic liquids [J]. Magnetohydrodynamics, 1986, 22(3): 264-270.
    [150]汪小惠.烷基ED3A@Fe复合粒子及油基磁流变液的制备和表征[D].武汉:武汉理工大学, 2008.
    [151] E. Lemaire, G. Bossis. Yield stress and wall effects in magnetic colloidal suspensions [J]. Journal of Physics D: Applied Physics, 1991, 24(8): 1473-1477.
    [152] F. M. Ytreberg, S. R. McKay. Calculated properties of field-induced aggregates in ferrofluids [J]. Physical Review E, 2000, 61(4): 4107-4110.
    [153] H. Li, X. Peng, W. Chen. Simulation of the chain-formation process in magnetic fields [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(7): 653-658.
    [154]李海涛.磁流变液特性分析及微观机理研究[D].重庆:重庆大学, 2006.
    [155] G. Bossis, S. Lacis, A. Meunier, et al. Magnetorheological fluids [J]. Journal of Magnetismand Magnetic Materials, 2002, 252: 224-228.
    [156] S. Melle, O. G. Calderon, M. A. Rubio, et al. Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results [J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 102(2): 135-148.
    [157] J. H. E. Promislow, A. P. Gast. Low-energy suspension structure of a magnetorheological fluid [J]. Physical Review E, 1997, 56(1): 642-651.
    [158]吴望一.流体力学(下) [M].北京大学出版社, 2000, 257-266.
    [159] N. Hu, J. Molinari. Shear bands in dense metallic granular materials [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(3): 499-531.
    [160] Y. Wei. Molecular-dynamics simulation study on the irregular size effects of gold nanoclusters. M.Sc. Dissertation of Chongqing University, 2002, 9-14.
    [161] D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms to applications. Academic Press, 1996, 336-356.
    [162]都志辉.高性能计算之并行编程技术-MPI并行程序设计[M].北京:清华大学出版社, 2001.
    [163]陈国良.并行计算-结构·算法·编程[M].北京:高等教育出版社, 1999.
    [164]吴少刚.机群系统OpenMP研究[D].北京:中国科学院研究生院(计算技术研究所), 2004.
    [165]龚荣洲,官建国,袁润章.酞菁钴/铁纳米填充母粒组成的磁流变液性能[J].化学物理学报, 2000, 13(4): 508-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700