不同形态碳吸波剂结构吸波复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构型吸波复合材料因同时具有吸波性能和力学承载性能,在军事和民用领域表现出很大的应用前景。以碳纤维、炭黑、碳纳米管和纳米碳纤维为代表的碳材料由于形态多样、性能可控,作为结构吸波材料的吸波剂具有广阔的应用前景。
     本文采用聚合物共混纺丝法制备了纳米碳纤维,对影响产物形态、性能的因素进行了深入研究;并以碳纤维、炭黑、纳米碳纤维为吸波剂,考察了以这些不同形态碳材料作为吸波剂的复合材料的吸波性能和力学性能,对吸波机理进行了初步探讨;并尝试制备了同时使用两种碳吸收剂的吸波复合材料。论文的主要研究内容和结果如下:
     以N,N-二甲基甲酰胺为共溶剂,制备了聚丙烯腈(PAN)/聚甲基丙烯酸甲酯(PMMA)共混溶液;对由此得到的共混膜的相态观察结果表明,当PAN/PMMA共混体系中PAN质量百分比低于30%时,PAN在共混体系中为分散相;对同一PMMA而言,8万分子量的PAN在PMMA中的分散性优于5万分子量的PAN;对PMMA/PAN共混溶液的动态流变性能的测试也表明采用8万分子量PAN的共混体系相容性更好,可纺性更佳。对PAN/PMMA(30/70)溶液,采用传统湿法工艺纺制了以PMMA为连续相,PAN为分散相的双组分海岛纤维,经预氧化及高温碳化去除热裂解组分PMMA后,获得了PAN基纳米碳纤维。提高原丝的拉伸倍数有利于减小纳米碳纤维的直径,当拉伸倍数为6时,可获得直径为50~150nm的纳米碳纤维;对碳化产物的红外光谱、拉曼光谱和XRD分析的结果表明,当碳化温度达到800℃时,纤维中开始出现石墨晶相结构,提高碳化温度可以增加纳米碳纤维的石墨化程度;而当碳化温度为1000℃时,所制备的纳米碳纤维电导率可达10~(-1)S/m。
     以CB和CNF为吸波剂,分别研究并对比了碳黑和纳米碳纤维在环氧树脂中的含量、试样厚度等因素对复合材料电磁参数、导电性能及吸波性能的影响,研究了两种复合材料的力学性能。结果表明:随着碳黑和纳米碳纤维含量的提高,复合材料复介电常数的实部和虚部均增大,导电性能也随之提高;在吸波剂含量固定时,材料的厚度增加,吸波峰值向低频方向移动;当碳黑含量为6wt%时,厚度为4mm的复合材料吸波性能最佳,在6.2GHz的吸波峰值达到-22.5dB;当纳米碳纤维含量为8wt%时,厚度为3mm的复合材料试样在8GHz处的吸波峰值为-24.1dB;纳米碳纤维复合材料的力学性能优于碳黑复合材料。根据双层吸波复合材料反射损耗公式,用Matlab程序分别计算了双层碳黑复合材料和双层纳米碳纤维复合材料的最佳吸波性能:对于碳黑吸波复合材料,当4wt%CB复合材料为首层,6wt%CB复合材料为底层,材料总厚度为3mm时,试样在8.1 GHz处达到最大吸波峰值-28.0dB,-5dB以下带宽为5.8GHz,-10dB以下带宽为2.7GHz;对于纳米碳纤维复合材料,8wt%CNF为首层,6wt%CNF为底层,材料总厚度为2mm时,试样在17.2GHz处最大吸波峰值为-28.5dB,-5dB以下带宽为2.7GHz,-10dB以下带宽为2.0GHz。据此制备的双层吸波材料的反射损耗实测值与计算值基本符合。
     以碳纤维为吸波剂,通过制备碳纤维/环氧树脂复合材料,研究并对比了平行极化和垂直极化条件下复合材料的吸波性能及其影响因素,并对吸波机理进行了探讨。结果表明,平行极化时,碳纤维束的间距减小,材料对电磁波的吸收峰向高频移动,相同间距下增加碳纤维的含量能够提高复合材料的吸波性能,并且相同含量下碳纤维按多层方式铺设时,试样的吸波性能最好,当碳纤维束间距为10mm,碳纤维含量为0.8wt%,按8层排列时,复合材料在14.4GHz的吸波峰值达到-11.2dB垂直极化时,碳纤维束的间距对复合材料的吸波性能没有影响,复合材料的吸波性能随碳纤维含量的增加和铺设层数的增多而提高,碳纤维束间距为5mm,按8层排列的复合材料在7.6GHz处具有最大吸波损耗-19.2dB。
     对碳黑/碳纤维两元吸波剂复合材料的制备和吸波性能进行了探讨,发现在平行极化时,以碳黑层作为第一层得到的复合材料吸波性能较好,超越了单一吸波剂复合材料的吸波性能,碳黑含量为6wt%,层厚度为2mm,碳纤维束为4层,间距为5mm时,在10.8GHz处最大峰值为-22.9dB;垂直极化时,无论首层以碳黑作为吸波剂还是以碳纤维作为吸波剂,均能得到较好的吸波性能,其中以厚度为2mm,碳黑含量为6wt%为首层,间距为5mm碳纤维按4层排列时,在6.6GHz最大吸收峰为-32.0dB,-5dB以下带宽为6.5GHz,-10dB以下带宽为2.9GHz;而当碳纤维层作为第一层时,与厚度为2.8mm含量为6wt%的碳黑层复合,在5.2GHz最大吸收峰为-31.7dB,-5dB以下带宽为4.1GHz,-10dB以下带宽为1.7GHz。
     采用N离子注入的方法制备了导电PBO织物窄条,通过扫描电镜、红外光谱、XPS和电导率测试对织物表面进行分析,结果表明经过N离子注入处理后的PBO表面受到刻蚀且碳化,表面电导率达到10~3S/m。分别将碳纤维和导电PBO织物制成“井”型频率选择表面,置于单层或双层的炭黑、纳米碳纤维复合材料之上,探讨其对复合材料吸波性能的影响。结果表明,增加频率选择表面能有效调整复合材料最大吸波峰值对应的频率,复合材料反射率峰值的位置随结构单元尺寸d、h的增大向低频移动,材料的有效带宽增大,当介质层阻抗匹配时,可以减小反射干涉峰与吸收损耗峰的间距,从而拓宽频带。
