甲苯/甲醇选择烷基化催化剂的研制和催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对二甲苯是基本有机化工原料,主要用于生产对苯二甲酸(PTA)和对苯二甲酸二甲酯(DMT)。甲苯(T)甲醇(M)烷基化合成高浓度对二甲苯是增产对二甲苯的一条新工艺路线。本论文从分子筛类型和载体的选择、成型、改性以及反应条件等方面探讨了影响催化剂活性、对位选择性和稳定性的因素,分析了催化剂孔结构和表面酸性对催化剂择形性和积炭的影响。
     考察了微米HZSM-5、纳米HZSM-5和HMCM-22分子筛的物化性能和催化甲苯甲醇烷基化性能。结果表明,与HZSM-5相比,HMCM-22的活性更高,但易导致甲苯的深度烷基化反应。经氧化物改性后,纳米HZSM-5的对位选择性更高。因此,纳米ZSM-5是制备甲苯甲醇选择烷基化催化剂的适宜母体。
     分别以Al_2O_3、SiO_2、Al_2O_3/RE_2O_3及SiO_2/RE_2O_3为载体,与纳米ZSM-5挤条成型,并采用浸渍法进行改性研究。结果表明,采用Al_2O_3/RE_2O_3复合载体时,催化剂成型简便,载体含量为10~15 wt%Al_2O_3和10 wt%RE_2O_3时,成型的纳米ZSM-5经3 wt%SiO_2、5~10wt%P_2O_5和3 wt%MgO改性后用于甲苯甲醇烷基化反应,其选择性和稳定性都较好。
     水热处理研究表明,水热处理后纳米HZSM-5分子筛催化剂的酸量下降,酸强度降低,骨架铝脱除,形成大量二次孔,孔口收缩。Al_2O_3/RE_2O_3复合载体可以抑制水热处理过程中酸中心的过度消除和深度脱铝。酸强度在+2.27≤H_0≤+4.8之间的酸对甲苯甲醇烷基化反应起主要作用,催化剂活性与总酸量之间没有对应关系。分子筛类型、晶粒大小及载体不同,经水热处理后催化剂的酸性变化、孔分布和催化性能差别很大。Al_2O_3/RE_2O_3复合载体成型纳米HZSM-5经700℃水热处理后表现出甲苯甲醇烷基化活性和选择性均提高的特点,与分子筛类型、晶粒大小和载体密切相关。
     考察了甲苯甲醇烷基化过程中添加水对改性ZSM-5催化剂积炭和催化性能的影响。在反应体系中添加适量的水可以提高甲苯转化率、对二甲苯选择性和催化剂的稳定性;随着H_2O/M摩尔比的提高,催化剂的积炭速率降低,积炭量下降,水在甲苯甲醇烷基化反应中能有效抑制积炭生成,延长催化剂的寿命。
     对Al_2O_3/RE_2O_3复合载体(占分子筛比例为15 wt%的Al_2O_3和10 wt%的RE_2O_3)成型的纳米ZSM-5催化剂,采用3 wt%SiO_2、5 wt%P_2O_5和3 wt%MgO复合改性后用于甲苯甲醇烷基化合成对二甲苯,在常压、460℃、T/M=2 mol/mol、2h~(-1)(WHSV,T+M)、H_2/(T+M)=8 mol/mol,H_2O/(T+M)=8 mol/mol的反应条件下,经500 h长运转,甲苯转化率在20~35%之间(平均值为30.70%),对二甲苯选择性在83~90%之间(平均值为85.92%)。该催化剂的再生性能和放大制备性能良好,具有一定工业应用前景。
Para-Xylene is an important essential organic material for the petrochemical industry, and it is mainly used to produce terephthalic acid (PTA) and terephthalates (DMT). Toluene (T) alkylation with methanol (M) to produce para-Xylene with high concentration is a new technologic route to increase para-Xylene. The influence factors on activity, para-selectivity and stability of catalysts are investigated from aspects such as the type of zeolites and binders, modification, reaction conditions and so on. The effect of pore structure and acid sites on the selectivity and coking of catalysts is analyzed in this work.
