近红外反射光谱快速评定玉米和小麦营养价值的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要目的是分别在全国范围内广泛收集不同种植地区、不同品种的玉米和小麦样品,并评估其营养价值及变异;建立玉米和小麦中常规成分和氨基酸的近红外快速预测模型;以猪消化代谢试验所测得的消化能和代谢能值作为参比数据,探讨使用近红外反射光谱技术快速预测玉米和小麦中猪有效能含量的可行性。本论文包括以下四个试验:
     试验一:探讨了使用近红外反射光谱测定玉米常规营养成分和猪有效能的可行性。于2009年-2011年,从全国范围内收集玉米样品117个,并测定其常规成分和猪消化能和代谢能。结果表明:不同来源玉米的营养成分差异较大;水分、粗蛋白、粗脂肪、酸性洗涤纤维、中性洗涤纤维和容重的定标决定系数(RSQcal)为0.89~0.95,交互验证决定系数(1-VR)为0.87~0.93,交互验证相对分析误差(RPDcv)为2.83~3.67,验证决定系数(RSQv)为0.85~0.91,验证相对分析误差(RPDv)为2.67~3.20,其定标方程可用于日常分析;粗灰分、总磷和淀粉尚无法用于实际预测;玉米总能、猪消化能和代谢能的RSQcal、1-VR、RPDcv、RSQv和RPDv分别为0.87~0.94、0.86~0.92、2.78-3.53、0.86-0.90和2.64~3.17,定标方程可用于日常分析。
     试验二:探讨了使用近红外反射光谱测定玉米中氨基酸的可行性。于2009年-2011年,从全国范围内收集玉米样品89个,并测定其18种氨基酸含量。结果表明:不同来源玉米中各氨基酸含量的差异较大;除赖氨酸、蛋氨酸、色氨酸和胱氨酸外,其他14种氨基酸的RSQcal、1-VR和RPDcv分别为0.86~0.94、0.84~0.93和2.56~4.44;除精氨酸、赖氨酸、蛋氨酸、色氨酸、胱氨酸、甘氨酸和酪氨酸外,其他11种氨基酸的RSQv和RPDv分别为0.83~0.91和2.51-3.33,定标方程可用于日常分析。除色氨酸外,使用近红外预测氨基酸含量优于使用粗蛋白。
     试验三:探讨了使用近红外反射光谱测定小麦常规营养成分和猪有效能的可行性。于2011年-2012年,从全国范围内收集小麦样品58个,并测定其常规成分和猪消化能和代谢能。结果表明:不同来源小麦的营养成分差异较大;使用44个定标样品建立近红外模型,水分、粗蛋白、粗脂肪、中性洗涤纤维、容重和总能的RSQcal为0.87~0.92,1-VR为0.85-0.90, RPDcv为2.68~3.13,RSQv为0.84~40.90,RPDv为2.51-3.16,其定标方程可用于日常分析,而酸性洗涤纤维、粗灰分、总磷和淀粉尚无法用于实际预测。小麦猪消化能和代谢能的RPDv和RPDv均小于2.50,尚无法应用于实际预测;定标样品量增加到58个后,所有营养成分的交互验证效果均得到改善,除粗灰分、总磷、淀粉和代谢能外,其他营养成分的RPDcv超过2.50。
     试验四:探讨了使用近红外反射光谱测定小麦中氨基酸的可行性。于2009年-2011年,从全国范围内收集小麦样品450个,通过CENTER和SELECT算法选择381个样品用于近红外定标和验证,并测定其18种氨基酸含量。结果表明:不同来源小麦中各氨基酸含量的差异较大;除蛋氨酸、缬氨酸、色氨酸、胱氨酸和酪氨酸外,其他13种氨基酸的RSQcal、1-VR, RPDcv、RSQv和RPDv分别为0.87~0.96、0.83~0.95、2.53~4.53、0.83~0.94和2.54~3.93,定标方程可用于日常分析。除色氨酸外,使用近红外预测氨基酸含量优于使用粗蛋白。
The objective of the present study was to collect corn and wheat samples from different planting regions and varieties from all over china, respectively, and evaluate their nutritional values and variation. Prediction equations were developed for the rapid determination of proximate nutrients and amino acids in corn and wheat by near-infrared reflectance spectroscopy (NIRS). In addition, according to the reference data (digestible energy and metabolizable energy values) determined by digestion-metabolism experiments using growing pigs, the possibility of using NIRS for the rapid determination of available energy (digestible energy, DE; metabolizable energy, ME) in corn and wheat was also investigated. This thesis includes the following4experiments:
     Experiment1:The possibility of using NIRS for quantitative determination of proximate nutrients and swine available energy in corn was investigated. From2009to2011, a total of117corn samples were collected from all over China. The proximate composition were analyzed, and the DE and ME of these corn samples were determined by digestion-metabolism experiments using growing pigs. Results showed that the variations in nutrients were large between different sources of the corn samples. The coefficient of determination for calibration (RSQcal), coefficient of determination for cross-validation (1-VR), ratio of performance to deviation for cross-validation (RPDcv), coefficient of determination for external validation (RSQv) and ratio of performance to deviation for validation (RPDv) of moisture, crude protein (CP), ether extract (EE), acid detergent fiber (ADF), neutral detergent fiber (NDF) and density was0.89-0.95,0.87-0.93,2.83-3.67(>2.50),0.85-0.91and2.67-3.20(>2.50), respectively, which indicates that these NIRS models can be used in routine analysis. The predictive performance of ash, total phosphorus (TP) and starch was poor (RPDv,1.92-2.47,<2.50) and could not be used for routine analysis. The RSQca,,1-VR, RPDcv, RSQv and RPDv for GE, DE and ME was0.87-0.94,0.86-0.92,2.78-3.53(>2.50),0.86-0.90and2.64-3.17(>2.50), respectively, which indicates that good NIRS models were obtained for these three energy constituents and these prediction equations can be used in routine analysis.
     Experiment2:The possibility of using NIRS for quantitative determination of amino acids of corn was investigated. From2009to2011, a total of89corn samples were collected from all over China, and the18amino acids contents were analyzed. Results showed that the variations in18amino acids were large between different sources of the collected corn samples. Except for the lysine, methionine, tryptophan and cystine, good NIRS prediction equations were obtained for the other14amino acids with high RSQcal (0.86-0.94),1-VR (0.84-0.93) and RPDv (2.56-4.44,>2.50) values. Excellent predictive performance of the NIRS models were received for most amino acids (RSQv,0.83-0.91; RPDv,2.51-3.33,>2.50) with the exception of arginine, lysine, methionine, tryptophan, cysteine, glycine and tyrosine, and these NIRS equations could be used in routine analysis. Except for tryptophan, compared to the linear regression results of amino acid contents relative to crude protein, NIRS has a better predictive performance.
     Experiment3:The possibility of using NIRS for quantitative determination of proximate nutrients and swine available energy in wheat was investigated. From2011to2012, a total of58wheat samples were collected from all over China. The proximate composition were analyzed, and the DE and ME were determined by digestion-metabolism experiments using growing pigs. Results showed that the variations in nutrients were large between different sources of the wheat samples. The RSQcal,1-VR, RPDcv, RSQv and RPDv of the NIRS models developed by44calibration samples for moisture, CP, EE, NDF, density and GE was0.87-0.92,0.85-0.90,2.68-3.13(>2.50),0.84-0.90and2.51-3.16(>2.50), respectively, which indicates that these prediction equations can be used in routine analysis. The predictive performance of ADF, ash, TP and starch was poor (RPDv,1.91-2.43,<2.50) and could not be used for routine analysis. The NIRS models obtained for DE and ME also can not be used for routine analysis with low RPDcv (2.29-2.41,<2.50) and RPDv (2.03-2.11,<2.50). The cross-validation performance of models developed by58calibration samples was improved, and the RPDcv values exceeded2.50with the exception of ash, TP, starch and ME.
