三类不确定支持向量机及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支持向量机是基于统计学习理论的VC维和结构风险最小化原则建立的一种通用机器学习算法。它较好地解决了传统学习方法难以处理的小样本、高维、非线性等问题,且具有较好的泛化能力。自提出以来,支持向量机得到了越来越多的专家和工程技术人员的青睐,并已成功应用到人脸识别、遥感图像分析、文本分类等众多模式识别领域。
     尽管支持向量机在众多实际问题中得到了广泛应用,但它仍存在着一定局限性。如,支持向量机对噪声较为敏感,且对不均衡样本分类准确率不高。再如,支持向量机所处理的样本为实随机变量。在一些实际问题中,样本往往为非实随机变量(随机集和模糊等)。针对支持向量机存在的上述问题,本文分别研究了基于噪声不确定性样本、随机集不确定性输入样本和模糊等不确定性输出样本等三类不确定支持向量机。
     本文的主要创新点及工作如下:
     (1)提出了基于直觉模糊数的支持向量机和多类支持向量机。直觉模糊数作为模糊隶属度的一种推广,它比传统的模糊隶属度更加细腻地描述客观世界中的模糊性。基于直觉模糊数的支持向量机通过核函数在特征空间中给每个训练样本赋予一个直觉模糊数,利用直觉模糊数的得分函数描述每个训练样本的分类贡献,消除噪声对支持向量机的影响。基于上述支持向量机分别构建了一对一和一对多模式下的多类支持向量机。针对一对多模式中不均衡样本的特点,对不同类别样本赋予不同的权重。数值实验验证了该类不确定支持向量机的有效性。
     (2)构建了基于随机集输入样本的支持向量机和多类支持向量机。随机集是随机变量的一种重要拓广,它能有效地处理复杂不确定环境下的模糊性和经验性数据。基于随机集输入样本的支持向量机以随机集的可测选择作为主要特征,将随机集输入样本的分类问题转化为了可测选择的分类问题。基于随机集输入样本的多类支持向量机利用模糊C-均值聚类算法将随机集输入样本转化成为实样本,进而将随机集输入样本的多类分类问题转化成实样本的多类分类问题。数值实验验证了该类不确定支持向量机的有效性。
     (3)构建了可信性空间上基于模糊输出样本的支持向量机和不确定空间上基于不确定性输出样本的支持向量机。基于可信性测度和置信水平,可信性空间上基于模糊输出样本的支持向量机给出了样本类别的动态划分方法,构建了一个动态的分类超平面,有效处理了模糊输出样本类别的模糊性。同样,基于不确定测度和置信水平,不确定空间上基于不确定性输出样本的支持向量机也给出了样本类别的动态划分方法,有效处理不确定性输出样本类别的不确定性。仿真实验验证了该类不确定支持向量机的有效性。
     (4)两类不确定支持向量机应用于人脸识别。由于光照、姿态和表情等因素的影响,人脸图像中存在着噪声、模糊、随机集等不确定信息。为了有效处理人脸图像中的这些不确定信息,本文分别将基于直觉模糊数的支持向量机和基于随机集输入样本的支持向量机应用于人脸识别中,利用人脸数据库验证了这两类算法的有效性。
Support vector machine is a universal machine learning algorithm, which is based on VCdimension and structural risk minimization principle of statistical learning theory. It solvesthe practical problems of traditional learning methods, such as small sample, high dimensionand nonlinearity, and has good generalization capability. Since it was proposed, supportvector machine has won the favor with many experts and engineering and technical personnel,and has been successfully applied into face recognition, remote sensing image analysis, textclassification, etc.
     However, with the wide range of applications, support vector machine has somelimitations in some practical problems. For example, support vector machine is sensitive tonoises, and has low performance for imbalance data set. Another example, the trainingsamples of support vector machine are real random variables. While, in some practicalproblems, the training samples are non-real random variables (random set, fuzzy, etc.). Inorder to solve aforementioned problems, three kinds of uncertain support vector machines aregiven to handle the noise uncertainty samples, random set uncertainty input samples, andfuzzy etc. uncertainty output samples accordingly.