     The physicochemical property and the catalytic performance for toluene alkylation with methanol of microscale HZSM-5, nanoscale HZSM-5 and HMCM-22 are studied. The results indicate that HMCM-22 can result in further alkylation of toluene more easily comparing to HZSM-5 zeolites. The catalytic performance of modified MCM-22 and nanoscale ZSM-5 catalysts for toluene alkylation with methanol is compared. It is found that nanoscale ZSM-5 is easier to get high para-selectivity. Therefore, nanoscale ZSM-5 is a better parent zeolite for toluene alkylation with methanol.
     Nanoscale HZSM-5 is bounded with binders such as Al_2O_3, SiO_2, Al_2O_3/RE_2O_3 and SiO_2/RE_2O_3, respectively, and the modification of bounded nanoscale HZSM-5 catalysts is studied. The catalysts bounded with different binders all show good stability during alkylation of toluene with methanol. The nanoscale HZSM-5 catalysts bounded with Al_2O_3/RE_2O_3 as binder show better stability when the para-selective is high after modification with oxides. As the content of Al_2O_3 is higher, the coking of the catalyst is faster and the stability of the catalyst is lower. The nanoscale HZSM-5 catalysts which are bounded with 10-15 wt% Al_2O_3 and 10 wt% RE_2O_3 have better general properties. It can be concluded from the results of modification with oxides that the para-selectivity of nanoscale ZSM-5 can be improved with the decrease of acid strength and the ratio of Bronsted acid sites to Lewis acid sites. The catalysts impregnated with 3 wt% SiO_2, 5-10 wt% P_2O_5 and 3 wt% MgO show better catalytic properties for toluene alkylation with methanol.
     For the nanoscale ZSM-5 zeolite studied in this work, the total amount of acid sites decreases significantly and strong acid sites almost totally disappear with the hydrothermal treatment temperature higher than 500℃. High temperature hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst results in high catalytic activity for the alkylation of toluene with methanol and improves para-selectivity especially when the catalyst is treated at 700℃, but the catalytic activity is very low for alkylation of ethylbenzene with ethanol. It can be suggested that only a small part of the acid with acid strength +2.27≤H_0≤+4.8 seems to contribute to the alkylation of toluene with methanol. The crystal size, appropriate acid strength and right B/L acid site ratio of the steamed nanoscale ZSM-5 may be responsible for achieving the maximal values of both toluene conversion and para-xylene selectivity in toluene alkylation with methanol.
     The coking and catalytic properties of modified ZSM-5 zeolite catalysts by introducing water into the reactor as cofeed along with the toluene/methanol feed during the alkylation reaction are studied. When appropriate water is introduced during toluene alkylation with methanol, all the toluene conversion, para-xylene selectivity and stability are increased; coking is restrained and the age of catalyst is prolonged; the coking speed and coke quantity are decreased with increased H2O/M. But both the toluene conversion and para-xylene selectivity are lower than that in conditions without water introducing.
     For nanoscale ZSM-5 catalysts bounded with Al_2O_3/RE_2O_3 (15 wt% Al_2O_3 and 10 wt% RE_2O_3) as binder, after modification with 3 wt% SiO_2, 5 wt% P_2O_5 and 3 wt% MgO, the toluene conversion can be maintained between 20-35% (average is 30.70%) for 500 hours on-stream with para-xylene selectivity higher than 83% (average is 85.92%) during toluene alkylation with methanol at atmospheric pressure, 460℃, molar ratio of Toluene/Methanol=2, 2 h~(-1) (WHSV of the mixture of toluene and methanol), molar ratio of H_2/(Toluene and Methanol)=8 mol/mol and molar ratio of H_2O/(Toluene and Methanol)=8 mol/mol. The properties of the regeneration and magnified preparation of this catalyst are favorable. Therefore, it is showed potential in application in industry.
引文
[1] 米多,王晔.2004年世界对二甲苯市场综述.化工科技市场,2005,8:37-40.
    [2] 陈庆龄,孔德金,杨卫胜.对二甲苯增产技术发展趋向.石油化工,2004,33(10):909-915.
    [3] 徐兆瑜.增产PX的工艺技术新进展及展望.精细化工原料及中间体,2007,1:24-29.
    [4] 李永芹.我国精对苯二甲酸(PTA)产业发展分析.中国石油和化工经济分析,2006,24:55-59.