Structural microwave absorbing composites have been the most promising materials in both military and business aspects due to the combination of microwave absorbing and load-bearing characteristics. Furthermore, carbon materials, such as carbon fibers (CFs), carbon blacks (CBs), carbon nanotube and carbon nanofibers (CNFs), have shown a great potential to be the microwave absorbent because of their various morphologies and controllable properties.
     In this paper, a novel mass-production technology of polymer blend spinning was developed for CNFs, and the determinant factors on the morphology and property of CNFs were investigated. Especially, several microwave absorbing composites based on CF, CB and/or CNF were prepared and characterized from the aspects of microwave absorbing capacity and mechanical property, and the microwave absorbing mechanism of those composites was discussed. Moreover, the composites containing binary carbonic microwave absorbents were also trial-manufactured. The main research contents and results of this paper were listed as follows.
     Firstly, a series of blending solutions of poly(methyl methacrylate) (PMMA) and polyacrylonitrile (PAN) were prepared by using N,N-dimethylformamide as the cosolvent. The results of morphology observation for the PAN/PMMA blend films cast from those solutions indicated that PAN would act as dispersed phase only when the mass content of PAN in PAN/PMMA was lower than 30%, and the PAN with a molecular weight of 80000 showed a dispersibility prior to the PAN with a molecular weight of 50000. Otherwise, the dynamical rheology testing also proved that the solution containing PAN with a molecular weight of 80000 showed a better compatibility and spinnability. Subsequently, the PAN/PMMA(30/70) solution was wet-spun into blend fibers, which were pre-oxidized and then carbonized under high temperature to remove the thermaldegradable polymer PMMA and finally the PAN based CNFs were obtained. It has been found that the high drawing of as-spun blend fibers would be help to reduce the diameters of CNFs, and 6 times of drawing could results in a diameter of 50-150nm. From the investigation of carbonization process characterized by means of FT-IR, FT-Raman and XRD spectra, it has been identified that the graphitization phase would form in the blend fibers when the thermalsetting temperature was higher than 800℃, and when the temperature was chosen as 1000℃the electrical conductivity of resultant CNF could reach to 10~(-1)S/m.