     The main contributions are as follows:
     (1) The support vector machine and multi-class support vector machine based onintuitionistic fuzzy numbers are proposed. Intuitionistic fuzzy number as an extension offuzzy membership can describe the fuzziness of the objective world more accurately. Thesupport vector machine based on intuitionistic fuzzy numbers assign each training samplewith a corresponding intuitionistic fuzzy number by the use of kernel function, and a newscore function of the intuitionistic fuzzy number is proposed to measure the contribution ofeach training sample and distinguish from the noises and support vectors. Then, themulti-class support vector machine of one-against-one and one-against-all are given based onthe above support vector machine. In order to solve the misclassification problem resultedfrom the imbalance samples of different classes in the construction of one-against-all supportvector machine, different weights are assigned to differed class sample. The effectiveness ofthe above uncertain support vector machines are verified by numerical experiments.
     (2) The support vector machine and multi-class support vector machine based on randomset input samples are constructed. Random set as an important extension of real valued random variable, can well deal with the fuzzy and experimental data of complicated uncertainenvironments. The support vector machine based on random set input samples takesmeasurable selections are taken as the main feature of random set. Then the classification ofrandom set input samples is transformed into the classification of measurable selections. Themulti-class support vector machine transform the multi-classification of random input samplesinto the multi-classification of real-valued samples by the use of fuzzy C-means clusteringalgorithm. Numerical experiments show the effective of this kind of uncertain support vectormachine
     (3) The support vector machine based on fuzzy output samples in credibility space andthe support vector machine based on uncertainty output samples in uncertainty space aregiven. In credibility space, the support vector machine based on fuzzy output samples proposea dynamic division method of class label by the use of credibility measure and the confidencelevel, and construct a dynamic classification hyperplane to effectively deal with thefuzziness of fuzzy output samples. Similarly, in uncertain space, the support vector machinebased on uncertain output samples also give a dynamic division method of class label by theuse of uncertain measure and the confidence level, and then construct a correspondingdynamic classification hyperplane to handle the uncertainty of uncertain output samples. Thesimulation experiments show the effective of this kind of uncertain support vector machine.
     (4) Two kinds of uncertain support vector machine are applied into the face recognition.Due to the impact of lighting condition, gesture and facial expression, there are muchuncertain information such as noise, fuzzy, intuitionistic fuzzy and random set. In order todeal with the above uncertain information, two kinds of uncertain support vector machineproposed in this paper are applied into the face recognition, and experiments show theeffective of the two algorithms.
引文
[1]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    [2] Mitchell T M著,曾华军,张银奎,等译.机器学习[M].北京:机械工业出版社,2003.
    [3] Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: A Wiley-IntersciencePublication,1995.
    [4] Vapnik V N. Statistical Learning Theory [M]. New York: A Wiley-Interscience Publication,1998.
    [5] Vapnik V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [6] Cortes C, Vapnik V N. Support vector networks [J]. Machine Learning,1995,20:273-297.
    [7]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [8]瓦普尼克著,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [9]瓦普尼克著,许建华,张学工译.统计学习理论[M].北京:电子工业出版社,2004.
    [10]邓乃扬,田英杰.支持向量机——理论、算法与扩展[M].北京:科学出版社,2009.
    [11] Nello C, John S. An Introduction to Support Vector Machines [M]. Cambridge: Cambridge UniversityPress,2000.
    [12] Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining andKnowledge Discovery,1998,2(2):121-176.
    [13] Ong C J, Shao S Y, Yang J B. An improved algorithm for the solution of the regularization path ofsupport vector machine [J]. IEEE Transactions on Neural Networks,2010,21(3):451-462.
    [14] Zhang X. Using class-center vectors to build support vector machines [J]. IEEE Conference on NeuralNetworks for Signal Processing,1999,3-11.
    [15] Tsang Y C, Zhang Y Q, Chawla N V, et al. SVMs modeling for highly imbalanced classification [J].IEEE Transactions on Systems, Man and Cybernetics, Part B,2009,39(1):281-288.