    [5] 杨上明.我国对二甲苯市场现状及发展建议.化工技术经济,2003,21(4):18-22.
    [6] 骆红静.对二甲苯市场状况分析和展望.石化市场论坛,2003,6:22-26.
    [7] 赵东辉.国内外对二甲苯供需状况及发展趋势.天津化工,2005,19(5):34-36.
    [8] 蔡目荣.对二甲苯的生产技术进展与市场分析.当代石油石化,2002,10(3):28-31.
    [9] 白尔铮.对二甲苯生产技术及市场.石油化工快报,2004,18:8-11.
    [10] Yashima T, Ahmad H, Yamazaki K, et al. Alkylation on synthetic zeolites: Ⅰ. Alkylation of toluene with methanol. J. catal., 1970, 16(3): 273-280.
    [11] Yashima T, Yamazaki K, Ahmad H, et al. Alkylation on synthetic zeolites: Ⅱ. Selectivity of p-xylene formation. J. catal., 1970, 17(2): 151-156.
    [12] Chen N Y. Personal Perspective of the Development of Para Selective ZSM-5 Catalysts. Ind. Eng. Chem. Res., 2001, 40: 4157-4161.
    [13] Kaeding W W. Methylation of toluene in the presence of a phosphorus-modified activated crystalline aluminosilicate catalyst. USP: 4,002,698, 1977.
    [14] Kaeding W W, Young L B. Selective production of para-xylene. USP: 4,158,024, 1979.
    [15] Chen N Y, Kaeding W W and Dwyer F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc., 1979, 101(22): 6783-6784.
    [16] Keading W W, Chu C, Young L.B. et al. Selective alkylation of toluene with methanol to produce para-xylene. J. Catal., 1981, 67 (1): 159-174.
    [17] Young L B, Butter S A, Kaeding W W. Shape Selective Reactions with Zeolite Catalysts: Ⅲ. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. J. Catal., 1982, 76(2): 418-432.
    [18] Fraenkel D, Levy M. Comparative study of shape-selective toluene alkylations over HZSM-5. J. Catal., 1989, 118(1): 10-21.
    [19] Breen J, Burch R, Kulkarni M, et al. Enhanced para-Xylene Selectivity in the Toluene Alkylation Reaction at Ultralow Contact Time. J. Am. Chem. Soc., 2005, 127: 5020-5021.
    [20] Gentry J C, Kumar S, Lee H M. Innovations in Paraxylene Technology. PETCHEM, 2001.
    [21] Brown S H, Mathias M F, Ware R A, Olson D H. Selective para-xylene production by toluene methylation. USP: 6,504,072, 2003.
    [22] Ghosh A K, Harvey P. Toluene methylation process. USP: 7,060,864, 2006.
    [23] 周日新,安胜恩,刘宗章.ZSM-5沸石选择性催化作用的研究Ⅱ.甲苯烷基化选择性生成对二甲苯.催化学报,1983,4(4):303-306.
    [24] 赵淑萱.甲苯甲醇烷基化制对二甲苯技术经济分析.天然气化工,1984,3,54-59.
    [25] 王文国,黄紫洋.ZSM-5分子筛对甲苯甲醇烷基化的应用综述.福建化工,1999,4:14-16.
    [26] 黄秀仪,武显春.甲苯-甲醇选择性烷基化生产对二甲苯—使用磷、镁改性HZSM-5催化剂.石油学报,1989,5(1):39-43.
    [27] 黄秀仪.甲苯-甲醇在改性HZSM-5催化剂上烷基化生产对二甲苯.石油学报,1991,7(1):55-60.
    [28] 李书纹,李连华,郭汝生等.甲苯歧化与甲苯甲醇烷基化选择生成对二甲苯催化剂的研究.大连工学院学报,1986,25(1):24-25.
    [29] 李书纹,王祥生.在含混合稀土的ZSM-5沸石催化剂上甲苯-甲醇合成对二甲苯的研究.石油学报,1989,5(2):11-16.
    [30] 郭汝生,李书纹,王祥生.甲醇-甲苯直接合成对二甲苯新工艺.天然气化工,1990,1:11-15.
    [31] 李书纹,王祥生.甲苯-甲醇合成高纯度对二甲苯的研究.天然气化工,1991,16(6):3-6.