     Experiment4:The possibility of using NIRS for quantitative determination of amino acids of wheat was investigated. From2009to2011, a total of450wheat samples were collected from all over China,381samples were chosen for NIRS calibration and validation by CENTER and SELECT algorithm, and the18amino acids contents were analyzed. Results showed that the variations in18amino acids were large between different sources of the wheat samples. Except for methionine, valine, tryptophan, cysteine and tyrosine, the RSQcal,1-VR, RPDcv, RSQv and RPDv for the other13amino acids was0.87-0.96,0.83-0.95,2.53-4.53(>2.50),0.83-0.9and2.54-3.93(>2.50), respectively, which indicates that these NIRS models can be used in routine analysis. Except for tryptophan, the predictive performance measuring amino acids by NIRS was better than that obtained by crude protein regression.
引文
车先海,李海玉.2011.玉米容重影响因素浅析.粮食与食品加工,18(1):56-58,61.
    陈锋,何中虎.2003.利用近红外透射光谱技术测定小麦品质性状的研究.麦类作物学报,23(3):1-4.
    陈建,陈晓,李伟,等.2008.基于近红外光谱技术和人工神经网络的玉米品种鉴别方法研究.光谱学与光谱分析,28(8):1806-1809.
    陈建红,黄岛平,黄家雄.2011.广西优良玉米新品种近红外快速快学成分检测研究.安徽农业科学,39(22):13342-13343,13353.
    陈亮,张宏福,高理想,等.2013.仿生法评定饲料干物质消化率的影响因素.中国农业科学,46(15):3199-3205.
    陈念贻,陆文聪,叶晨洲,等.2002.支持向量机及其他核函数算法在化学计量学中的应用.计算机与应用化学,6:691-697.
    褚小立,袁洪福,陆婉珍.2004.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,16(4):528-542.
    褚小立,袁洪福,陆婉珍.2005.基础数据准确性对近红外分析结果的影响.光谱学与光谱分析,25(6):886-889.
    邓奕妮.生长猪人工玉米能值与氨基酸消化率预测方程的建立:[硕士学位论文].北京:中国农业大学,2012.
    丁丽敏,计成,杨彩霞,等.1999.近红外光谱技术快速测定豆粕、玉米真可消化氨基酸含量的研究.动物营养学报,11(3):12-18.
    丁丽敏,计成,杨彩霞,等.2000.近红外光谱技术快速测定棉籽粕、菜籽粕真可利用氨基酸含量的研究.动物营养学报,12(1):21-25.
    丁丽敏,计成,戎易.2002.近红外(NIRS)和粗蛋白预测氨基酸含量的精度比较研究.饲料工业,23(4):16-18.
    高春霞.2001.对玉米容重检测方法的初步探讨.黑龙江农业科学,5:44-45.
    高荣强,范世福.2002.现代近红外光谱分析技术的原理及应用.分析仪器,3:9-12.
    高荣强,范世福,严衍禄,等.2004.近红外光谱的数据预处理研究.光谱学与光谱分析,24(12):1563-1565.
    国家统计局.2014.中华人民共和国2013年国民经济和社会发展统计公报[EB/OL]. http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html,2014-02-04.
    郭淑春,吴春红,钱丽燕,等.1996.用容重评定玉米质量方法的研究.粮食储藏,5:33-34.
    黄庄荣,陈进红,刘海英,等.2011.棉籽17种氨基酸含量的NIRS定标模型构建与测定方法研究.光谱学与光谱分析,31(10):2692-2696.
    蒋淑丽.稻米矿质元素分析及近红外测定技术的研究:[博士学位论文].浙江:浙江大学,2007.
    静书,马静.2014.2013年饲料行业分析及2014年展望.见:中国饲料行业信息网主编.2013中国饲料市场年度报告.北京:pp 1-7.
    李鑫.水分、粒度对玉米和小麦傅里叶近红外预测模型准确性影响的研究:[硕十学位论文].四川: 四川农业大学,2006.
    李勇,魏益民,王锋.2005.影响近红外光谱分析结果准确性的因素.核农学报,19(3):236-240.
    林敏,吕进.2004.基于神经网络与近红外光谱的玉米成分检测方法.红外技术,26(3):78-81.
    刘解放,侯振雨,姚树文.2008.支持向量机及在近红外光谱分析中的应用.重庆工学院学报(自然科学),22(3):47-50.
    刘世杰.饲用小麦营养价值评定及其聚类分析和变异度研究:[博士学位论文].北京:中国农业科学院,2009.
    刘艳青.2002.近红外光谱分析的技术与应用.制造业自动化,24(2):61-62.
    卢利军,庄树华,李爱军,等.2001.应用近红外技术测定黄豆粕中水分、蛋白、粗脂肪.分子科学学报,17(2):115-120.
    陆婉珍,袁洪福,徐广通,等.2000.现代近红外光谱分析技术.北京:中国石化出版社,pp 10-12,137-142,148.
    闵顺耕,李宁,张明祥.2004.近红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析,24(10):1205-1209.
    尼健君.玉米、豆粕和小麦麸猪有效能值回归方程的构建:[博士学位论文].北京:中国农业大学,2012.
    牛智有.鱼粉、精料补充料及其中肉骨粉含量的近红外漫反射光谱分析:[博士学位论文].北京:中国农业大学,2005.
    牛智有,韩鲁佳.2007.鱼粉中氨基酸近红外光谱定量分析.农业机械学报,38(5):114-117.
    牛智有,韩鲁佳.2008.饲料中肉骨粉含量的近红外反射光谱检测方法.农业工程学报,24(4):271-274.
    彭健,陈喜斌主编.2008.饲料学(第二版).北京:科学出版社,pp 94-100.
    全国饲料工作办公室.2013.2012全国饲料工业统计资料.北京:全国畜牧总站及中国饲料工业协会信息中心,pp 2-7.
    芮玉奎,罗云波,黄昆仑,等.2005.近红外光谱在转基因玉米检测中的应用.光谱学与光谱分析,25(10):1581-1583.
    芮玉奎,黄昆仑,王为民,等.2006.近红外光谱技术在检测转基因油菜籽中芥酸和硫甙上的应用研究.光谱学与光谱分析,26(12):2190-2192.
    沈林峰,沈掌泉.2008.应用近红外光谱和片最二小乘法预测玉米中淀粉含量.化学分析计量,17(6):26-28.
    石光涛,韩鲁佳,杨增玲,等.2009.鱼粉中掺杂豆粕的可见和近红外反射光谱分析研究.光谱学与光谱分析,29(2):362-366.
    唐受文.生长猪小麦有效能值和氨基酸消化率预测方程的建立:[硕士学位论文].北京:中国农业大学,2012.
    王彩云.1998.玉米膨化质构变化的研究.中国粮油学报,6:41-43.
    王徽蓉,陈新亮,李卫军,等.2010.玉米品种近红外光谱的特征分析与鉴别方法.光谱学与光谱分析,30(12):3213-3216.
    王卫东,谷运红,秦广雍,等.2007.近红外漫反射光谱法测定整粒小麦单株蛋白质含量.光谱 学与光谱分析,27(4):697-701.
    王文真.1993.样品粒度对近红外分析结果的影响.分析仪器,2:52-54.
    吴建国,石春海,张海珍.2006.构建整粒油菜籽脂肪酸成分近红外反射光谱分析模型的研究.光谱学与光谱分析,26(2):259-262.