     The influence of microwave absorbent contents and sample thickness on the permittivity, conductivity and microwave absorbing performance of CB/epoxy and CNF/epoxy composites were investigated. The results informed that both the real and imaginary parts of permittivity enlarged as mass content of CB or CNF increased in the composites, and the conductivities of those composites increased accordingly. Additionally, the frequency corresponding to the microwave absorbing peak shifted to lower value when increasing the thickness of the composites with a certain CB or CNF content. Concretely, when CB content was 6wt%, the maximum reflection loss was -22.5dB at 6.2GHz for the sample with a thickness of 4mm. For CNF composites, the extreme value was -24.1dB when the CNF mass content was 8%, the testing wave frequency was 8GHz and the sample thickness was 3mm. The mechanical properties of CNF composites are better than CB composites. Based on the theoretical equation for reflection loss of two-layer composites, a Matlab program was designed and operated to optimize the layer structures. For instance, the sample with the top layer containing 4wt% CB and the bottom layer containing 6wt% CB, and the total thickness of 3mm, would showed the peak value of -28.0dB at 8.1GHz, and the band width under -5dB and -10dB were 5.8GHz and 2.7GHz, respectively. On the other hand, the sample with total thickness of 2mm, of which the top layer contained 8wt% CNFs and the bottom layer contained 6wt% CNFs, would exhibit the maximum reflection loss of -28.5dB at 17.2GHz, with the band width under -5dB and -10dB of 2.7GHz and 2.0GHz. The testing reflection loss curves of two-layer samples were coincident with those theoretical calculations.
     Microwave absorbing characteristics of the epoxy based composites containing CF bundle array were studied, and the absorbing mechanism was also discussed. The results showed that, under the parallel polarization, the gap distance between two bundles of CFs determined the corresponding frequency to peak absorbing, i.e., a narrow CF gap would result in a high frequency absorbing peak. However, for composites under vertical polarization, this gap hardly affected the microwave absorbing performance. For both two polarization type, the microwave absorbing characteristics of composites took the advantages of higher content and larger row number of carbon fibers The maximum reflection loss of the sample containing 0.8wt% carbon fibers arranged as 8 layers with the gap distance of 10mm was -11.2dB at 14.4GHz under parallel polarization, while sample containing 1.6wt% carbon fibers arranged as 8 layers with the gap distance of 5mm gave a peak value of -19.2dB at 7.6GHz under vertical polarization.
     The composites containing both CB and CF were prepared, and the microwave performance of composites was studied. Under the parallel polarization, the two-layer structured composite, with the top layer containing 6wt% CB and the bottom layer containing 4 rows of CF bundles with a bundle gap distance of 5mm, was possessed of the maximum reflection loss of -22.9dB at 10.8GHz. Whereas under the vertical polarization, the sample with the top layer containing 6wt% CB of 2mm thickness, and the bottom layer containing 4-row arranged CFs with bundle gap distance of 5mm, had the peak value of -32.0dB at 6.6GHz, and the band width under -5dB and -10dB were 6.5GHz and 2.9GHz, respectively. When the 4-row arranged CF layer was chosen as the top, together with a layer containing 6wt% CB of 2.8mm thickness, the composite would show the peak value of -31.7dB, and the band width under -5dB and -10dB were 4.1GHz and 1.7GHz, respectively.
     Conductive poly(p-phenylene benzobisthiazole) (PBO) fabrics were prepared through N~+ ion-implanting method, and the treated samples were investigated by SEM, FT-IR, XPS and conductivity measurement. The results showed that the surface of PBO fibers were etched and carbonized, thus the fibers obtained a high conductivity of 10~3S/m. The frequency selective surface (FSS) made from CF bundles or conductive PBO fabrics were attached on the structured CB/epoxy or CNF/epoxy composites. It has been found that FSS could adjust the peak frequency of reflection loss of each composite. The absorbing peak would shift to lower frequency and the absorbing band would become wider when the frame dimension of FSS increased. The distance between the peak frequency of FSS and CNF/epoxy was shortened by adjust the permittivity of CNF/epoxy.