    [32] 李书纹,李连华,王祥生.在磷一混合稀土催化剂上甲苯歧化制取对二甲苯.燃料化学学报,1987,15(3):271-274.
    [33] 王桂茹,李书纹,王祥生等.硅-混合稀土改性催化剂的制各及其应用.中国专利:CN1060099C.
    [34] 董宏光,张树斌,于士君等.甲苯选择歧化与甲苯-甲醇选择烃化合成对二甲苯新工艺—过程模拟与技术经济.石油化工高等学校学报,2002,15(4):11-20.
    [35] Borgna A, Sepulveda J, Magni S I, Apestegula C R. Active sites in the alkylation of toluene with methanol: a study by selective acid-base poisoning. Appl. Catal. A: Gen., 2004, 276: 207-215.
    [36] 钟炳,罗庆云,肖有燮等.甲醇在HZSM-5上转化为烃类的催化反应机理.燃料化学学报,1986,14(1):9-16.
    [37] 王锦业,王定珠等.阳离子改性ZSM-5沸石上低碳醇转化为芳烃.催化学报,1993,14(3):324-327.
    [38] 张震球,梁左棕,竺逸年等.HZSM-5沸石的微孔填充与Dubinin方程的关系.催化学报,1984,5(3):282-285.
    [39] Wei J. A mathematical theory of enhanced para-xylene selectivity in molecular sieve catalysts. J. Catal., 1982, 76 (2):433-439.
    [40] Vos A M, Rozanska X, Schoonheydt R A, et al. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite. J. Am. Chem. Soc., 2001, 123(12): 2799-2809.
    [41] Weisz P B, Frilette V J. Intracrystalline and molecular-shaDe-selective catalysis by zeolite salts. J. Phys. Chem., 1960, 64 (3): 382-382.
    [42] Weisz P B. Molecular shape selectivity catalysis. Pure & appl. Chem., 1980, 52: 2091-2103.
    [43] Csicsery S M. Shape-selective catalysis in Zeolites. Zeolites, 1984, 4: 202-213.
    [44] Keading W W, Chu C, Young L B. et al. Shape selectivity reactions with zeolite catalysts Ⅱ selective disproprotionation of toluene to produce benzene and p-xylene. J. Catal., 1981, 69(2): 392-398.
    [45] Hibino T, Niwa M, Murakami Y. Shape-selectivity over HZSM-5 modified by chemical vapor deposition of silicon alkoxide. J. Catal., 1991,128 (2): 551-558.
    [46] Kim J H, Ishida A, Okajima M, et al. Modification of HZSM-5 by CVD of various silicon compounds and generation of Para-Selectivity. J. Catal., 1996, 161 (2): 387-392.
    [47] Kim J H, Kunieda T, Niwa M, et al. Generation of shape-selectivity of p-Xylene formation in the synthesized ZSM-5 zeolites. J. Catal., 1998, 173 (2): 433-439.
    [48] Kim J H, Namba S, Yashima T, et al. Para-selectivity of zeolites with MFI structure difference between disproportionation and alkylation. Appl. Catal., 1992, 83 (1): 51-58.
    [49] Sun W D, Xu L P, Chu Y, et al. Controllable synthesis, characterization and catalytic properties of WO_3/ZrO_2 mixed oxides nanoparticles. J. Colloid. Interf. Sci., 2003, 266 (1): 99-106.
    [50] 曾昭槐,李玉光,莫庭焕.高温水蒸汽处理HZSM-5沸石的结构变化及其对甲苯烷基化择形催化的影响.催化学报,1986,7(1):28-33.
    [51] 朱建华,须沁华.表面强酸分布—影响HZSM-5沸石对位选择性的主要因素.催化学报,1993,14(3):208-212.
    [52] 王文月,沈俭一,葛欣.甲苯、甲醇苯环烷基化ZSM-5沸石催化剂的吸附量热研究.燃料化学学报,1998,26(4):303-306.
    [53] 邹薇,杨德琴,朱志荣等.金属氧化物改性的HZSM-5上甲苯与甲醇的烷基化反应.催化学报,2005,26(6):470-474.