    邬文锦,王红武,陈绍江,等.2010.基于近红外光谱的商品玉米品种快速鉴别方法.光谱学与光谱分析,30(5):1248-1251.
    肖志刚,张秀玲,任运宏,等.2001.挤压膨化玉米理化变化的研究.食品研究与开发,3:12-14.
    熊本海,庞之洪,罗清尧.2012.中国饲料成分及营养价值表(2012年第23版).中国饲料,21:33-43.
    徐慧,李扬华,苏琳.2012.木薯品质分析的近红外光谱模型建立及其应用研究.化学研究与应用,24(9):1423-1428.
    许万根,杜荣,苗泽荣.1992.以常规成分为变量估测饲料中必需氨基酸含量的初步探讨.动物营养学报,4(2):25-31.
    严衍禄主编.2005.近红外光谱分析基础与应用.北京:中国轻工业出版社,pp39-40,44-73,98-112.
    严衍禄,陈斌,朱大洲,等编著.2013.近红外光谱分析的原理、技术与应用.北京:中国轻工业出版社,pp 83-91,112-119.
    杨方,解成威,刘大森,等.2010.基于近红外光谱的玉米籽粒CNCPS组分分析及预测研究.光谱学与光谱分析,30(2):348-352.
    杨小红,郭玉秋,傅踢,等.2009.利用近红外光谱法分析玉米籽粒脂肪酸含量的研究.光谱学与光谱分析,29(1):106-109.
    张卉,宋妍,冷静,等.2007.近红外光谱分析技术.光谱实验室,24(3):388-395.
    张丽,董树亭,刘存辉,等.2007.玉米籽粒容重与产量和品质的相关分析.中国农业科学,40(2):405-411.
    张丽英主编.2011.高级饲料分析技术.北京:中国农业大学出版社,pp 206-222.
    张艳.基因型和环境对我国冬播麦区小麦品质性状的研究:[硕士学位论文].北京:中国农业科学院,1997.
    中国农业科学院畜牧研究所编.1992.近红外光谱分析技术.北京:中国农业科技出版社.
    中华人民共和国国家质量监督检验检疫总局.GB 1351-2008.小麦.北京:中国标准出版社,2008-05-01.
    中华人民共和国国家质量监督检验检疫总局.GB 1353-2009.玉米.北京:中国标准出版社,2009-09-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 17890-2008.饲料用玉米.北京:中国标准出版社,2008-04-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 18246-2000.饲料中氨基酸的测定.北京:中国标准出版社,2001-04-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 18868-2002.饲料中水分、粗蛋白、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定近红外光谱法.北京:中国标准出版社,2003-03-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 20806-2006.饲料中中性洗涤纤维(NDF)的测定.北京:中国标准出版社,2007-03-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6432-1994.饲料中粗蛋白的测定方法.北京:中国标准出版社,1995-01-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T6433-2006.饲料中粗脂肪的测定方法.北京:中国标准出版社,2006-09-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6435-2006.饲料水分和其他挥发性物质的测定.北京:中国标准出版社,2007-03-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6437-2002.饲料中总磷的测定.北京:中国标准出版社,2002-07-01.
    中华人民共和国国家质量监督检验检疫总局.GB/T 6438-2007.饲料中粗灰分的测定.北京:中国标准出版社,2007-09-01.
    中华人民共和国农业部.2013.粮食安全:全球化条件下的中国粮食安全[EB/OL]. http://www.moa.gov.cn/fwllm/qgxxlb/hn/201311/t20131126_3686389.htm,2013-11-26.
    中华人民共和国农业部.NY/T 1459-2007.饲料中酸性洗涤纤维的测定.北京:中国农业出版社,2008-03-01.
    中华人民共和国农业部.NY/T 1423-2007.鱼粉和反刍动物精料补充料中肉骨粉快速定性检测近红外反射光谱法.北京:中国农业出版社,2007-09-01.
    周良娟.近红外反射光谱快速评定玉米DDGS营养价值的研究:[博士学位论文].北京:中国农业大学,2011.
    周良娟,张丽英,张恩先,等.2011.近红外反射光谱快速测定玉米DDGS营养成分的研究.光谱学与光谱分析,31(12):3241-3244.
    周显青,张玉荣,张勇.2008.储藏玉米陈化机理及挥发物与品质变化的关系.农业工程学报,24(7):242-246.
    AACC.2000. Approved methods of the American Association of Cereal Chemists.10th ed. AACC, St. Paul, MN.
    Adeola, O.2001. Digestion and balance techniques in pigs. In:Lewis, A. J., and Southern, L. L., eds. Swine Nutrition. New York:CRC Press, pp 903-916.
    Adeola, O., and N. L. Bajjalieh.1997. Energy concentration of high-oil corn varieties for pigs. J. Anim. Sci.75:430-436.
    Agelet, L. E., D. D. Ellis, S. Duvick, et al.2012. Feasibility of near infrared spectroscopy for analyzing corn kernel damage and viability of soybean and corn kernels. J. Cereal Sci.55:160-165.
    Ahmadi, A., and D. A. Barker.2001. The effect of water stress on grain filling processes in wheat. J. Agric. Sci.136:257-269.
    Almeida, F. N., G. I. Petersen, and H. H. Stein.2011. Digestibility of amino acids in corn, corn co-product, and barley meal to growing pigs. J. Anim. Sci.89:4109-4115.
    Alomar, D., S. Hodgkinson, D. Abarzua, et al.2006. Nutritional evaluation of commercial dry dog foods by near infrared reflectance spectroscopy. J. Anim. Physiol. An. N.90:223-229.
    Anderson, D. M., and J. M. Bell.1983a. The digestibility by pigs of dry matter, energy, protein and amino acids in wheat cultivars. I. Glenlea, Neepawa, Inia-66, Pitic-62 and Twin, compared with Bonanza barley. Can. J. Plant Sci.63:385-391.
    Anderson, D. M., and J. M. Bell.1983b. The digestibility by pigs of dry matter, energy, protein and amino acids in wheat cultivars. II. Fifteen cultivars grown in two years, compared with Bonnanza and Fergus barleys,3CW-grade hard red spring wheat. Can. J. Plant Sci.63:393-406.
    Anderson, P. V., B. J. Kerr, T. E. Weber, et al.2012. Determination and prediction of digestible and metabolizable energy from chemical analysis of corn co-products fed to growing pigs. J. Anim. Sci. 90:1242-1254.
    AOAC.2000. Official methods of analysis.17th ed. Association of Official Analytical Chemists, Washington, DC.
    Armstrong, P. R., J. G. Tallada, C. R. Hurburgh, et al.2011. Development of single-seed near-infrared spectroscopic predictions of corn and soybean constituents using bulk reference values and mean spectra. Transactions of the ASABE 54:1529-1535.
    Aufrere, J., D. Graviou, C. Demarquilly, et al.1996. Near infrared reflectance spectroscopy to predict energy value of compound feeds for swine and ruminants. Anim. Feed Sci. Tech.62:77-90.
    Bach Knudsen, K. E., P. Aman, and B. O. Eggum.1987. Nutritive value of Danish-grown barley varieties. Part I:carbohydrates and other major constituent. J. Cereal Sci.6:173-186.
    Baker, C. W., D. I. Givens, and E. R. Deaville.1994. Prediction of organic matter digestibility in vivo of grass silage by near infrared reflectance spectroscopy:effect of calibration method, residual moisture and particle size. Anim. Feed Sci. Technol.50:17-26.
