结核分枝杆菌MPT64基因重组腺病毒疫苗对小鼠血清IL-12/IFN-γ水平的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:检测实验疫苗的免疫原性及其对感染结核小鼠的免疫保护效力,为新型结核疫苗的研究及筛选提供依据。
     方法:将50只6-8周龄,体重16-18g,雌性C57BL/6小鼠随机分为5组(A为阴性对照组、B为阳性对照组、C为空载体组、D为实验疫苗组、E为卡介苗组),各组10只,每组再分为免疫原性组4只,保护效力组6只。A、B组每只双侧胫前肌各缓慢注射生理盐水50uL;C组每只双侧胫前肌各缓慢注射重组腺病毒50uL;D组每只双侧胫前肌各缓慢注射结核分枝杆菌MPT-64基因重组腺病毒疫苗50uL。上述四组每隔2周注射一次,共免疫三次。E组按卡介苗说明书以1mL稀释液溶解冻干粉末,每只小鼠尾部皮内注射100uL,只免疫一次,于其他组首次免疫时进行。末次免疫4周后取各组免疫原性组小鼠,采用摘眼球法采血,分离血清存于-20度冰箱待检。B、C、D、E组中保护效力组小鼠用5×106CFU/mL H37Rv菌悬液经尾静脉注射攻毒,每只小鼠尾静脉注射0.5mL菌悬液,A组小鼠仍予生理盐水,4周后摘眼球取血,分离血清-20度冰箱待检。所收集标本均采用ELISA法检测血清中抗MPT64蛋白特异性抗体、细胞因子IFN-γ及IL-12水平。
     结果:实验疫苗可刺激小鼠产生较高水平的抗MPT64蛋白特异性抗体,且其水平显著高于阴性对照组、阳性对照组、空载体组和卡介苗组。免疫原性组及保护效力组结果均显示:实验疫苗血清IFN-γ、IL-12水平显著高于阴性对照组、阳性对照组及空载体组,而与卡介苗组差异无统计学意义。
     结论:结核分枝杆菌MPT64基因重组腺病毒疫苗可诱导小鼠产生特异性的体液及细胞免疫,其免疫原性及保护效力与卡介苗相当,可作为新型结核疫苗研究的候选疫苗。
Object:To study the immunogenicity and protective efficacy of Mycobacterium tuberculosis MPT64 gene recombinant adenovirus vaccine, and provide a theoretical basis for the study of new tuberculosis vaccines.
     Methods:50 female C57BL/6 mice were randomly divided into 5 groups.Group A and B were immunized with the saline;Group C with empty adenovirus vector;Group D with Mycobacterium tuberculosis MPT-64 recombinant adenovirus vaccine; Group E with BCG. Except Group E, all the other four groups were respectively immunized with the interval of 2 weeks, altogether for three times.4 weeks after the last immunization,four mice were chosen randomly from each group, levels of IFN-γand IL-12 serum and MPT64-specific antibody were tested by ELISA assay.For the rest mice,except Group A,were all infected with 5×10 ^ 6CFU Mycobacterium tuberculosis strains H37Rv through the tail vein.4 weeks later, levels of IFN-γand IL-12 serum and MPT64-specific antibody were tested by ELISA assay.
     Results:Mycobacterium tuberculosis MPT-64 recombinant adenovirus vaccine could stimulate higher level of MPT64-specific antibody which was significantly different with the other groups.Levels of IFN-γand IL-12 serum in Group D were significantly higher than Group A,B and C,but without significant differernce with Group E.
     Conclusion:Preliminary results show that:Mycobacterium tuberculosis MPT64 recombinant adenovirus vaccine has strong immunogenicity against Mycobacterium tuberculosis challenge,which was equivalent to the protective effect of BCG. It can be taken as one of the candidate vaccine.
引文
[1]Anon.Global Tuberculosis Control-Surveillance,Planning,Financing. WHO:W-orld Health Organization, Geneve, Switzerland,2008.
    [2]Girardi E, Raviglione MC, Antonucci G, Godfrey-Faussett P, Ippolito G.Impact of the HIV epidemic on the spread of other diseases:the case of tuberculosis. AIDS 2000;14 (Suppl3):S47-56.
    [3]Wang J,Xing Z.Tuberculosis vaccines:the past, present, and future.Expert Rev. Vaccines,2002,1:341-354.
    [4]Andersen P,Doherth TM.The success and failure of BCG-implications for a novel tuberculosis vaccine.Nat.Rev.Microbiol,2005,3(8):656-662.
    [5]Baumann S,Nasser Eddine A,Kaufmann SH.Progress in tuberculosis vaccine development.Curr Opin Immunol,2006,18(4):687-702.