引文
[1]杨青真,王红梅,常泽辉,飞行器隐身技术发展状况,航天电子对抗,2004,6,55-58
    [2]张振英,王斌,军用隐身涂料技术的研究进展,现代涂料与涂装,2006,2,29-31
    [3]张考,马东立等,军用飞机生存力与隐身设计,国防工业出版社,北京,2002,54-168
    [4]余雄庆,杨景佐,飞行器隐身设计基础,南京航空学院,1992:4-6
    [5]阮颖铮,雷达截面与隐身技术,国防工业出版社,北京,1998,259
    [6]Summary of Measurements of Permitivities & Permeabilities of Some Microwave Absorbing Materials,1992
    [7]Pitkethly M J IEEE Colloquiumon " Low Profile Absorber and Scaters "London,UK,1992,7
    [8]黄爱萍,冯则坤,聂建华,何华辉,干涉型多层吸波材料研究,材料导报,2003,17,4,21-24
    [9]阮颖铮,雷达截面与隐身技术,国防工业出版社,北京,1998:,270
    [10]刘顺华,刘军民,董星龙,电磁波屏蔽及吸波材料,化学工业出版社,北京,2007,259
    [11]罗发,周万诚,赵东林,结构吸波材料中纤维的电性能和吸波性能,材料工程,2000,2,37-40
    [12]赵东林,沈曾民,迟伟东,碳纤维及其复合材料的吸波性能和吸波机理,新型炭材料,2001,16,2,66-72
    [13]Morimoto M,Kanda K,Hada H,et al.Development of electromagnetic absorbing board for wireless communication environment,In Proceedings of the conference of Architectural Institute of Japan.1998,D-1:1069-70
    [14]邹田春,赵乃勤等,微量碳纤维/树脂复合吸波材料的研究,功能材料,2005,11,36,1689-1692
    [15]曹婷,天津大学硕士学位论文
    [16]沈国柱,徐政,李轶,短切碳纤维复合材料对8mm波吸收性能研究,玻璃钢/复合材料,2006,3,19-20
    [17]欧阳国恩,炭化硅-炭功能纤维,功能材料,1994,25,4,300-305
    [18]欧阳国恩,刘兴慰,岳曼君,SiC-C纤维有机先驱体流变可纺性研究,复合材料学报,1995,12,3,46-52
    [19]Zhang HT,Zhang JS,Computation of radar absorbing silicon carbide foams and their silica matrix composites,Compt.Mater.Sci.2007,38,857-864
    [20]Kagawa Y.,Matsumura K.,Potential of short Si-Ti-C-O fiber-reinforced epoxy matrix composite as electromagnetic wave absorbing material,J Mater.Sci.,2007,42,1116-1121
    [21]曾祥云,马铁军,李家俊,RAM技术发展趋势,材料导报,1997,11,3,57
    [22]莫美芳,国外结构隐身材料的研制和发展概况,材料工程,1991,5,46
    [23]Woo SC,Dai GL,Development of the composite RAS(radar absorbing structure) for the X-band frequency range,Comp.Strut.2005,457-465
    [24]Xu GL,Zhu Zh,et al.,Study on microwave absorptive behavior of carbon cluster/epoxy resin composite material,Fun.Mater.,2005,7,1131-1134
    [25]段玉平,刘顺华等,非连续体吸波平板的设计制备及吸波机理分析,复合材料学报,2006,23,3,37-43
    [26]段玉平,刘顺华等,炭黑/ABS高密度复合体的电性能与电磁特性,功能材料,2006,37,1,36-39
    [27]Oh JH,Oh KS,Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges,Comp.Part B 2004,35,49-56
    [28]邓建国,王建华,贺传兰,纳米微波吸收剂研究现状与进展闭.宇航材料工艺,2002,32,5,5-9
    [29]曾爱香,熊惟浩,纳米复合铁氧体微波吸收剂的研究进展,长沙电力 学学报,2003,18,4,72-76
    [30]焦桓,罗发,周万城,纳米吸波材料研究与发展趋势,宇航材料工艺,2001,31,5,9-11
    [31]张卫东,冯小云,孟秀兰,国外隐身材料研究进展[J]宇航材料工艺,2000,30,3,1-4
    [32]张池明,超微粒子的化学特性,化学通报,1993,5,20-23
    [33]焦恒,周万城,雷达吸波剂研究进展,材料导报,2000,14,3,11-12