    Balcerowska, G, R. Siuda, J. Skrzypczak, et al.2009. Effect of particle size and spectral sub-range within the UV-VIS-NIR range using diffuse reflectance spectra on multivarizte models in evaluating the severity of fusariosis in ground wheat. Food Addit. Contam.26:726-732.
    Barrier-Guillot, B., Zuprizal, C. Jondreville, et al.1993. Effect of heat drying temperature on the nutritive value of corn in chickens and pigs. Anim. Feed Sci. Technol.41:149-159.
    Barrera, M., M. Cervantes, W. C. Sauer, et al.2004. Ileal amino acid digestibility and performance of growing pigs fed wheat-based diets supplement with xylanase. J. Anim. Sci.82:1997-2003.
    Barnes, R. J., M. S. Dhanoa, and S. J. Lister.1989. Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra. Appli. Spectrosc.43:772-777.
    Bedford, M. R., and H. Schulze.1998. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11:91-114.
    Ben-Gera, I., and K. H. Norris.1968. Direct spectrophotometric determination of fat and moisture in meat products. J. Food Sci.33:64-67.
    Boisen, S., and J. A. Fernandez.1997. Prediction of the total tract digestibility of energy in feedstuffs and pig diets in vitro analyses. Anim. Feed Sci. Technol.68:277-286.
    Borggard, C., and H. Thodberg.1992. Optimal minimal neural interpretation of spectra. Anal. Chem. 64:545-551.
    Bosco, G L.2010. James L. Waters symposium 2009 on near-infrared spectroscopy. Trends Anal. Chem. 29:197-208.
    Brenna, O. V., and N. Berardo.2004. Application of near-infrared reflectance spectroscopy (NIRS) to the evaluatuion of carotenoids content in maize. J Agri. Food Chem.52:5577-5582.
    Carr6, B.2004. Causes for variation in digestibility of starch among feedstuffs. World's Poult. Sci. J. 60:76-89.
    Chen, J. Y., C. Lyo, F. Terada, et al.2002. Effect of multiplicative scatter correction on wavelength selection for near infrared calibration to determine fat content in raw milk. J. Near Infrared Spectrosc.10:301-307.
    Chen, G. L., B. Zhang, J. G Wu, et al.2011. Nondestructive assessment of amino acid composition in rapeseed meal based on intact seeds by near-infrared reflectance spectroscopy. Anim. Feed Sci. Technol.165:111-119.
    Chen, L. J., Z. L. Yang, and L. J. Han.2013. A review on the use of near infrared spectroscopy for feed protein materials. Appl. Spectrosc. Rev.48:509-522.
    Chen, Q., J. Zhao, C. H. Fang, et al.2007. Feasibility study on indentification of green, black, and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochim. Acta A 66:568-574.
    Choct, M.1997. Feed non-starch polysaccharides:chemical structures and nutritional significance. Feed Milling Int.13-26.
    Choct, M., and R. J. Hughes.1997. The nutritive value of new season grains for poultry. Rec. Adv. Anim. Nutr.Aust.146-150.
    Choct, M., and R. J. Hughes.1999. Effects of storage on the nutritive value of cereal grains for poultry. In:Proceedings of the 11th Australian Poultry and Feed Convention, Que., Australia, pp 233-239.
    Choct, M., R. J. Hughes, and G Annison.1999. Apparent metabolizable energy and chemical composition of Australian wheat in relation to environment factors. Aust. J. Agric. Res.50:447-451.
    Clark, D. H., H. F. Mayland, and R. C. Lamb.1987. Mineral analysis of forages with near infrared reflectance spectroscopy. Agron. J.79:485-490.
    Coles, G D., S. M. Hartunian-Sowa, P. D. Jamieson, et al.1997. Environmentally-induced variation in starch and non-starch polysaccharide content in wheat. J. Cereal Sci.26:47-54.
    Cowieson, A. J.2005. Factors that affect the nutritional value of maize for broilers. Anim. Feed Sci. Technol.119:293-305.
    Cozannet, P., Y. Primot, C. Gady, et al.2010. Energy value of wheat distillers grains with solubles for growing pigs and adult sows. J. Anim. Sci.88:2382-2392.
    Cozzolino, D., M. Parker, R. G Dambergs, et al.2006. Chemometrics and visible-near infrared spectroscopic monitoring red wine fermentation in a pilot scale. Biotechnol. Bioeng.95:1101-1107.
    Cromwell, G L., K. L. Herkelman, and T. S. Stahly.1993. Physical, chemical, and nutritional characteristics of distillers dried grains with solubles for chicks and pigs. J. Anim. Sci.71:679-686.
    Daszykowski, M., M. S. Wrobel, H. Czarnik-Matusewicz, et al.2008. Near-infrared reflectance spectroscopy and multivariate calibration techniques applied to modelling the crude protein, fibre and fat content in rapeseed meal. Analyst 133:1523-1531.
    De Boever, J. L., B. G. Cottyn, J. M. Vanacker, et al.1995. The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle. Anim. Feed Sci. Tech.51:243-253.
    De Girolamoa, A., V. Lippolisa, E. Nordkvistb, et al.2009. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by fourier-transform near infrared (FT-NIR) spectroscopy. Food Addit. Contam.26:907-917.
    De La Haba, M. J., A. Garrido-Varo, J. E. Guerrero-Ginel, et al.2006. Near-infrared reflectance spectroscopy for predicting amino acids content in intact processed animal proteins. J. Agric. Food Chem.54:7703-7709.
    De Lange, C. F. M., and H. Birkett.2005. Characterization of useful energy content in swine and poultry feed ingredients. Can. J. Anim. Sci.85:269-280.
    De Oliveira, T. F., E. K. Epprecht, R. L. Ziolli, et al.2008. Multivariate calibration by partial least squares for the quantitative phase analysis using rietveld method. J. Chemometrics 22:141-148.
    Delwiche, S. R.1995. Single wheat kernel analysis by near-infrared transmittance:protein content. Cereal Chem.72:11-16.
    Delwiche, S. R., and R. A. Graybosch.2003. Examination of spectral pretreatments for partial least-squares calibrations for chemical and physical properties of wheat. Appl. Spectrosc. 57:1517-1527.
    Delwiche, S. R., L. O. Pordesimo, D. R. Panthee, et al.2007. Assessing glycinin (11S) and (3-conglycinin (7S) fractions of soybean storage protein by near-infrared spectroscopy. J. Am. Oil Chem. Soc. 84:1107-1115.
    Dhanoa, M. S., S. J. Lister, R. Sanderson, et al.1994. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J. Near Infrared Spec. 2:43-47.
    Diebold, G, R. Mosenthin, H. P. Piepho, et al.2004. Effects of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and consentrations of microbial metabolites in ileal digesta and faeces. J. Anim. Sci.82:2647-2656.
    Dowell, F. E., M. S. Ram, and L. M. Seitz.1999. Predicting scab, vomitoxin, and ergosterol in single wheat kernels using near-infrared spectroscopy. Cereal Chem.76:573-576.
    Dowell, F. E., E. B. Maghirang, R. A. Graybosch, et al.2009. Selecting and sorting waxy wheat kernals using near-infrared spectroscopy. Cereal Chem.86:251-255.
    Eeckhout. W., and M. De Paepe.1994 Total phosphorus, phytate-phosphorus and phytate activity in plant feed stuffs. Anim. Feed Sci. Technol.47:19-29.
    Fairbairn, S. L., J. F. Patience, H. L. Classen, et al.1999. The energy content of barley fed to growing pigs:characterizing the nature of its variability and developing prediction equations for its estimation. J. Anim. Sci.77:1502-1512.