    [54] Zheng S, Heydenrych H R, Roger H P, et al. On the enhanced selectivity of HZSM-5 modified by chemical liquid deposition. Topics. Catal., 2003, 22 (1-2): 101-107.
    [55] Zheng S, Jentys A, Lercher J A, et al. On the enhanced para-selectivity of HZSM-5 modified by antimony oxide. J. Catal., 2003, 219 (2): 310-319.
    [56] Bhat Y S, Das J, Rao K V, et al. Inactivation of external surface of ZSM-5: zeolite morphology, crystal size, and catalytic activity. J. Catal., 1996, 159 (2): 368-374.
    [57] Sugi Y, Kubota Y, Komura K, et al. Shape-selective alkylation and related reactions of mononuclear aromatic hydrocarbons over H-ZSM-5 zeolites modified with lanthanum and cerium oxides. Appl. Catal. A: Gen., 2006, 299 (1): 157-166.
    [58] Romero M D, Ovejero G, Uguina M A, et al. Fast removal of the acid properties in the NaX zeolite by ion-exchange under microwave heating. Catal. Commun., 2004, 5: 157-160.
    [59] Llopis F J, Sastre G, Corma A. Xylene isomerization and aromatic alkylation in zeolites NU-87, SSZ-33, β, and ZSM-5: molecular dynamics and catalytic studies. J. Catal., 2004, 227: 227-241.
    [60] Masukawa T, Komatsu T, Yashima T. Alkylation of toluene on HSAPO-5 with various Si concentrations. Zelites, 1997, 19: 429-433.
    [61] Benito I, Riego A D, Martinez M, et al. Toluene methylation on Al13-and GaAl12-pillared clay catalysts. Appl. Catal. A: Gen., 1999, 180(1-2): 175-182.
    [62] Zhu Z R, Chen Q L, Zhu W, et al. Catalytic performance of MCM-22 zeolite for alkylation of toluene with methanol. Catal. Today, 2004, 93-95: 321-325.
    [63] Argauer R J, Landolt G R. Synthesis of Zeolite ZSM-5. USP: 3, 702,866, 1972.
    [64] Yanmamura M, et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites, 1994, 14 (8): 643-649.
    [65] Zhang W P, Bao X H, Guo X W, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catal. Lett., 1999, 60(1/2): 89-94.
    [66] Zhang W P, Han X W, Liu X M, et al. Characterization of the acid sites in dealuminated nanosized HZSM-5 zeolite with the probe molecule trimethylphosphine. J. Mol. Catal. A: Chemical, 2003, 194: 107-113.
    [67] 王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程.石油学报(石油加工),1994,10(2):38-43.
    [68] Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 prepared ba different methods in 2, 7-dimethylphalene isomerization. Zeolites, 1996, 17(4): 334-339.
    [69] 郭洪臣.纳米ZSM-5沸石的上乙苯乙烯烷基化合成对二乙苯的研究:(博士学位论文).大连:大连理工大学,1998.
    [70] Song W, Justice R E, Jones C A, et al. Synthesis, Characterization, and Adsorption Properties of Nanocrystalline ZSM-5. Langmuir, 2004, 20 (19): 8301-8306.
    [71] Zhang W P, Han X W, Liu X M, et al. The stability of nanosized HZSM-5 zeolite: a high-resolution solid-state NMR study. Micro. Meso. Mater., 2001, 50(1): 13-23.
    [72] 王岚,孟霜鹤,谭志诚等.纳米分子筛ZSM-5的热稳定性研究.催化学报,2001,22(5):491-493.
    [73] Sugimoto M, Katsuno H, Takatsu K, et al. Correlation between the crystal size and catalytic properties of ZSM-5 zeolites. Zeolites, 1987, 7(6): 503-507.
    [74] Yamamura M, Chaki K, Wakatsuki T, et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites, 1994, 14(8): 643-649.
    [75] 王祥生,王学勤,郭洪臣.超细沸石粉末一种新催化材料.石油学报(石油加工),1994,38(1):10-15.
    [76] 王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅱ.沸石的SiO_2/Al_2O_3比、酸性质与催化剂失活的关系.石油学报(石油加工),1994,10(1):44-48.
    [77] Rubin M K, Chu P. Composition of synthetic porous crystalline material, its synthesis and use. USP: 4,954,325, 1990.
