生物质在流化床中的催化气化焦油及裂解的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能是由植物的光合作用固定于地球上的太阳能,具有二氧化碳“零排放”、存储量大、可再生和利用方式多元化等独特的优点而倍受青睐,生物质气化是生物质能开发利用的主要方式之一,对全球的环境保护和能源利用有着重要意义。但是,生物质气化产品气中的高焦油含量严重制约了产品气的应用。本文以降低气化产品气中的焦油含量、提高气体热值和改善气化指标为目的,研究三种炉内催化剂(白云石、菱镁矿和橄榄石)在不同工况下的催化气化效果。而且,将超声波辐射应用到镍基催化剂的制备过程中,研制了一种可以降低裂解催化剂的积炭量,延长催化剂使用寿命的新型镍基催化剂,为研制新型镍基催化剂做出了积极的尝试并取得了较好的效果。
     本文首先研究了三种生物质在CO2气氛下的热解失重过程,通过改变升温速率和热解终温,总结出三种生物质在热解过程的四个阶段中的热解规律。生物质在CO2气氛下热解的最佳条件为:生物质的样品量以10 mg为宜,最佳升温速率在10-20℃/min之间,终温为960℃。然后对200-450℃这个主要热解失重区间进行一级热解动力学参数求解,结果表明:在挥发分析出时,花生壳的活化能最低,与木屑和稻草相比,花生壳的热解特性最好。
     镍基催化剂是裂解反应器中应用得最广泛的催化剂之一,但是,镍基催化剂用于焦油裂解时最常见的问题就是容易失活,降低裂解效果,缩短其使用寿命。本文将超声波应用到镍基催化剂的制备工艺中,首先用正交试验法确定超声波功率、助剂La2O3和CeO2以及煅烧温度等四个因素对Ni/γ-Al2O3催化剂积炭量的影响顺序为:煅烧温度≈超声波功率>CeO2>La2O3。其中煅烧温度和超声波功率的影响高度显著,助剂CeO2的影响显著。然后专题研究超声波辐射对镍基催化剂积炭量的影响。通过BET、XRD和SEM等表征手段分析三种催化剂样品积炭前后的变化,并对积炭后的催化剂进行多次重复的热重试验,最终的研究结果表明:超声辐射可以使载体中的部分微孔转变为中孔,中孔孔径大小与活性组分颗粒大小相当,使活性组分较容易地分散在中孔中;超声辐射能够抑制活性组分与载体发生反应,避免生成无活性的NiAl2O4晶相;超声辐射可明显降低催化剂的积炭量,低功率的超声辐射比高功率的超声辐射对减少催化剂中的积炭量更有效。
     以三种具有代表性的生物质(木屑、花生壳和稻草)为原料在流化床气化反应器中进行催化气化,改变运行条件(当量比、气化温度),研究各运行工况对生物质气化产品气及焦油组分的影响,利用GC确定产品气组分,GC/MS确定产品气中的焦油含量。结果表明:生物质气化过程按照不同的产气目的可通过改变工况进行优化;气化生物质时,添加价廉易得的炉内催化剂可降低反应器出口处产品气焦油含量一半以上,焦油转化率在48.4-70.5%之间。同时可以调节焦油组分,降低重质焦油含量,有利于下游工序进一步裂解焦油。
     本文在最后利用大型ASPEN PLUS软件建立流化床气化反应器内的物质平衡、化学平衡和能量平衡模型。通过比较模拟值与试验值,发现模拟值与试验值吻合良好,证明模型是可信的。
Biomass energy is derived from solar energy through plant photosynthesis, which has been attracted increasing concern with many advantages: carbon dioxide zero emission, huge amount, renewable and versatile utilization technologies. Biomass gasification is one of the most promising technologies to convert biomass to energy, it is favorable for global environmental protection and energy utilization. However, high content of tar in the production gas limits its application widely. With the focus of decreasing tar amount and upgrade the quality of product gas, the gasification of local biomass samples was performed in Fluid bed gasifier. The influence of catalyst (dolomite, magnesite and olivine) and variant operting condition on tar cracking was studied in detail. A novel nickel-based catalyst was observed with ultrasonic radiation, it is efficient to reduce the coked amount coating on catalyst and prolong the operational life of catalyst. It is important for the utilization of catalyst. It is great for the development of biomass gasification technology.