    [34]Hassanie A,Tokumoto M,Ohshima S,et al.Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes,App.Phys.Lett.,75,1999,2755
    [35]Fan ZJ,Luo GH,et al.,Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites,Mater.Sci.& Eng.B,2006,132,85-89
    [36]Aimad S,Lukasz B,et al.,Carbon Nanotube Composites for Broadband Microwave Absorbing Materials,IEEE Tran.,Micro.Theo.& Tech.,2006,54,6,2745-2753
    [37]科夫涅里斯特,拉扎列娃,拉瓦耶夫著(蔡德录、刘承均译),微波吸收材料,科学出版社,1985
    [38]梁奇,碳纳米管的催化制备、结构及其电磁波吸收性能研究,中国科学院博士学位论文
    [39]Krishna Naishadham K,Shielding effectiveness of conductive polymers,IEEE Trans EMC,1992,1,47-50
    [40]万梅香,李素珍,李军朝,宇航材料工艺,1989,5,28-32
    [41]施冬梅,邓辉,杜仕国,雷达隐身材料技术的发展,兵器材料科学与工程,2002,25,1,64-67
    [42]Courric S,Polymers for Advanced Technologies,2000,11,6,273-279
    [43]Cristiane Reis Martins,Roselena Faez,Polymer Bulletin,2004,51,321-326
    [44]Vikrants T,Arun S,Arijit B,Acoustic properties of cenosphere reinforced cement and asphalt concrete,Appl.Acou.2004,65,3,263-275
    [45]陈仁松,何俊发,汪建科等,螺旋形纳米碳纤维的电磁波吸收特性分析,上海航天,2006,2,42-44
    [46]张勇,唐元洪,裴立宅,郭池,纳米碳纤维的批量制备和应用,高科技纤维与应用,2005,30,2,21-25
    [47]信思树,项金钟,吴兴惠,纳米碳纤维的制备方法及其吸波特性,材料导报,2003,17,9,24-26
    [48]张旺玺,静电纺丝制备聚丙烯腈纳米碳纤维,合成纤维工业,2007,30,5,60-63
    [49]王德成,纳米纤维及其制造方法,合成纤维工业,2004,27,1,29-31
    [50]Hulicova D,Oya A,The polymer blend technique as a method for designing fine carbon materials,Carbon,2003,41,1443-1450
    [51]Hulicova D,Sato F,Okabe K,et al,An attempt to prepare carbon nanotubes by the spinning of microcapsules,Carbon,2001,39,1421-1446
    [52]Hulicova D,Hosoi K,Kuroda S I,Carbon nanotubes prepared from polymermicrosperes by spinning and carbonizing,Mol Cryst Liq Cryst,2002,387,107-112
    [53]Kim C,Jeong Y I,Ngoc B T N,et al.,Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs,Small,2006,3,1,91-95
    [54]Ferry J D,Viscoelastic properties of polymers,John Wiley & Sons:New York,1980
    [55]郑强,杨碧波,吴刚等,多组分高分子体系动态流变学研究,高等学校化学学报,1999,20,1483-90
    [56]郑强,赵铁军,多相/多组分聚合物动态流变行为与相分离的关系,材料研究学报,1998,12,3,225-232
    [57]Han C D,Jhon M S.J Appl Polym Sci,1986,32,3809
    [58]Han C D,Kim J K.Macromolecule,1989,22,4292
    [59]Han C D,Kim J K.Polymer,1993,34,2533
    [60]李丽娅,黄启忠,张红波,聚丙烯腈预氧丝的炭化结构和性能,粉末冶金材料学与工程,2000,5,4,301-305
    [61]Zhu BK,Xie SH,Xu ZK,Xu YY,Preparation and properties of the polyimide/multi-walled carbon nanotubes(MWNTs) nanocomposites,Compo.Sci.Tech.,2006,66,548-554