    [78] Lawton S L, Leonowicz M E, Partridge R D, et al. Twelve-ring pockets on the external surface of MCM-22 crystals. Micro. Meso. Mater., 1998, 23: 109-117.
    [79] Ravishankar R, Bhattacharya D, Jacob N E, et al. Characterization and catalytic properties of zeolite MCM-22. Micro. Mater., 1995, 4: 83-93.
    [80] 彭建彪,谢素娟,徐龙伢等.MCM-22分子筛的结构性质及合成和应用前景.天然气化工,2001,26(2):42-52.
    [81] Juttu G G, Lobo R F. Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Micro. Meso. Mater., 2000, 40: 9-23.
    [82] Corma A, Trigero J M. The use of MCM-22 as a cracking zeolitic additive for FCC. J. Catal., 1997, 165: 102-120.
    [83] Meriaudeau P, Tuan Vu A, Nghiem Vu T, et al. Characterization and Catalytic Properties of Hydrothermally Dealuminated MCM-22. J. Catal., 1999, 185: 378-385.
    [84] Morrison R A, Rubin M K. Gallium-containing zeolite MCM-22. USP: 5,284,643, 1994.
    [85] Lawton S L, Leonowicz M E, Partridge R D, et al. Twelve-ring pockets on the external surface of MCM-22 crystals. Micro. Meso. Mater., 1998, 23: 109-117.
    [86] Corma A, Corell C, Partridge J P. Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 1996, 16(1): 7-14.
    [87] Le Q N. Liquid-phase alkylbenzene synthesis using hydrated catalyst. USP: 5077445, 1991.
    [88] Chu P, Landis M E, Le Q N. Production of ethylbenzene. USP: 5334?95, 1994.
    [89] Del R, Kenneth J, Huss J, et al. Zeolite MCM-22 catalysts for olefin isomerization. USP: 5107047, 1992.
    [90] Mavrodinova V, Popova M. Selective p-xylene formation upon toluene disproportionation over MCM-22 and ZSM-5 zeolites modified with indium. Catal. Commun., 2005, 6: 247-252.
    [91] Beschmann K, Riekert L. Isomerization of xylene and methylation of toluene on zeolite H-ZSM-5: Compound kinetics and selectivity. J. Catal., 1993, 141(2):548-565.
    [92] Luo L, Lv R. Impact of steam treatment on acidity and pore texture of HZSM-5. J. Fuel Chem. Tech., 2004, 32: 606-610.
    [93] Marschmeyer S, Papp H. Surface Analysis of a Hydrothermally Treated H-ZSM-5 Zeolite. Surf. Interface Anal., 1997, 25: 660-666.
    [94] Campbell S M, Bibby D M, Coddington J M, et al. Dealuminationof HZSM-5 Zeolites I. Calcination and Hydrothermal Treatment. J. Cata., 1996, 161: 338-349.
    [95] Kanellopoulos J, Unger A, Schwieger W, et al. Catalytic and multinuclear MASNMR studies of a thermally treated zeolite ZSM-5. J. Cata., 2006, 237: 416-425.
    [96] 葛欣,王文月,沈俭一.改性ZSM-5分子筛催化甲苯、甲醇苯环烷基化反应的研究进展.无机化学学报,2001,17(1):17-26.
    [97] 王清遐,蔡光宇,周春丽等.Mg-ZSM-5沸石催化剂的研究Ⅰ.Mg-ZSM-5的制备及性能.石油化工,1988,17:288-292.
    [98] Li Y, Xie W, Yong S. The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction. Appl. Catal. A: Gen., 1997, 150: 231-242.
    [99] 王清遐,蔡光宇,杨力等.Mg-ZSM-5沸石催化剂的研究Ⅱ.Mg-ZSM-5的水热稳定性.石油化工,1988,17(6):349-353.
    [100] 陈连璋,孙多里,王静玉等.用磷一稀土元素改性ZSM-5催化剂的催化特性研究沸石.大连工学院学报,1986,25(3):33-39.
    [101] 蔡光宇,辛勤,王祥珍等.经磷或镁改质的ZSM-5沸石的表面性质研究.催化学报,1985,6(1):50-57
    [102] Weber R W, Moller K P, Connor C T, et al. The chemical vapour and liquid deposition of tetraethoxysilane on ZSM-5, mordenite and beta. Micropor. Mesopor. Mater., 2000, 35/36 (1-3): 533-543.