     Firstly, the pyrolysis under CO2 condition of three different biomass samples was carried out in TGA with variant heating rates and final temperatures. It was observed that the pyrolysis of biomass was taken place in four stages. The optimum condition for biomass pyrolysis are : 10mg of biomass sample, 10-20℃/min for elevating temperature velocity with the final temperature 960℃. Then, the first-order pyrogenation kinetics parameters was calculated in the main pyrolysis range 200-450℃. It was showed that peanut shell has the lowest activation energy during emission of volatile and the best pyrolysis feature.
     The nickel based catalyst is one of the most widely used in the cracking reactor. However, the most popular problem is the coke coating on the surface of the nickel based catalyst, hence the catalysis was decreased, catalytic activity was reduced and the operational life was shorten. Here ultrasonic was applied in the preparation process of the nickel based catalyst. the influence of the ultrasonic radiation, additive La2O3, CeO2 and the calcined temperature on the coked amount of Ni/γ-Al2O3 catalyst was analyzed. It was observed that the impact order is: calcined temperature≈the ultrasonic radiation > CeO2 > La2O3. The influence of calcined temperature and ultrasonic radiation was obvious, and the influence of auxiliary CeO2 was also significant. Simultaneously, the influencing factor of ultrasonic radiation was studied in depth. The difference of the coke amount for three catalyst samples were analyzed with characteristic approaches (BET, XRD and SEM, etc), and thermogravimetric experiments. it can be found that ultrasonic radiation can make small pores in the carrier change into the middle ones. The diameter of middle pore is comparative to the size of active component particles, to make the active component dispersed in the middle pore more easily. Ultrasonic radiation can refrain the reaction of the active component and the carrier, and avoid producing NiAl2O4 crystalling phases and loss activity. Ultrasonic radiation can also reduce the coked amount of the catalyst greatly. The ultrasonic radiation in low power is more effective on reducing the coked amount in catalyst than the ultrasonic radiation in high power.
     Then, the gasification of three local biomass samples (saw-dust, peanut shell and straw) was carried out in fluidized bed gasifier system. the influence of catalyst addition (dolomite, magnesite and olivine), operation conditions (ER, temperature) on the production of biomass gasification and tar component was investigated in detail. The component of the gas products was determined by GC, and the species of collected tar was measured with GC/MS. it can be observed that the process of the biomass gasification can be optimized through changing the operating conditions according to target. Adding cheaper catalyst in the process of biomass gasification can reduce over half of tar amount in the final products, the conversion ratio of tar is 48.4-70.5%. Adjust the componente of tar and reducing the content of heavy tar are favorable for the downstream process.
     Finally, ASPEN PLUS, a computer program to simulate chemical industry process based on the principle of Gibbs free energy minimization was involved in to approach the behavior of biomass gasification. The model was approached based on mass, energy and chemical element constant. As the equilibrium state is impossible to arrive in the gasifier, a restricted equilibrium of RGIBBS reactor was introduced in according to the experiment result. It was observed that a good agreement was shown between simulation and experiment result. It is great for the understanding and development of biomass gasification.
引文
[1].李文, 1998年国际能源市场综述.国际石油经济, 1999. 6: p. 12-16.
    [2].周庆凡等,从世界能源统计数据看中国能源现状.中国能源, 2005. 11: p. 40-42.
    [3].张雷等,中国人口发展与能源供应保障探讨.中国软科学, 2005. 11: p. 11-17.
    [4].陈清泰,中国能源战略和政策.中国对外贸易, 2004. 11: p. 78-80.
    [5].本刊编辑部,中国的能源战略和政策.煤炭加工与综合利用, 2004. 1: p. 1.