    [61]付正芳,聚丙烯腈基中空活性碳纤维的制备及储氢性能的研究,东华大学硕士学位研究生论文,2005
    [62]贺福,用拉曼光谱研究碳纤维的结构,高科技纤维与应用,2005,30,6,20-25
    [63]Lim S,Yoon SH,Mochida I,Surface Modification of Carbon Nanofiber with High Degree of Graphitization,J.Phys.Chem.B,2004,108,5,1533-1536
    [64]Collins S,Brydson R,Rand B,Structural analysis of carbon nanofibres grown by the floatingcatalyst method,Carbon,2002,40 1089-1100
    [65]Singh C,Quested T,Boothroyd Chris B,et al.,Synthesis and Characterization of Carbon Nanofibers Produced by the Floating Catalyst Method,J.Phys.Chem.B,2002,106,42,10915-10922
    [66]Gulijk Cvan,Lathouder KM,Haswell R,Characterizing herring bone structures in carbon nanofibers using selected area electron diffraction and dark field,Carbon,2006,44,2950-2956
    [67]Zhu YA,Sui Zh.,Zhao T J,et al.Modelling of fishbone-type carbon nanofibers:A theoretical study,Carbon,2005,43,1694-1699
    [68]Tanaka A,Yoon SH,Mochida I,Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments,Carbon,2004,42,591-597
    [69]Yang YZ,Liu XG,Xu BS,et al.,Preparation of vapor-grown carbon fibers from deoiled asphalt,Carbon,2006,44,1661-1664
    [70]Marjolein L.Toebes,J.M.P.Van Heeswijk,Johannes H.Bitter,The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers,Carbon,2004,42,307-315
    [71]Park SJ,Seo MK,Lee YS,Surface characteristics of fluorine-modified PAN-based carbon fibers,Carbon,2003,41,723-730
    [72]Calleja F J B,Bayer R K,Ezquerra T A.Electrical conductivity of polyethylene-carbon fiber conposites mixed with carbon black.J.Mater.Sci.1988,23,4,1411-1415
    [73]Scheng P.Fluctuation-induced tunneling conduction in disordered materials.Phys.Rev B,1981,21,6,2180-2195
    [74]黄远,马铁军,李家俊等,吸收剂含量对结构吸波材料吸波性能的影响,功能材料,1999,30,4,369-371
    [75]李炳炎,炭黑生产与应用手册,:化学工业出版社,北京,2000,86
    [76]刘飚,官建国,王琦等,纳米技术在微波吸收材料中的应用,材料导报,2003,17,3,45-47
    [77]Kubo R,Statistical-mechanical theory of irreversible process.Part 1:Generall theory and simple application to magnetic and conduction problem,J.Phy.Soc.,Japan,1957,12,6,570-586
    [78]管洪涛,石英和水泥基体平板吸波材料研究,大连理工大学,博士学位论文,2006,36
    [79]Zou T.C.,Zhao N.Q.,Shi C.S.,Li J.J.,Guo W.K.,J.Fun.Mat.,2005,36,1689
    [80]A.Paul,S.Thomas,J.AppL Polym Sci.,1997,63,247
    [81]Dishovsky N,Grigorava M.On the correlation between electromagnetic waves absorption and electrical conductivity of carbon black filled polyethylenes.Mat.Res.Bull.2000,35,3,403-409