    [103] 郭文圭.HZSM-5型沸石表面结构OH基及其酸性的红外研究.催化学报,1981,2:113-120.
    [104] 邹薇,杨德琴,孔德金等.硅改性HZSM25沸石上甲苯与甲醇选择性甲基化的研究.化学反应工程与工艺,2006,22(4):305-309.
    [105] 李承烈.催化剂失活.化学工业出版社,1989,北京.
    [106] 陈晓珍,崔波,石文平等.催化剂的失活原因分析.工业催化,2001,9(5):9-16.
    [107] Froment G F. Modeling of catalyst deactivation. Appl. Catal. A: Gen., 2001, 212:117-128.
    [108] Guisne M, Magnoux P. Organic chemistry of coke formation. Appl. Catal. A: Gen., 2001, 212: 89-96.
    [109] 刘中民,陈国权,王清遐等.分子筛催化剂的失活与积炭.催化学报,1994,15(4):301-303.
    [110] Zhu Z R, Chen Q L, Xie Z K, et al. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Micropor. Mesopor. Mater., 2006, 88 (1-3): 16-21.
    [111] Sotelo J L, Uguina M A, Valverde J L. Deactivation of toluene alkylation with methanol over magnesium-modified ZSM-5: Shape selectivity changes induced by coke formation Appl. Catal., 1994, 114(2): 273-285.
    [112] Sotelo J L, Uguina M A, Valverde J L, et al. Deactivation Kinetics of Toluene Alkylation with Methanol over Magnesium-Modified ZSM-5. Ind. Eng. Chem. Res., 1996, 35: 1300-1306.
    [113] Mirth G, Cejka J, Krtil J, et al. Deactivation and coking of HZSM-5 alkylation reactions. Stud. Surf. Sci. Catal., 1994, 88: 241-248.
    [114] Aboul-Gheit A K, Abdel-Hamid S M, Emam E A. Catalytic para-xylene maximization Ⅱ. Alkylation of toluene with methanol on platinum loaded H-ZSM-5 zeolite catalysts prepared via different routes. Appl. Catal. A: Gen., 1999, 179: 107-115.
    [115] 王学勤,王祥生,郭新闻.超细颗粒五元环型沸石.中国专利:CN 1240193,2000.
    [116] 曾昭槐.择形催化.北京:化学石化出版社.1994.
    [117] Kawai T, K. Jiang M, Ishikawa T. FT-IR and TPD Studies of Adsorbed Pyridine on Re_2O_7/Al_2O_3, Catalysts. J. Catal., 1996, 159: 288-295.
    [118] 杨儒,何瑞德.硅烷对HZSM-5的改性Ⅰ.硅烷化改性HZSM-5的增硅脱铝.燃料化学学报,1994,22(4):393-398.
    [119] 李明慧,李书纹,王祥生.ZSM-5型甲苯-甲醇烷基化催化剂失活原因的探讨.石油化工,1990,19(8):555-558.
    [120] 朱志荣.ZSM-5分子筛择形功能的化学修饰及其对二甲苯催化合成的研究.(博士学位论文).大连:大连化学物理研究所,2003.
    [121] 吕仁庆,王秋英,项寿鹤.碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响.催化学报,2002,23(5):421-424.
    [122] 刘希尧.固体催化剂的研究方法 第一章 催化剂的宏观物性测定(中).石油化工,2000,29(1):63-75.
    [123] 陈连璋,冯益庆,鲍钟瑛等.ZSM-5催化剂改性方法研究Ⅰ.改性方法对择形性能的影响.石油学报(石油加工),1990,6(3):32-36.
    [124] Chu C C. Selective production of para-xylene. USP: 4,001,346, 1977.
    [125] 王辉,张汉军,孔德金等.ZSM-5催化剂水蒸气处理对甲苯选择性歧化性能的影响.石油化工,2000,29(6):401-404.
    [126] 潘履让,汪群海,李赫喧,水蒸气处理对HZSM-5沸石结构、酸性和催化活性的影响,石油学报(石油加工),1994,10(3):97-101.