    [6]. Kaygusuz, K., Sustainable development of hydropower and biomass energy in Turkey. Energy Conversion and Management, 2002. 43(8): p. 1099-1120.
    [7]. Demirbas, A., Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001. 42(11): p. 1357-1378.
    [8].万仁新,生物质能工程. 1995,北京:中国农业出版社.
    [9].刘国喜等,生物质可燃气的净化.农村能源, 2000. 1: p. 18-21.
    [10]. Caballero, M.A., et al., Biomass gasification with air in fluidized bed. hot gas cleanup with Selected commercial and full-size nickel-based catalysts. Ind. Eng. Chem. Res., 2000. 39: p. 1143-1154.
    [11]. Caballero, M.A., et al., Biomass gasification with air in fluidized bed. hot gas cleanup with Selected commercial and full-size nickel-based catalysts. Industrial and Engineering Chemistry Research, 2000. 39: p. 1143-1154.
    [12]. Brandt, P., E. Larsen, and U. Henriksen, High tar reduction in a two-stage gasifier. Energy & Fuels, 2000. 14: p. 816-819.
    [13]. Perez, P., et al., Hot gas cleaning and upgrading with a calcined dolomite located downstream a biomass fluidized bed gasifier operating with steam-oxygen mixtures. Energy and Fuels, 1997. 11(6): p. 1194-1197.
    [14]. Wang, T.J., et al., The steam reforming of naphthalene over a nickel-dolomite cracking catalyst. Biomass and Bioenergy, 2005. 28(5): p. 508-514.
    [15]. S, K. and Seshadri, Effects of Temperature, Pressure, and Carrier Gas on the Cracking of Coal Tar over a Char-Dolomite Mixture and Calcined Dolomite in a Fixed-Bed Reactor. Industrial and Engineering Chemistry Research, 1998. 37: p. 3830-3837.
    [16]. Hartman, M., et al., Reaction between hydrogen sulfide and limestone calcines. Ind. Eng. Chem. Res., 2002. 41: p. 2392-2398.
    [17]. Delgado, J., M.P. Aznar, and J. Corella, Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam: Life and Usefulness Industrial and Engineering Chemistry Research, 1996. 35(10): p. 3637-3643.
    [18]. Rapagna, S., et al., Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass and Bioenergy, 2000. 19(3): p. 187-197.
    [19]. Devi, L., et al., Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization. Applied Catalysis A: General, 2005. 294(1-2): p. 68-79.
    [20]. Corella, J., J.M. Toledo, and R. Padilla, Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: Which is better? Energy and Fuels, 2004. 18(3): p. 713-720.
    [21]. Devi, L., K.J. Ptasinski, and F.J.J.G. Janssen, Pretreated olivine as tar removal catalyst for biomass gasifiers: Investigation using naphthalene as model biomass tar. Fuel Processing Technology, 2005. 86(6): p. 707-730.
    [22]. Garcia, L., et al., Influence of catalyst weight/biomass flow rate ratio on gas production in the catalytic pyrolysis of pine sawdust at low temperatures. Industrial and Engineering Chemistry Research, 1998. 37(10): p. 3812-3819.
    [23].王磊等,生物质气化焦油在高温木炭床上的裂解试验研究. Renewable Energy, 2005. 5: p. 30-34.
    [24]. Struis, R.P.W.J., et al., Gasification reactivity of charcoal with CO2. Part II: Metal catalysis as a function of conversion. Chemical Engineering Science, 2002. 57(17): p. 3593-3602.
    [25]. Mukhopadhyay, K., An assessment of a Biomass Gasification based Power Plant in the Sunderbans. Biomass and Bioenergy, 2004. 27(3): p. 253-264.
    [26]. Leung, D.Y.C., X.L. Yin, and C.Z. Wu, A review on the development and commercialization of biomass gasification technologies in China. Renewable and Sustainable Energy Reviews, 2004. 8(6): p. 565-580.
    [27].王智微等,流化床中生物质热解气化的模型研究.燃料化学学报, 2002. 30: p. 342-346.