    Fassio, A., E. G. Fernandez, E. A. Restaino, et al.2009. Predicting the nutritive value of high moisture grain corn by near infrared reflectance spectroscopy. Comput. Electron. Agr.67:59-63.
    Fearn, T.2000. Savitzky-Golay filters. NIR News 11:14-15.
    Fearn, T.2002. Assessing calibrations:SEP, RPD, RER and R2. NIR News 13:12-14.
    Fernandez, S. R., S. Aoyagi, Y. Han, et al.1994. Limiting order of amino acids in corn and soybean for growth of the chick. Poult. Sci.73:1887-1896.
    Fernandez-Figares, I., J. Marinetto, C. Royo, et al.2000. Amino-acid composition and protein and carbohydrate accumulation in the grain of triticale grown under terminal water stress simulated by a senescing agent. J. Cereal Sci.32:249-258.
    Fernandez-Cabanas, V. M., A. Garrido-Varo, D. Perez-Marin, et al.2006. Evaluation of pretreatment strategies for near-infrared spectroscopy calibration development of unground and ground compound feedingstuffs. Appl. Spectrosc.60:17-23.
    Fiene, S. P., T. W. York, and C. Schasteen.2006. Correlation of DDGS IDEATM digestibility assay for poultry with cockerel true amino acid digestibility. In:Zimmermann, N. G., eds. Proceedings of the 4th Mid-Atlantic Nutrition Conference. US:Maryland, pp 82-89.
    Florian, W., T. K. Wim, and K. S. Age.1998. Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models. Anal. Chem.70:1761-1767.
    Fontaine, J., J. Horr, and B. Schirmer.2001. Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. J. Agric. Food Chem.49:57-66.
    Fontaine, J., B. Schirmer, and J. Horr.2002. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents.2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. J. Agric. Food Chem.50:3902-3911.
    Fox, S. R., L. A. Johnson, C. R. Hurburgh, et al.1992. Relations of grain proximate composition and physical properties to wet-milling characteristics of maize. Cereal Chem.69:191-197.
    Garnsworthy, P. C., J. Wiseman, and K. Fegeros.2000. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. J. Agr. Sci.135:409-417.
    Garrido-Varo, A., M. D. Perez-Marin, J. E. Guerrero, et al.2005. Near infrared spectroscopy for enforcement of European legislation concerning the use of animal by-product in animal feeds. Biotechnol. Agron. Soc. Environ.9:1-9.
    Gatius, F., J. Lloveras, J. Ferran, et al.2004. Prediction of crude protein and classification of the growth stage of wheat plant samples from NIR spectra. J. Agr. Sci.142:517-524.
    Gill, D. R., J. E. Oldfield, and D. C. England.1966. Comparative values of hulless barley, regular barley, corn, and wheat for growing pigs. J. Anim. Sci.25:34-36.
    Givens, D. I., J. L. De Boever, and E. R. Deaville.1997. The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutr. Res. Rev.10:83-114.
    Gonzalez-Martin, I., J. M. G. C. M. Bustamante-Rangel, and M. M. Delgado-Zamarreno.2006. Near infrared spectroscopy (NIRS) reflectance technology for determination of tocopherols in animal feeds. Anal. Chim. Acta 558:132-136.
    Gonzalez-Martin, I., J. M. Hernandez-Hierro, and J. M. Gonzalez-Cabrera.2007. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting mineral composition (Ca, K, P, Fe, Mn, Na, Zn), protein,and moisture in alfalfa. Anal. Bioanal. Chem.387:2199-2205.
    Graham, H., K. Hesselman, and P. Aman.1986. The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diets. J. Nutr.116:242-251.
    Gutierrez-Alamo, A., P. P. de Ayala, M. W. A. Verstegen, et al.2008. Variability in wheat:fators affecting its nutritional value. World's poultry Sci. J.64:20-39.
    Han, Y. K., I. H. Kim, O. S. Kwon, et al.2003. Effects of extruded corn in nursery and finishing pigs. J. Anim. Si. Technol.45:949-956.
    Han, Y., J. W. Soita, and P. A. Thacker.2005. Performance and carcass composition of growing-finishing pigs fed wheat or corn-based diets. Asian-Aust. J. Anim. Sci.18:704-710.
    Hancock, J. D., R. H. Hines, B. T. Richert, et al.1993. Extrusion of corn, sorghum, wheat, and barley affects growth performance and nutrient digestibility in finishing pigs. J. Anim. Sci.71 (Suppl. 1):13(Abstr.).
    Hancock, J. D., and K. C. Behnke.2001. Use of ingredient and diet processing technologies (grinding, mixing, pelleting, and extruding) to produce quality feeds for pigs. In:Lewis A. J., and L. L. Southern, eds. Swine Nutrition,2nd Ed. Boca Raton, FL:CRC Press, pp 469-497.
    Healy, B. J., J. D. Hancock, G. A. Kemmedy, et al.1994. Optimum particle size of corn and hard and soft sorghum for nursery. J. Anim. Sci.72:2227-2236.
    Hesselman, K., K. Elwinger, M. Nilsson, et al.1981. The effect of β-glucanase supplementation, stage of ripeness, and storage treatment of barley in diets fed to broiler chickens. Poult. Sci.60:2664-2671.
    Hesselman, K., and S. Thomke.1982. Influence of some factors on development of viscosity in the water-extract of barley. Swed. J. Agric. Res.12:17-22.
    Hruschka, W. R.2001. Data analysis:Wavelength selection methods. In:Williams, P., and Norris, K., eds. Near infrared technology in the agricultural and food industries.2nd ed. American Association of Cereal Chemists International, St. Paul, MN, pp 39-58.
    Huang, S. X., W. C. Sauer, B. Marty, et al.1999. Amino acid digestibilities in different samples of wheat shores for growing pigs. J. Anim. Sci.77:2469-2477.
    International Organization for Standardization.1998. Animal feeding stuffs, animal products, and faeces or urine-Determination of gross calorific value-bomb calorimeter method. Reference no.9831.
    Ivan, M., L. R. Giles, A. R. Alimom, et al.1974. Nutritional evaluation of wheat:Part 1:effects of preparation on digestibility of dry matter, energy and nitrogen in pigs. Anim. Prod.19:359-365.
    Janik, L. J., D. Cozzolino, R. Dambergs, et al.2007. The prediction of total anthocyanin concentration in red-grape homogenates using visible-near-infrared spectroscopy and artificial neural networks. Anal. Chem. Acta 594:107-118.
    Jensen, A. H., D. H. Baker, D. E. Baker, et al.1969. Comparison of opaque 2-corn, milo, and wheat in diets for finishing pigs. J. Anim. Sci.29:16-19.
    Jha, R., D. N. Overend, P. H. Simmins, et al.2011. Chemical characteristics, feed processing quality, growth performance and energy digestibility among wheat classes in pelleted diets fed to weaned pigs. Anim. Feed Sci. Technol.170:78-90.
    Ji, Y., L. Zuo, F. L. Wang, et al.2012. Nutritional value of 15 corn gluten meals for growing pigs: chemical composition and amino acid digestibility. Arch. Anim. Nutr.66:283-302.
    Jiang, H. Y., Y. J. Zhu, L. M. Wei, et al.2007. Analysis of protein, starch, and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea may L.). Plant Breeding 126:492-497.
    Johansen, K., and H. D. Poulsen.2003. Substitution of inorganic phosphorus in pig diets by microbial phytate supplementation-a review. Pig News Info.24:N77-N82.
    Jood, S., A. C. Kapoor, and R. Singh.1993. Available carbohydrates of cereal grains as affected by storage and insect infestation. Plant Foods Hum. Nutr.43:45-54.