    [127] Marschmeyer S, Papp H. Surface Analysis of a Hydrothermally Treated H-ZSM-5 Zeolite. Surf. Interface Anal., 1997, 25: 660-666.
    [128] 张培青,王祥生,郭洪臣等.水热处理对纳米HZSM-5沸石酸性质及其降低气油烯烃性能的影响.催化学报,2003,24(12):900-904.
    [129] Zhang P, Wang X, Guo X. Characterization of Modified Nanoscale ZSM-5 Zeolite and Its Application in the Olefins Reduction in FCC Gasoline. Catal. Lett., 2004, 92(1-2): 63-68.
    [130] Zhang P, Guo X, Guo H, et al. Study of the performance of modified nano-scale ZSM-5 zeolite on olefins reduction in FCC gasoline. J. Mol. Catal. A, 261 (2006): 139-146.
    [131] 汪树军,粱娟,郭文珪等.ZSM-5沸石骨架铝迁移规律的研究.Ⅰ.水热处理条件及硅铝比 的影响.催化学报,1992,13(1):38-43.
    [132] Ueda R, Kusakari T, Tomishige K, et al. Nature of Spilt-over Hydrogen on Acid Sites in Zeolites: Observation of the Behavior of Adsorbed Pyridine on Zeolite Catalysts by Means of FTIR. J. Catal., 2000, 194: 14-22.
    [133] Gayubo A G, Aguayo A T, Atutxa A, et al. Role of Reaction-Medium Water on the Acidity Deterioration of a HZSM-5 Zeolite. Ind. Eng. Chem. Res., 2004, 43: 5042-5048.
    [134] Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. J. Catal., 1993, 141: 347-354.
    [135] Zhang W P, Sun M Y, Prins R. Multinuclear MAS NMR Identification of Fluorine Species on the Surface of Fluorinated γ-Alumina. J. Phys. Chem. B, 2002, 106: 11805-11809.
    [136] Kanellopoulos J, Unger A, Schwieger W, et al. Catalytic and multinuclear MAS NMR studies of a thermally treated zeolite ZSM-5. J. Catal., 2006, 237: 416-425.
    [137] Jacobs P, Beyer H K. Evidence for the nature of true Lewis sites in faujasite-type zeolites. J. Phys. Chem., 1979, 83 (9): 1174-1179.
    [138] Luo L, Lv R. Impact of steam treatment on acidity and pore texture of HZSM-5. J. Fuel Chem. Tech. (China), 2004, 32: 606-610.
    [139] 潘履让,李玉娟,赵迎宪等.HZSM-5沸石催化剂酸性质和催化性能的研究Ⅱ.高温水蒸汽处理的影响.燃料化学学报,1984,2:119-123.
    [140] Bhat Y S, Das J, Halgeri A B. Effect of extrusion and silylation of ZSM-5 on para selectivity of diethylbenzenes. Appl. Catal. A: Gen., 1995, 122: 161-168.
    [141] Yadav G D, Goel P K. A new efficient catalyst UDCaT-1 for the alkylation of ethylbenzene with ethanol to diethylbenzene. Clean Tech Environ Policy, 2002, 4(3): 165-170.
    [142] Wang I, Ay C L, Lee B J, et al. Para-selectivity of dialkylbenzenes over modified HZSM-5 by Vapour Phase Deposition of silica. Appl. Catal., 1989, 54 (1): 257-266.
    [143] Wang I, Lee B J, Chen M H. Novel silicon-modified catalyst Si/HZSM-5, its preparation, and a process for synthesizing high purity p-dialkyl benzene from monoalkyl benzene by using said catalyst. USP: 4,950,835, 1990,
    [144] Dejaifve P, Auroux A, Gravelle P C, et al. Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites: A comparative study of the formation and stability of coke deposits. J. Catal., 1981, 70(1): 123-136.
    [145] Ducarme V, Vedrine J C. ZSM-5 and ZSM-11 zeolites: Influence of morphological and chemical parameters on catalytic selectivity and deactivation. Appl. Catal., 1985, 17(1): 161-173.
    [146] 卞俊杰.苯和丙烯液相烷基化合成异丙苯β沸石催化剂的失活.(博士学位论文).大连:大连理工大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700