    [16] Li Y, Gong S, Sherrah T, et al. Support vector machine based multi-view face detection andrecognition [J]. Image and Vision Computing,2004,22(5):413-427.
    [17]鲁淑霞.基于支持向量机的多光谱数据分类[D].保定:河北大学博士学位论文,2007.
    [18] Bovolo F, Bruzzone L, Carlin L. A novel technique for subpixel image classification based on supportvector machine [J]. IEEE Transactions on Image Processing,2010,19(11):2983-2999.
    [19] Hao L, Lewin P L. Partial discharge source discrimination using a support vector machine [J]. IEEETransactions on Dielectrics and Electrical Insulation,2010,17(1):189-197.
    [20] Dong J, Krzy ak A, Suen C Y. An improved handwritten Chinese character recognition system usingsupport vector machine [J]. Pattern Recognition Letters,2005,26(12):1849-1856.
    [21]白鹏,张喜斌,张斌,等.支持向量机理论及工程应用实例[J].西安:西安电子科技大学出版社,2008.
    [22] Yélamos I, Escudero G, Graells M, et al. Performance assessment of a novel fault diagnosis systembased on support vector machines [J]. Computers&Chemical Engineering,2009,33(1):244-255.
    [23] Du P, Tan K, Xing X. A novel binary tree support vector machine for hyperspectral remote sensingimage classification [J]. Optics Communications,2012,285(13-14):3054-3060.
    [24] Pap E. Null-Additive Set Functions [M]. Boston: Kluwer,1995.
    [25] Wang Z Y, Klir G J. Generalized Measure Theory [M]. New York: Springer-Verlag,2008.
    [26] Liu B. Uncertainty Theory (4th Ed)[M]. Beijing: Uncertainty Theory Laboratory,2012.
    [27]哈明虎,杨兰珍,吴从炘.广义模糊集值测度引论[M].北京:科学出版社,2009.
    [28] Wang T Y, Chiang H M. One-against-one fuzzy support vector machine classifier: An approach totext categorization [J]. Expert Systems with Applications,2009,36:10030-10034.
    [29] Jin B, Tang Y C, Zhang Y Q. Support vector machines with genetic fuzzy feature transformation forbiomedical data classification [J]. Information Sciences,2007,177:476-489.
    [30]哈明虎,王超,张植明,等.不确定统计学习理论[M].北京:科学出版社,2010.
    [31]哈明虎,李俊华,白云超,等.样本受零均值噪声影响下的学习理论的若干理论研究[J].自然科学进展,2006,16(12):1668-1673.
    [32] Ha M H, Tian J. The theoretical foundations of statistical learning theory based on fuzzy numbersamples [J]. Information Sciences.2008,178(16):3240-3246.
    [33] Ha M H, Pedrycz W, Zhang Z M, et al. The theoretical foundations of statistical learning theory ofcomplex random samples [J]. Far East Journal of Applied Mathematics,2009,34(3):315-336.
    [34]张植明,田景峰,哈明虎.基于复拟随机样本的统计学习理论的理论基础[J].计算机工程与应用,2008,44(9):82-86.
    [35]孙璐,陈继强,哈明虎.基于随机集样本的学习过程一致收敛速率的界[J].模糊系统与数学(增刊),2008,22:270-272.
    [36] Ha M H, Pedrycz W, Zheng L F. The theoretical fundamentals of learning theory based on fuzzycomplex random samples [J]. Fuzzy Sets and Systems,2009,160(17):2429-2421.
    [37]哈明虎,李颜,李嘉,等. Sugeno测度空间上学习理论的关键定理[J].中国科学E辑,信息科学,2006,36(4):398-410.
    [38]哈明虎,冯志芳,宋士吉,等.拟概率空间上学习理论的关键定理和学习过程一致收敛速度的界[J].计算机学报,2008,31(3):476-485.
    [39] Bai Y C, Ha M H, Li J H. Structural risk minimization principle on credibility space [C]. Proceedingsof2006International Conference on Machine Learning and Cybernetics,2006,3643-3649.