    Jouan-Rimbaud, D., B. Walczak, D. L. Massart, et al.1995. Comparison of multivariate methods based on latent vectors and methods based on wavelength selection for the analysis of near-infrared spectroscopic data. Anal. Chim. Acta 304:285-295.
    Kass, M. L., P. J. Van Soest, and W. G Pond.1980. Utilization of dietary fiber from alfalfa by growing swine. II. Volatile fatty acid concentration in and disappearance from the gastrointestinal tract. J. Anim. Sci.50:192-197.
    Kerr, B. J., W. A. Dozier, and G C. Shurson.2013. Effect of reduced-oil distillers dried grains with solubles composition on digestible and metabolizable energy value and prediction in growing pigs. J. Anim. Sci.91:3231-3243.
    Khan, I., I. Ali, and A. Zeb.2007. Analysis of wheat varieties by near infrared reflectance spectroscopy. J. Chem. Soc. Pak.29:236-238.
    Kim, J. C. Factors influencing the total tract digestibility of nutrients from wheat for the weaning pigs: [PHD Dissertation]. Murdoch:Murdoch University,2003.
    Kim, J. C., B. P. Mullan, P. H. Simmins, et al.2003. Variation in the chemical composition of wheats in western Australia as influenced by variety, growing region, season and post-harvest storage. Aust. J. Agric. Res.54:541-550.
    Kim, J. C., B. P. Mullan, P. H. Simmins, et al.2004. Effect of varety, growing region and growing season on digestible energy content of wheats grown in western Australia for weaner pigs. Anim. Sci. 78:53-60.
    Kim, J. C., P. H. Simmins, B. P. Mullan, et al.2005a. The digestible energy value of wheat for pigs, with special reference to the post-weaned animal [Review]. Anim. Feed Sci. Technol.122:257-287.
    Kim, J. C., B. P. Mullan, and J. R. Pluske.2005b. A comparison of waxy versus non-waxy wheats in diets for weaner pigs:effects of particle size, enzyme supplementation and collection day on total tract apparent digestibility in young weaned pigs. Anim. Feed Sci. Technol.120:51-65.
    King, R. H., and M. R. Taverner.1975. Prediction of the digestible energy in pig diets from analyses of fibre contents. Anim. Prod.21:275-284.
    Kovalenko, I. V., G. R. Rippke, and C. R. Hurburgh.2006a. Measurement of soybean fatty acids by near-infrared spectroscopy:linear and nonlinear calibration methods. J. Am. Oil Chem. Soc. 83:421-427.
    Kovalenko, I. V., G. R. Rippke, and C. R. Hurburgh.2006b. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J. Agric. Food Chem.54:3485-3491.
    Kopinski, J.1997. Characteristics of cereal grains affecting energy value. In:Pig Research and Development Corporation Final Report DAQ35P. Pig Research and Development Corporation, Canberra, ACT, Australia.
    Leung, A. K., F. Chau, and J. Gao.1998. A review on applications of wavelet transform techniques in chemical analysis:1989-1997. Chemometr. Intel. Lab.43:165-184.
    Li, Y. K., X. G. Shao, and W. S. Cai.2007. A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72:217-222.
    Liu, X., and L. J. Han.2006. Evaluation of near-infrared reflectance spectroscopy (NIRS) for predicting chemical composition of straw silage. J. Anim. Feed Sci.15:329-336.
    Longenecker, H. E.1939. Deposition and utilization of fatty acids:II. The non-preferential utilization and slow replacement of depot fat consisting mainly of oleic and linoleic acids; and a fatty acid analysis of corn oil. J. Biol. Chem.129:13-22.
    Lordelo, M. M., S. A. Shaaban, N. M. Dale, et al.2008. Near infrared reflectance spectroscopy for the determination of free gossypol in cottonseed meal. J. Appl. Poultry Res.17:243-248.
    Lundbald, K. K. Effect of diet conditioning on physical and nutritional quality of feed for pigs and chickens:[PHD Dissertation]. Norway:Norwegian University of Life Sciences,2009.
    Malley, D. F., H. Ronicke, D. L. Findlay, et al.1999. Feasibility of using near-infrared reflectance spectroscopy for the analysis of C, N, P, and diatoms in lake sediments. J. Paleolimnol.21:295-306.
    Mavromichalis, I., and J. D. Hancock.1999. Wheat grain, co-product in swine feed examined. Feedstuffs 71:13-17.
    Mavromichalis, I., J. D. Hancock, B. W. Senne, et al.2000. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs. J. Anim. Sci.78:3086-3095.
    Maziya-Dixon, B. B., J. G. Kling, and A. E. Okoruwa.2000. Physical, chemical, and water absorption characteristics of tropical maize hybrids. Afr. Crop Sci. J.8:419-428.
    McCann, M. E. E., K. J. McCracken, and R. E. Agnew.2006. The use of near infrared reflectance spectroscopy (NIRS) for prediction of the nutritive value of barley for growing pigs. Irish J. Agri. Food Res.45:187-195.
    Metayer, J. P., F. Grosjean, and J. Castaing.1993. Study of variability in French cereals. Anim. Feed Sci. Technol.43:87-108.
    Metz, S. H. M., and J. M. van der Meer.1985. Nylon bag and in vitro technique to predict in vivo digestibility of organic matter in feedstuffs for pigs. In:Just, A., J(?)rgensen, H., and Fernandez, J. A., eds. Proceeding of the 3rd international seminar on digestive physiology in the pigs. Copenhagen: National Institute of Animal Science, pp 373-376.
    Mikkelsen, L. L., and B. B. Jensen.2003. The stomach as a barrier that reduces the occurrence of pathogenic bacteria in pigs. In:Ball, R.0., ed. Proceedings of the Ninth International Symposium on Digestive Physiology in pigs. Canada:University of Alberta, pp 66-68.
    Miller, C. E.2001. Chemical principles of near infrared technology. In:Williams, P. and Norris, K., eds. Near-infrared Technology in the Agricultural and Food Industries. AACC, St Paul, MN, pp 19-37.
    Montes, M., H. F. Utz, W. Schipprack, et al.2006. Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters. Plant Breeding 125:591-595.
    Mouazen, A. M., B. Kuang, J. De Baerdemaeker, et al.2010. Comparison among principle component, partial least squares and black propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 158:23-31.
    Muley, N. S., E. van Heugten, A. J. Moeser, et al.2007. Nutritional value for swine of extruded corn and corn fractions obtained after dry milling. J.Anim. Sci.85:1695-1701.
    Mutlu, A. C., I. H. Boyaci, H. E. Genis, et al.2011. Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. Eur. Food Res. Technol.233:267-274.
    Noblet, J., and J. M. Perez.1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci.71:3389-3398.
    Noblet, J., H. Fortune, C. Dupire, et al.1993. Digestible, metabolizable and net energy values of 13 feedstuffs for growing pigs:effect of energy system. Anim. Feed Sci. Technol.42:131-149.
    Noblet, J., and Y. Jaguelin-Peyraud.2007. Prediction of digestibility of organic matter and energy in the growing pig from an in vitro method. Anim. Feed Sci. Technol.134:211-222.
    Norris, K. H., and J. R. Hart.1965. Direct Spectrophotometrics Determination of Moisture Content of Grains and Seeds. In:Wexler, A., ed. Principles and Methods of Measuring Moisture in Liquids and Solids, Vol. IV. Reinhold Publishing Corporation, New York, pp.19-25.
    Norris, K. H., R. F. Barnes, J. E. Moore, et al.1976. Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci.43:889-897.
    Norris, K. H., and P. C. Williams.1984. Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. Influence of particle size. Cereal Chem.61:158-161.