    [6]Young D, Oye C. The development and impact of tuberculosis vaccine.Cell,200 6,124(4):683-687.
    [7]王秉翔,江丽君,现行BCG为基础的结核疫苗[J].生物制品快讯,2004,8.
    [8]Ben Amor Y, Shashkina E, Johnson S, et al. Immunological characterizat-ion of novel secreted antigen of Mycobacterium Tuberculosis. Scand J Immunol, 2005,61:139-148.
    [9]王利娴.结核杆菌分泌性蛋白及相关疫苗研究进展.国际生物制品学杂志,2006,29(4):156-159.
    [10]Horwitz MA.Harth G, Dillon BJ, et al. Enhancing the protective efficacy of Mycobacterium bovis BCG vaccination against tuberculosis by boosting with the Mycobacterium tuberculosis major secretory protein.Infect Immun,2005,73: 4676-4683.
    [11]Sander C,McShane H.Translational Mini-review series on accines:Development and evaluation of improvee vaccines against tuberculosis.Clin Exp Immunol,20 07,147(3):401-411.
    [12]Skeiky YA,Sadoff JC.Advances in tuberculosis vaccine strategies. Nat Rev Microbiol,2006,4(6):469-476.
    [13]马爱丽,曹以诚,结核疫苗相关研究现状与展望.广东医学,2008,29(1):147-149.
    [14]Li H, Ulstrup JC, Jonassen TO, Melby K,Nagai S, Harbee M. Evidence for absence of the MPT64 gene in some substrains of Mycobacterium bovis BCG. Infect Immun,1993,61:1730-1734.
    [15]Oettinger T,Holm A,Haslov K.Characterization of the delayed type hypersensit-ivity-inducing epitope of MPT64 from mycobacterum tuberculosisis [J].Scand J Immumol,1997,45(5):499-503.
    [16]G.R. Nemerow, L. Pache. V. Reddy.P.L.Stewart. Insights into adenovirus host cell interactions from structural studies.Virology,2009,384:380-388.
    [17]Glatman-Freedman A, Casadevall A. Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium t-uberculosis. Clin Microbiol Rev,1998,11:514-532.
    [18]Tom H.M. Ottenhoffa, Frank A.W. Verrecka,et al. Control of human host immunity to mycobacteria. Tuberculosis,2005,85:53-64.
    [19]柏银兰,薛莹,李元,徐志凯,师长宏,张海.结核分枝杆菌分泌蛋白MPT64的免疫学特性.第四军医大学学报,2004,25(13):1182-1184.
    [20]张灵霞,吴雪琼,董恩军.mpt64-卡介苗重组疫苗免疫原性研究.临床肺科杂,2008,13(10):1249-1250.
    [21]骆旭东,朱道银,江山,陈全,蒋英.Ag85B-MPT64融合基因疫苗对鼠结核分枝杆菌感染的保护作用.中华医学杂志,2004,84(8):687-691.
    [22]Santosuosso M,Zhang X,McCormick S,Wang J,Hitt M,Xing Z.Mechanisms of mucosal and parenteral tuberculosis vaccines:adenoviral based mucosal immun-ization preferentially elicits sustained accumulation of immune protective CD4 andCD8 T cells within the airway lumen. J.Immunol,2005,174:7986-7994.
    [23]Wang J,Thorson L,Stokes RW,et al. Single mucosal, but not parentend, immunization with recombinant adenoviral based vaccine[J]. J lmmunol,2004,1 73(10):6357-6365.
    [24]Vordermeier HM,Huygen K,Singh M,Hewinson RG,Xing Z.Immune responses induced in cattle by vaccination with a recombinant adenovirus expressing myc-obacterial antigen 85A and Mycobacterium bovis BCG.Infect.Immun,2006,74:1 416-1418.
    [25]Jes Dietrich, T.Mark Doherty. Interaction of Mycobacterium tuberculosis with the host:consequences for vaccine development. The Authors Journal Compilat-ion,2009, APMIS 117:440-457.
    [26]黎友伦.细胞因子及其受体在结核免疫中的作用.国外医学内科学分册,2005,32(4):146-167.
    [27]JoAnne L. Flynn. Immunology of tuberculosis and implications in vaccine dev-elopment.Tuberculosis,2004,84:93-101.
    [28]de Jong R, Altare F, Haagen IA, Elferink DG,Boer T, van Breda Vriesman PJ, et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science,1998,280:1435-8.
    [29]CapucineP, et al. Am J Hum Genet.2002,70:336-348.
    [30]张乐平.白介素12对老年人肺结核发病的影响.热带医学杂志,2005,5(5):619-621.