    [40] Ha M H, Bai Y C, Wang P, et al. The key theorem and the bounds on the rate of uniform convergenceof statistical learning theory on a credibility space [J]. Advances in Fuzzy Sets and Systems,2006,1(2):143-172.
    [41] Bai Y C, Ha M H. The key theorem of statistical learning theory on possibility spaces [C].Proceedings of the Fourth International Conference on Machine Learning and Cybernetics,2005,4374-4378.
    [42]哈明虎,王鹏.可能性空间学习过程一致收敛速度的界[J].河北大学学报(自然科学版),2004,1:1-16
    [43] Yan S J, Ha M H, Zhang X K, et al. The key theorem of learning theory on uncertainty space [J].Advances in Neural Networks,2009,5551:699-706.
    [44] Zhang X K, Ha M H, Wu J, et al. The bounds on the rate of uniform convergence of learning processon uncertainty space [J]. Advances in Neural Networks,2009,5551:110-117
    [45] Ha M H, Pedrycz W, Chen J Q, et al. Some theoretical results of learning theory based on random setsin set-valued probability space [J]. Kybernetes,2009,38:635-657.
    [46] Ha M H, Wang C, Pedrycz W. The theoretical foundations of statistical learning theory based onfuzzy random samples in Sugeno measure space [J]. Transactions of the Institute of Measurement andControl,2012,34(5):520-526.
    [47] Takuya I, Shigeo A. Fuzzy support machines for pattern classification [C]. Proceedings ofInternational Joint Conference on Neural Networks,2001:1449-1454.
    [48] Lin C F, Wang S D. Fuzzy support vector machines [J]. IEEE Transactions on Neural Networks,2002,13(2):464-471.
    [49]张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192.
    [50]李雷,周蒙蒙,鲁延龄.基于密度法的双隶属度模糊支持向量机[J].计算机技术与发展,2009,19(12):44-47.
    [51]哈明虎,彭桂兵,赵秋焕,等.一种新的模糊支持向量机[J].计算机工程与应用,2009,45(25):151-153.
    [52] Wang Y, Wang S, Lai K K. A new fuzzy support vector machine to evaluate credit risk [J]. IEEETransactions on Fuzzy Systems,2005,13(6):820-831.
    [53]哈明虎,黄澍,王超,等.直觉模糊支持向量机[J].河北大学学报(自然科学版),2011,3:225-229.
    [54]张文修,吴伟志,梁吉业,等.粗糙集理论与方法[J].北京:科学出版社,2001.
    [55] Pawlak Z. Rough set [J]. International Journal of Computer and Information Sciences,1982,11(5):341-356
    [56]张建明,曾建武,谢磊,等.基于粗糙集的支持向量机故障诊断[J].清华大学学报(自然科学版),2007,47(S2):1774-1777.
    [57] Lingras P, Butz C. Rough set based1-v-1and1-v-r approaches to support vector machinemulti-classification [J]. Information Sciences,2007,177(18):3782-3798.
    [58] Lingras P, Butz Z. Rough support vector regression [J]. European Journal of Operational Research,2010,206(2):445-455.
    [59] Chen D G, He Q, Wang X. FRSVMs: Fuzzy rough set based support vector machines [J]. Fuzzy Setsand Systems,2010,161(4):596-607.
    [60] Zhang X Y, Zhou J Z, Guo J, et al. Vibrant fault diagnosis for hydroelectric generator units with a newcombination of rough sets and support vector machine [J]. Expert Systems with Applications,2012,39(3):2621-2628.
    [61]范昕炜,杜树新,吴铁军.可补偿类别差异的加权支持向量机算法[J].中国图像图形学报,2003,8(9):1037-1042.
    [62]贾银山,贾传荧.一种加权支持向量机分类算法[J].计算机工程,2005,31(12):23-25.
    [63]汪廷华,田盛丰,黄厚宽.特征加权支持向量机[J].电子与信息学报,2009,31(3):514-518.
    [64] Wang M, Yang J, Liu G P, et al. Weighted-support vector machines for predicting membrane proteintypes based on pseudo-amino acid composition [J]. Protein Engineering Design&Selection,2004,17(6):509-516.