    [82]曾汉民主编,高技术新材料要览,中国科学技术出版社,北京,1993,394
    [83]邢丽英,刘俊能,任淑芳,短碳纤维电磁特性及其在吸波材料中应用研究,材料工程,1998,1,19-21
    [84]甘永学,陈昌麟,李成功,微波吸收复合材料中镀金属碳纤维的作用机制,兵器材料科学与工程,1992,15,8,5-9
    [85]华宝家,肖高智,杨建生等,碳纤维在结构隐身材料中的应用研究[J],宇航材料工艺,1994,3,31-34
    [86]赵九蓬,吴佩莲,新型吸波材料研究动态,材料科学与工艺,2002,10,2,220
    [87]赵东林,沈曾民,迟伟东等,高科技纤维与应用,2000,3,25,8-14
    [88]Yi Y,Zhang BS,Xu WD,et al.,J.Mag.Mag.Mat.,2003,256,1-3,129-132
    [89]Paligov M,Wil kova J,S ha P,et al.,Phys A:Stat.Mech.App,2004,355,3-4,421-429
    [90]赵乃勤,曹婷,师春生等,碳纤维(碳毡)/树脂复合材料吸波材料的研究,复合材料学报,2003,20,5,63-67
    [91]邵蔚,赵乃勤,李家俊等,碳纤维/环氧树脂结构吸波材料中吸收剂作用的研究,复合材料——生命、环境与高技术,166-169
    [92]郭伟凯,李家俊,赵乃勤等,微量碳纤维平行排布吸波材料结构模型,兵器材料科学与工程,2004,27,4,36-39
    [93]欧进萍,高雪松,韩宝国,碳纤维水泥及材料吸波性能与隐身效能分析,硅酸盐学报,2006,34,8,902-907
    [94]沈国柱,徐政,蔡瑞琦等,短切碳纤维-铁氧体填充的复合材料吸波性能,同济大学学报(自然科学版),2006,34,7,934-936
    [95]午丽娟,沈国柱,徐政等,铁氧体及碳纤维填充会泥及复合材料吸波性能,建筑材料学报,2006,9,5,604-607
    [96]赵凯华,陈熙谋著,电磁学,高等教育出版社,北京,1985,810
    [97]冯林,杨显清,王园等,电磁场与电磁波,机械工业出版社,北京,2004,142
    [98]邹田春,赵乃勤,师春生等,微量碳纤维/树脂复合吸波材料的研究,功能材料,2005,36,11,1689-1692
    [99]冯林,杨显清,王园等,电磁场与电磁波,机械工业出版社,北京,2004,216
    [100]高正平,饶克谨,王晓红,单向炭纤维铺层的雷达反射特性,隐身技术,1998,1,34-38
    [101]Lee W I,Springers G S,Interaction of electromagnetic radiation with organic matrix composites,J.Comp.Mat,1984,18,7,357-386
    [102]杨儒贵,刘运林,电磁场与波简明教程,科学出版社,北京,2004,156-159
    [103]Ptikethly M.J.,Radar absorbing materials and their potential use in aircraft structures,Low Profile Absorbers and Scatters,IEE Colloquium on.UK:London,1992,7/1-7/3
    [104]科夫涅里斯特等著,蔡德录等译,微波吸收材料,科学出版社,北京,1985,1-6
    [105]阮颖铮著,雷达截面与隐身技术,国防工业出版社,北京,1998,269-271
    [106]Musal H M Jr,Hahn H T,Thin-layer electromagnetic absorber design,IEEE Trans.Mag.,1989,25,5,3851-3853
    [107]杜庆荣,频率选择表面的电磁仿真,北京航空航天大学硕士学位论文,北京,2004
    [108]Tennant A.,Chambers B.,A single-layer tuneable microwave absorber using an active FSS,IEEE Microwave and Wireless Components Letters,2004,14,1,46-47
    [109]John D Kraus,Ronald J Marhefka著,章文勋译,天线,电子工业出版社,北京,2006,510
    [110]邢丽英,蒋诗才,李斌太,含电路模拟结构吸波复合材料,复合材料学报,2004,21,6,27-33
    [111]蒋诗才,邢丽英,张宝艳,电路模拟结构在结构吸波材料中的应用探索研究,材料工程,2003,7,23-25
    [112]邢丽英,蒋诗才,李斌太,含电路模拟结构陷阱式吸波复合材料研究,材料工程,12,29-32
    [113]寇松江,有源频率选择表面电磁特性的研究,东南大学硕士学位论文,2007.23
    [114]YE Ch F,Li E P,Finite difference time domain simulation for multi-layer microwave absorber with frequency selective surface,IEEE,2002,417-419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700