    Nortey, T. N., J. F. Patience, P. H. Simmins, et al.2007. Effects of individual or combined xylanase and phytate supplementation on energy, amino acids, and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun. J. Anim. Sci. 85:1432-1443.
    Nortey, T. N., J. F. Patience, J. S. Sands, et al.2008. Effects of xylanase supplementation on the apparent digestibility and digestible content of energy, amino acids, phosphrous, and calcium in wheat and wheat by-products from dry milling fed to grower pigs. J. Anim. Sci.86:3450-3464.
    Nyachoti, C. M., J. D. House, B. A. Slominski, et al.2005. Energy and nutrient digestibilities in wheat dried distillers'grains with solubles fed to growing pigs. J. Sci. Food Arg.85:2581-2586.
    NRC.1998. Nutrient Requirements of Swine.10th ed. National Academy Press, Washington, DC.
    NRC.2012. Nutrient Requirements of Swine.11th ed. National Academy Press, Washington, DC.
    Orman, B. A., and R. A. Schumann.1991. Comparison of near-infrared reflectance spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. J. Agric. Food Chem.39:883-886.
    Pasquini, C.2003. Near infrared spectroscopy:fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc.14:198-219.
    Patil, A. G, M. D. Oak, S. P. Taware, et al.2010. Nondestructive estimation of fatty acid composition in soybean [Glycine max (L.) Merrill] seeds using near-infrared transmittance spectroscopy. Food Chem.120:1210-1217.
    Pedersen, C., M. G. Boersma, and H. H. Stein.2007. Energy and nutrient digestibility in Nutridense corn and other cereal grains fed to growing pigs. J. Anim. Sci.85:2473-2483.
    Perez-Marin, D., A. Garrido-Varo, J. E. Guerrero, et al.2006. Use of artificial neural networks in near-infrared reflectance spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs. Appl. Spectrosc.60:1062-1069.
    Pires, F. F., M. C. Lemos, J. C. Petersen, et al.2001. Use of near-infrared reflectance spectroscopy to analyze vitamin content. J. Appl. Poult. Res.10:412-418.
    Pixley, K. V., and K. J. Frey.1991. Combining ability for test weight and agronomic traits of oat. Crop Sci.31:1448-1451.
    Pointillart, A., N. Fontaine, and M. Thomasset.1984. Phytate phosphorus utilization and intestinal phosphatases in pigs fed low phosphorus:wheat or corn diets [Phosphorus availability]. Nutr. Rep. Int.29:473-483.
    Prachayawarakorn, S., S. Soponronnarit, S. Wetchacama, et al.2004. Methodology for enhancing drying rate and improving maize quality in a fluidized dryer. J. Stored Prod. Res.40:379-393.
    Pujol, S., A. M. Perez-Vendrell, and D. Torrallardona.2007. Evaluation of prediction of barley digestible nutrient content with near-infrared reflectance spectroscopy (NIRS). Livest. Sci.109:189-192.
    Qiao, Y, and T. A. T. G. van Kempen.2004. Technical note:comparison of raman, mid, and near infrared spectroscopy for predicting the amino acid content in animal meals. J. Anim. Sci.82:2596-2600.
    Quampah, A., Z. R. Huang, J. G. Wu, et al.2012. Estimation of oil content and fatty acid composition in cottonseed kernel powder using near infrared reflectance spectroscopy. J. Am. Oil Chem. Soc. 89:567-575.
    Quinn, P. R. Q., J. L. Nelssen, R. D. Goodband, et al.2000. Nutritional value of a genetically improved high-lysine, high-oil corn for young pigs. J. Anim. Sci.78:2144-2149.
    Ravindran, V., S. Johnston, B. J. Camden, et al.2001. Influence of storage of New Zealand wheats on energy digestibility for poultry. In:Recent Advances in Animal Nutrition in Austrilia Armidale, vol. 13. University of New England, Australia, p 30A.
    Regmi, P. R., N. S. Ferguson, and R. T. Zijlstra.2009. In vitro digestibility techniques to predict apparent total tract energy digestibility of wheat in grower pigs. J. Anim. Sci.87:3620-3629.
    Rehman, Z. U., and W. H. Shah.1999. Biochemical changes in wheat during storage at three temperatures. Plant Foods Hum. Nutr.54:109-117.
    Ren, W. K., Y. L. Yin, G Liu, et al.2012. Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089-2094.
    Rendon-Villalobos, R., L. A. Bello-Perez, P. Osorio-diaz, et al.2002. Effects of storage time on in vitro digestibility and resistant starch content of nixtamal, masa, and tortilla. Cereal Chem.79:340-344.
    Reuter, T., K. Aulrich, A. Berk, et al.2002. Investigation on genetically modified maize (Bt-maize) in pig nutrition:chemical composition and nutritional evaluation. Arch. Anim. Nutr.56:23-31.
    Rodriquez, J. P., and L. G Young.1981. Utilization of corn wheat in diets of pigs weaned at 7 days of age. J. Anim. Sci.53:683-692.
    Roggo, Y, P. Chalus, L. Maurer, et al.2007. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharmaceut. Biomed.44:683-700.
    Rosales, A., L. Galicia, E. Oviedo, et al.2011. Near-infrared reflectance spectroscopy (NIRS) for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs. J. Agric. Food Chem.59:10781-10786.
    Rumbaugh, M. D.1959. Test weight and maturity of corn. Agron. J.51:307.
    Sauvant, D., J. M. Perez, and G Tran.2004. Tables of composition and nutritive value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses, fish. Wageningen Academic Publishers, Wageningen, the Netherlands.
    Selle, P. H., V. Ravindran, R. A. Caldwell, et al.2000. Phytate and phytase:consequences for protein utilization. Nutr. Res. Rev.13:255-278.
    Shen, F. X., Y. Niu, D. T. Yang, et al.2010. Determination of amino acids in Chinese rice wine by Fourier transform near-infrared spectroscopy. J. Agic. Food Chem.58:9809-9816.
    Shenk, J. S., and M. O. Westerhaus.1991a. Population definition, sample selection and calibration procedures for near infrared reflectance spectroscopy. Crop Sci.31:469-474.
    Shenk, J. S., and M. O. Westerhaus.1991b. Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci.31:1548-1555.
    Shurson, G, M. Spiehs, and M. Whitney.2004. The use of maize distiller's dried grains with solubles in pig diets. Pig News Inf.25.75N-83N.
    Shi, Y. G, X. H. Feng, and Z. C. Li.2001. Consideration of some problems in near infrared spectra analysis. Chin. J. Spectrosc. Lab.4:435-437.
    Siuda, R., G Balcerowska, and C. Sadowski.2006. Comparison of the usability of different spectral ranges within the near ultraviolet, visible and near infrared ranges (UV-VIS-NIR) region for the determination of the content of scab-damaged component in blended samples of ground wheat. Food Addit. Contam.23:1201-1207.
    Small, W. G 2006. Chemometrics and near-infrared spectroscopy:Avoiding the pitfalls. Trends Anal. Chem.25:1057-1066.
    Soldado, A., J. R. Quevedo, A. Bahamonde, et al.2011. Validation of two discriminant strategies applied to NIRS data spectra for detection of animal meals in feedstuffs. Span. J. Agric. Res.9:41-48.
    Song, G. L., D. F. Li, X. S. Piao, et al.2003. Apparent ileal digestibility of amino acids and the digestible and metabolizable energy content of high-oil corn varieties and its effect on growth performance of pigs. Arch. Anim. Nutr.57:297-306.