    [65] Tao Q, Wu G W, Wang F Y, et al. Posterior probability support vector machines for unlabeled data [J].IEEE Transactions on Neural Networks,2005,16(6):1561-1573.
    [66] G nen M, Tanu ur A G, Alpaydin E. Multiclass posterior probability support vector machines [J].IEEE Transactions on Neural Networks,2008,19(1):130-139.
    [67] Ji A B, Pang J H, Qiu H J. Support vector machine for classification based on fuzzy training data [J].Expert Systems with Applications,2010,37(4):3495-3498
    [68]王林.基于梯形模糊数的支持向量机[D].保定:河北大学硕士学位论文,2010.
    [69]黄佳英.二型模糊支持向量机[D].保定:河北大学硕士学位论文,2012.
    [70] Kendall D G. Foundations of a Theory of Random Sets [M]. New York: J. Wiley,1974
    [71] Nguyen H T. An Introduction to Random Sets [M]. Florida: Chapman and Hall/CRC Press,2006.
    [72]杨志民,刘广利.不确定支持向量机——算法及应用[M].北京:科学出版社,2012.
    [73] Chaudhuri A, De K. Fuzzy support vector machine for bankruptcy prediction [J]. Applied SoftComputing,11(2):2472-2486,2011.
    [74]李昆仑,黄厚宽,田盛丰,等.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280.
    [75] Liu Y H, Chen Y T. Face recognition using total margin-based adaptive fuzzy support vectormachines [J]. IEEE Transactions on Neural Networks,18(1):178-92,2007.
    [76]沈飞.模糊支持向量机在人脸识别中的应用[D].吉林:吉林大学硕士学位论文,2011.
    [77] Shieh M D, Yang C C. Classification model for product form design using fuzzy support vectormachines [J]. Computers&Industrial Engineering,2008,55(1):150-164.
    [78]Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-basedLearning Methods [M]. Cambridge: Cambridge University Press,2000.
    [79] Cristianini N, Shawe-Taylor J著,李国正,王猛,曾华军译.支持向量机导论[M].北京:电子工业出版社,2004.
    [80] Zadeh L A. Fuzzy sets [J]. Information and Control,1965,8:338-353
    [81] Atanassov K. Intuitionistic fuzzy sets [C]. VII ITKR’s Session, Sofia, June1983.
    [82] Atanassov K. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems,1986,20:87-96.
    [83]徐泽水.直觉模糊信息集成理论及应用[M].北京:科学出版社,2008.
    [84] Chang C C, Lin C J. LIBSVM: a library for support vector machines [DB/OL]. ACM Transactions onIntelligent Systems and Technology,2:27:1--27:27,2011. Software available athttp://www.csie.ntu.edu.tw/~cjlin/libsvm
    [85]张文修.集值测度与随机集[M].西安:西安交通大学出版社,1989
    [86] Ha M H, Chen J Q, Pedrycz W, et al. Bounds on the rate of convergence of learning processes basedon random sets and set-valued probability [J]. Kybernetes,2011,40(9/10):1459-1485.
    [87] Bezdek J C, Ehrlich R, W Full. FCM: The fuzzy c-means clustering algorithm [J]. Computers&Geosciences,1984,10(2-3):191-203.
    [88] Liu B, Liu Y K. Expected value of fuzzy variable and fuzzy expected value model [J]. IEEETransactions on Fuzzy Systems,2002,10(4):445-450.
    [89] Liu B. Theory and Practice of Uncertain Programming (2nd Ed)[M]. Berlin: Springer-Verlag,2009.
    [90]郑光昭.光信息科学与技术应用.北京:电子工业出版社,2002
    [91]王映辉.人脸识别—原理、方法与技术[M].北京:科学出版社,2010.
    [92]何东风,凌捷.人脸识别技术综述[J].微机发展,2003,13(12):25-78.
    [93] Yang G, Huang T S. Human face detection in complex background [J]. Pattern Recognition,27(1):53-63,1994.
    [94]杨光正.复杂景物中人面的定位[J].自动化学报,1995,21(4):499-503.