    [31]Andrea M Cooper, Alejandra Solache and Shabaana A Khader.Interleukin-12 and tuberculosis:an old story revisited.Current Opinion in Immunology,2007, 19:441-447.
    [32]G.A.W.Rook,G.Seah,A.Ustianowski.M.tuberculosis:immunology and vaccinat-ion.Eur Respir J,2001,17:537-557.
    [33]Sahiratmadja,Edhyana,Baak-Pablo,Renee,et al. Association of polymorphisms In IL-12/IFN-gamma pathway genes with susceptibility to pulmonary tubercul-osis in Indonesia.Tuberculosis(Edinb),87(4):303-311.
    [34]Tso HW, Lau YL, Tam CM, Wong HS, Chiang AK. Associations between IL-1 2B polymorphisms and tuberculosis in the Hong Kong Chinese population. J In-fect Dis,2004,190:913-9.
    [35]Mansouri,Davood,Adimi,Parisa,Mirsaeidi.Inherited disorders of the IL-12-IFN-gamma axis in patients with disseminated BCG infection. Eur J Pediatr,164(12) :753-757.
    [36]Kamath A T,Feng C G, Macdonald M,et al. Differential protective efficacy of DNA vaccines expressing secreted proteins of mycobacterium tuberculosis.Infe-ct Immun,1999,67:1702-1707.
    [37]Morris S, Kelley C, Howard A, et al. The immunogenicity of single and combination DNA vaccines against tuberculosis.Vaccine,2000,18:2155-2163.
    1. Reid A,Scano F,Getahun H,Williams B,Dye C,Nunn P,et al.Towards universal ac-cess to HIV prevention, treatment, care, and support:the role of tuberculosis/HIV collaboration.Lancet Infect Dis,2006,6:483-95.
    2. Kochi A. The global tuberculosis situation and the new control strategy of the Wo-rld Health Organization.1991. Bull World Health Organ,2001;79:71-5.
    3. Global tuberculosis control:suveillance,planning,financeing.WHO report 2007.G-eneva,World Health Organization(WHO/HTM/TB/2007.376).
    4. Indo Verma,Ajay Grover.Antituberculous vaccine development:a perspective for the endemic world.Expert Rev.Vaccines,2009,8(11):1547-1553.
    5. Fifteen year follow up of tuial of BCG vaccines in south India for tuberculosi prevention.Tuberculosis Research Centre,Chennai,India.Indian J.Med.Res,1999,1 10:56-59.
    6. Brewer TF.Preventing tuberculosis with bacillus Calmette-Guerin vaccine:a meta-analysis of the literature, Clin.Infect.Dis,31,S64-S67(2000).
    7. Behr MA,Small PM.Has BCG attenuated to impotence? Nature,1997,389(6647): 133-134.
    8. Lozes E,Denis O,Drowart A et al.Cross-reactive immune responses against Myco-bacterium bovis BCG in mice infected with non-tuberculous mycobacteria belo-nging to the MAIS-Group.Scand.J.Immunol,1997,46(1):16-26.
    9. Brandt L,Feino Cunha J,Weinreich Olsen A et al.Failure of the Mycobacterium b-ovis BCG vaccine:some species of environmental mycobacteria block multiplicat-ion of BCG and induction of protective immunity to tuberculosis.Infect.Immun, 2002,70(2).
    10. Buddle BM,Wards BJ,Aldwell FE,Collins DM,de Lisle GW.Influence of sensitisa-tion to environmental mycobacteria on subsequent vaccination against bovine tuberculosis,Vaccine,2002,20(7-8):1126-1133.
    11. Kamala T,Paramasivan CN,Herbert D,Venkatesan P,Prabhakar R.Immune respon-se and modulation of immune response induced in the guinea-pigs by Mycobac-terium avium complex(MAC) and M.fortuitum complex isolates from different sources in the south Indian BCG trial area.Indian J.Med.RES,1996,103:201-211.
    12. Young DB, Gideon HP, Wilkinson RJ. Eliminating latent tuberculosis. Trends Microbiol,2009,17:183-8.
    13. Teitelbaum R, Glatman-Freedman A, Chen B,Robbins JB, Unanue E, Casadevall A, et al. A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival,Proc Natl Acad Sci USA,1998,95:15688-93.
    14. Hamasur B, Haile M, Pawlowski A, Schroder U,Kallenius G, Svenson SB. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab') fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin Exp Immunol,2004,138:30-8.
    15. Jes Dietrich, T.Mark Doherty. Interaction of Mycobacterium tuberculosis with the host:consequences for vaccine development. The Authors Journal Compilatio-n.2009, APMIS 117:440-457.