    Soto-Camara, M., A. J. Gaitan-Jurado, and J. Dominguez.2012. Application of near infrared spectroscopy technology for the detection of fungicide on durum wheat samples. Talanta 97:298-302.
    Spiehs, M. H., M. H. Whitney, and G. C. Shurson.2002. Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci.80: 2639-2645.
    Stein, H. H., S. W. Kim, T. T. Nielsen, et al.2001. Standardized ileal protein and amino acid digestibility by growing pigs and sows. J. Anim. Sci.79:2113-2122.
    Stein, H. H., A. A. Pahm, and J. A. Roth.2007. Feeding wheat to pigs. Swine Focus No.002. Univ. of Illinois, Urbana-Champaign.
    Stein, H.H., and G. C. Shurson.2009. Board invited review. The use and application of distillers dried grains with solubles (DDGS) in swine diets. J. Anim. Sci.87:1292-1303.
    Stock, R. A., J. M. Lewis, T. J. Klopfenstein, et al.2000. Review of new information on the use of wet and dry milling feed by-products in feedlot diets. J. Anim. Sci.77:1-12.
    Styer, R. C., and D. J. Cantliffe.1983. Changes in seed structure and composition during development and their effects on leakage in two endosperm mutants of sweet corn. J. Am. Soc. Hortic. Sci. 108:721-728.
    Sun, T., H. N. Laerke, H. Jorgensen, et al.2006. The effect of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim. Feed Sci. Technol. 131:66-85.
    Uddin, M., E. Okazaki, H. Fukushima, et al.2006. Nondestructive determination of water and protein in surimi by near-infrared spectroscopy. Food Chem.96:491-495.
    Van Barneveld, R. J.1999. Chemical and physical characteristics of grains related to variability in energy and amino acid availability in pigs:a review. Aust. J. Agric. Res.50:667-687.
    Van Barneveld, R. J., J. D. Nuttall, P. C. Flinn, et al.1999. Near infrared reflectance measurement of the digestible energy content of cereals for growing pigs. J. Near Infrared Spectrosc.7:1-7.
    Van der Poel, A. F. B., H. M. P. Fransen, and M. W. Bosch.1997. Effect of expander conditioning and/or pelleting of a diet containing tapioca, pea and soybean meal on the total tract digestibility in growing pigs. Anim. Feed Sci. Technol.66:289-295.
    Van Kempen, T., and J. C. Bodin.1998. Near-infrared reflectance spectroscopy (NIRS) appears to be superior to nitrogen-based regression as a rapid tool in predicting the poultry digestible amino acid content of commonly used feedstuffs. Anim. Feed Sci. Tech.76:139-147.
    Vicente, B., D. G. Valencia, M. P. Serrano, et al.2009. Effects of feeding rice and the degree of starch gelatinization of rice on nutrient digestibility and ileal morphology of young pigs. Brit. J Nutr. 101:1278-1281.
    Wang, D., F. E. Dowell, and R. E. Lacey.1999. Single wheat kernel size effects on near infrared reflectance spectra and color classification. Cereal Chem.76:34-37.
    Wang, W. Z.1996. Factors affected the accuracy of near infrared analytical technology. Modern Sci. Instrum.1:24-25.
    Weber, T. E., S. L. Trabue, C. J. Ziemer, et al.2010. Evaluation of elevated dietary corn fiber from corn germ meal in growing female pigs. J. Anim. Sci.88:192-201.
    Weurding, R. E., A. Veldman, W. A. G. Veen, et al.2001a. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J. Nutr.131:2329-2335.
    Weurding, R. E., A. Veldman, W. A. G Veen, et al.2001b. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens. J. Nutr.131:2336-2342.
    Williams, P. C.1975. Application of near infrared reflectance spectroscopy to analysis of cereal grain and oilseed. Cereal Chem.52:561-576.
    Williams, P. C., K. H. Norris, and W. S. Zarowski.1982. Influence of temperature on estimation of protein and moisture in wheat by near infrared reflectance. Cereal Chem.59:473-477.
    Williams, P. C., K. R. Preston, K. H. Norris, et al.1984. Determination of amino acids in wheat and barley by near-infrared reflectance spectroscopy. J. Food Sci.49:17-20.
    Williams, P. C., K. H. Norris, and D. C. Sobering.1985. Determination of protein and moisture in wheat and barley by near-infrared transmission. J. Agirc. Food Chem.33:239-244.
    Williams, P. C., and D. C. Sobering.1993. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc.1:25-32.
    Williams, P. C.2001. Implementation of near-infrared technology. In:Williams, P. C., and Norris, K., eds. Near-infrared technology in the agricultural and food industries,2nd ed. American Association of Cereal Chemists, St. Paul, Minn., pp 145-169.
    Wiseman, J.2000. Correlation between physical measurements and dietary energy values of wheat for poultry and pigs. Anim. Feed Sci. Technol.84:1-11.
    Wiseman, J.2006. Variations in starch digestibility in non-ruminants. Anim Feed Sci. Technol. 130:66-77.
    Wold, S., H. Antti, F. Lindgren, et al.1998. Orthogonal signal correction of near-infrared spectra. Chemometr. Intel. Lab.44:175-185.
    Wondra, K. J., J. D. Hancock, K. C. Behnke, et al.1995. Effect of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs. J. Anim. Sci. 73:757-763.
    Wu, G Y.2009. Amino acids:metabolism, functions, and nutrition. Amino Acids 37:1-17.
    Wu, G. Y, Z. L. Wu, Z. L. Dai, et al.2013. Dietary requirements of "nutritionally non-essential amino acids" by animals and humans. Amino Acids 44:1107-1113.
    Wu, J. G, C. H. Shi, and X. M. Zhang.2002. Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy. Field Crop. Res.75:1-7.
    Yang, F, D. He, and C. W. Xie.2011. Analysis and estimate of corn quality by near infrared reflectance (NIR) spectroscopy. Photonics and Optoelectronics (SOPO). Wuhan:IEEE,1-4.
    Yin, Y. L., J. D. G. McEvoy, H. Schulze, et al.1999. Apparent digestibility (ileal and overall) of nutrients and endogenous nitrogen losses in growing pigs fed wheat (var. Soissons) or its by-products without or with xylanase supplementation. Livest. Prod. Sci.62:119-132.
    Zhang, B., Z. Q. Rong, Y. Shi, et al.2011. Prediction of the amino acid composition in brown rice using different sample status by near-infrared reflectance spectroscopy. Food Chem.127:275-281.
    Zhang, Y., Q. Cong, Y. X. Xie, et al.2008. Quantitative analysis of routine chemical constituents in tabacco by near-infrared spectroscopy and support vetor machine. Spectrochim. Acta A 71:1408-1413.
    Zhao, F., H. F. Zhang, S. S. Hou, et al.2008. Predicting metabolizable energy of normal corn from its chemical composition in adult Pekin ducks. Poult. Sci.87:1603-1608.
    Zhou, L. J., L. Y. Zhang, En. X. Zhang, et al.2012. Rapid determination of swine available energy and amino acids in corn distillers dried grains with solubles by near-infrared reflectance spectroscopy. Anim. Feed Sci. Technol.175:198-202.
    Zijlstra, R. T., C. F. M. de Lange, and J. F. Patience.1999. Nutritional value of wheat for growing pigs:chemical composition and degestible energy content. Can. J. Anim. Sci.79:187-194.
    Zijlstra, R. T., M. L. Swift, L. F. Wang, et al.2011. Short communication:near infrared reflectance spectroscopy accurately predicts the digestible energy content of barley for pigs. Can. J. Anim. Sci. 91:301-304.
    Zou, X. B., J. W. Zhao, M. J. W. Povey, et al.2010. Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 667:14-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700