    [95] Miao J, Yin B C, Wang K Q, et al. A hierarchical multicale and multlangle system for human facedetection in complex background using gravity-center template [J]. Pattern Recognition,1999,32:1237-1248.
    [96]卿来云,山世光,陈熙霖,等.基于球面谐波基图像的任意光照下的人脸识别[J].计算机学报,2006,29(5):760-768.
    [97]柴秀娟,卿来云,山世光,等.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534.
    [98]尹宝才,孙艳丰,王成章,等. BJUT-3D三维人脸数据库及其处理技术[J].计算机研究与发展,2009,46(6):1009-1018.
    [99] Alyuz N, G kberk B, Akarun L. Regional registration for expression resistant3-D face recognition [J].IEEE Transactions on Information Forensics and Security,2010,5(3):425-440.
    [100] Huang H, He H T. Super-resolution method for face recognition using nonlinear mappings oncoherent features [J]. IEEE Transactions on Neural Networks,2011,22(1):121-130.
    [101] Hwang W, Wang H, Kim H, et al. Face Recognition System Using Multiple Face Model of HybridFourier Feature Under Uncontrolled Illumination Variation [J]. IEEE Transactions on ImageProcessing,2011,20(4):1152-1165.
    [102] He R, Zheng W S, Hu B G. Maximum correntropy criterion for robust face recognition [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2011,33(8):1561-1576.
    [103]梁路宏,艾海舟,徐光,等.人脸检测研究综述[J].计算机学报,2002,25(5):449-458.
    [104]刘向东,陈兆乾.人脸识别技术的研究[J].计算机研究与发展,2004,41(7):1074-1080.
    [105]张翠平,苏光大.人脸识别技术综述[J].中国图像图形学报(A版),2000,5(11):885-894.
    [106]李武军,王崇骏,张炜,等.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66.
    [107] Sirovich L, Kirby M. Low-dimensional procedure for the characterization of human faces [J]. Journalof the Optical Society of America A,1987,4:519-524.
    [108]薛理立,艾海舟.基于弹性图匹配的实时视频流人脸识别[J].计算机科学,2003,30(11):65-69.
    [109]孙大瑞,吴乐南.基于特征的弹性图匹配人脸识别算法[J].应用科学学报,2002,20(4):377-381.
    [110] Moghaddam B, Jebara T, Pentland A. Bayesian face recognition [J]. Pattern Recognition,33(11):1771-1782,2000.
    [111]朱学毅,王崇骏,周新民,等.一种改进的贝叶斯人脸识别算法[J].计算机科学,2006,33(9):204-206.
    [112]金忠,胡钟山,杨静宇.基于BP神经网络的人脸识别方法[J].计算机研究与发展,1999,36(3):274-277.
    [113] Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience,1991,3(1):71-86.
    [114] Zhao W, Krishnaswamy A, Chellappa R, et al. Discriminant analysis of principal components for facerecognition[J]. Face Recognition,1998,163:73-85.
    [115] Guo G D. Li S Z, Chan K L. Support vector machines for face recognition [J]. Image and VisionComputing,2001,19(9-10):631-638.
    [116] Déniz O, Castrillón M, Hernández M. Face recognition using independent component analysis andsupport vector machines [J]. Pattern Recognition Letters,2003,24(13):2153-2157.
    [117] Casasent D, Wang Y C. A hierarchical classifier using new support vector machines for automatictarget recognition [J]. Neural Networks,2005,18(5-6):541-548.
    [118]李庆华.支持向量机及其在人脸识别中的应用研究[D].上海:上海交通大学博士学位论文,2006.
    [119]李伟红.基于支持向量机的人脸特征选择及识别研究[D].重庆:重庆大学博士学位论文,2006.
    [120] Kong R, Zhang B. A new face recognition method based on fast least squares support vector machine[J]. Physics Procedia,2011,22:616-621.
    [121] Jolliffe I T. Principal Component Analysis (2nd edition)[M]. Berlin: Springer,2002.
    [122] Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA: A new approach to appearance-based facerepresentation and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700