    16. Seah GT Scott GM Rook GA. Journal of Infectious Diseases.2000.
    17. Horwitz MA,Harth G.A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis.Infect.Immun,2003,71(4):1672-1679.
    18. Hesseling AC, Cotton MF, Marais BJ, Gie RP, Schaaf HS, Beyers N, et al. BCG and HIV reconsidered:moving the research agenda forward. Vaccine,2007,25:65 65-6568.
    19. Stefan Svenson, Gunilla Kallenius,Andrzej Pawlowski,Beston Hamasur. Towards new tuberculosis vaccines.Human Vaccines,2010,6:4:1-9.
    20. McShane H, Pathan AA, Sander CR, Keating SM,Gilbert SC, Huygen K, et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med,2004,10:1240-4.
    21. Ordway D,Palanisamy G.The cellular immune response to Mycobacterium tuber-culosis infection in the guinea pig [J]. J Immunol,2007,179:2532-2541.
    22. Manabe YC,Dannenberg Jr AM,Tyagi SK,et al.Different strains of Mycobacteriu-m tuberculosis cause various spectrums of disease in the rabbit model of tubercu-losis[J]. Infect Immun,2003,71:6004-6011.
    23. Rodgers J D,Connery NL,Pollock JM. Experimental exposure of cattle to a preci-se aerosolized challenge of Mycobacterium bovis.a novel model to study bovine tuberculosis[J]. Tuberculosis (Edinb),2007,87:405-414.
    24. Capuano SV, Croix DA, Pawar S. Experimental Mycobacterium tuberculosis in-fection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection[J].Infect Immun,2003,71:5831-5844.
    25. Munoz-Elias EJ, Timm J,Botha T, et al.Replication dynamics of Mycobacterium tuberculosis in chronically infected mice [J].Infect Immun,2005,73:546-551.
    26. McMurray D. Disease model:pulmonary tuberculosis [J].Trends Mol Med,2001,7 :135-137.
    27. U.D.Gupta,V.M. Katoch.Animal models of tuberculosis for vaccine development. Indian J Med Res 129, January 2009, pp 11-18.
    28. Feng CQPalendira U,Demangel C,Spratt JM,Malin AS,Briton WJ.Priming by DNA immunization augments protective Efficacy of Mycobacterium bovis bacille Calmette-Guerin against tuberculosis.Infect.Immun,69,4174-4176(2001).
    29. Buddle BM,Wedlock DN,Parlane NA,Corner LAL,de Lisle GW,Skinner MA.Rev-accination of neonatal calves with Mycobacterium bovis BCG reduces the level protection against bovine tuberculosis induced by a single vaccination.Infect.Imm-un,2003,71,6411-6419.
    30. Rodrrigues LC,Pereira SM,Cunha SS et al.Effect of BCG revaccination on incide-nce of tuberculosis in school-aged children in Brazil:the BCG-REVAC cluster-randomized trial.Lancet,2005,366:1290-1295.
    31. Tala-Heikkila MM,Tuominen JE,Tala EOJ.Bacillus Calmette-Guerin revaccinati-on questionable with low tuberculosis incidence. Am. J.Respir.Crit.Care Med,199 8,157:1324-1327.
    32. Zhou Xing,Thomas James Charters.Heterologous boost vaccines for bacillus Cal-mette-Guerin prime immunization against tuberculosis.Expert Rev.Vaccines,200 7,6(4):539-546.
    33. Casimiro DR,Chen L,Fu TM et al.Comparative immunogenicity in rhesus monke-ys of DNA plasmid,recombinant vaccinia virus,and replication-defective adenovi-rus vectors expressing a human immunodeficiency virus type 1 gag gene.J.Virol, 2003,77:6305-6313.
    34. Reed S,Lobet Y.Tuberculosis vaccine development;from mouse to man.Microbes INFECT,2005,7(5-6):922-931.
    35. Skeiky YA,Alderson MR,Ovendale PJ et al.Differential immune responses and protective efficicay induced by components of a tuberculosis polyprotein vaccine, Mtb72F,delivered as naked DNA or recombinant protein.J.Immunol,2005,172(12) :7618-7628.
    36.李焱,岳盈盈,张凤丽等.腺病毒载体疫苗免疫途径的研究[J].中华医学研究杂志,2004,4(5):392-393.
    37.龚非力主编.医学免疫学[M].第1版,北京:科学出版社,2003,34-35.
    38.于龙.重组像病毒载体疫苗黏膜免疫机制与途径研究.微生物学免疫学进展,2007,35(3):69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700