    [28]. K.Raveendran, A. Ganesh, and K. C.Khilar, Pyrolysis characteristics of biomass and biomass components Fuel, 1996. 75: p. 987-998.
    [29]. Ozturk, Z. and J.F. Merklin, Rapid pyrolysis of cellulose with reactive hydrogen gas in a single-pulse shock tube fuel, 1995. 74: p. 1658-1663.
    [30]. Wang, W., et al., Catalytic hot gas cleaning of fuel gas from an air-blown pressurized fluidized-bed gasifier. Ind. Eng. Chem. Res., 2000. 39: p. 4075-4081.
    [31]. Turn, S.Q., et al., An experimental investigation of alkali removal from biomass producer gas using a fixed bed of solid sorbent. Industrial and Engineering Chemistry Research, 2001. 40(8): p. 1960-1967.
    [32]. Corella, J., A. Orio, and J.M. Toledo, Biomass gasification with air in a fluidized bed: exhaustive tar elimination with commercial steam reforming catalysts. Energy & Fuels, 1999. 13: p. 702-709.
    [33].周劲松等,生物质焦油的催化裂解研究.燃料化学学报, 2003. 31: p. 144-148.
    [34]. Lv, P.M., et al., An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technology, 2004. 95(1): p. 95-101.
    [35]. Kinoshita, C.M., Y. Wang, and J. Zhou, Tar formation under different biomass gasification conditions. Journal of Analytical and Applied Pyrolysis, 1994. 29(2): p. 169-181.
    [36]. Yu, Q., et al., Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor. Journal of Analytical and Applied Pyrolysis, 1997. 40-41: p. 481-489.
    [37]. Brage, C., et al., Tar evolution profiles obtained from gasification of biomass and coal. Biomass and Bioenergy, 2000. 18(1): p. 87-91.
    [38]. Narvaez, I., et al., Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Industrial and Engineering Chemistry Research, 1996. 35(7): p. 2110-2120.
    [39]. Gil, J., et al., Biomass gasification with air in a fluidized bed: Effect of the in-bed use of dolomite under different operation conditions. Industrial and Engineering Chemistry Research, 1999. 38(11): p. 4226-4235.
    [40]. Zhou, J., et al., Release of fuel-bound nitrogen during biomass gasification. Industrial and Engineering Chemistry Research, 2000. 39(3): p. 626-634.
    [41]. Knight, R.A., Experience with raw gas analysis from pressurized gasification of biomass. Biomass and Bioenergy, 2000. 18(1): p. 67-77.
    [42]. Aznar, M.P., et al., Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming catalysts. Industrial and Engineering Chemistry Research, 1993. 32(1): p. 1-10.
    [43]. Aznar, M.P., et al., Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Industrial and Engineering Chemistry Research, 1998. 37(7): p. 2668-2680.
    [44]. Caballero, M.A., et al., Commercial Steam Reforming Catalysts to Improve Biomass Gasification with Steam-Oxygen Mixtures. 1. Hot Gas Upgrading by the Catalytic Reactor. Industrial and Engineering Chemistry Research, 1997. 36(12): p. 5227-5239.
    [45]. Garcia, L., et al., CO2 as a gasifying agent for gas production from pine sawdust at low temperatures using a Ni/Al coprecipitated catalyst. Fuel processing technology, 2001. 69(2): p. 157-174.
    [46]. Herguido, J., J. Corella, and J. Gonzalez-Saiz, Steam Gasification of Lignocellulosic Residues in a Fluidized Bed at a Small Pilot Scale. Effect of the Type of Feedstock. Industrial and Engineering Chemistry Research, 1992. 31: p. 1274-1282.
    [47]. Garcia, L., et al., Catalytic steam gasification of pine sawdust. Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition. Energy and Fuels, 1999. 13(4): p. 851-859.
    [48]. MP, A., et al. Biomass gasification with steam and oxygen mixtures at pilot scale and with catalytic gas upgrading Part I: performance of the gasifier. in Developments in thermochemical biomass conversion. 1997. London.
    [49]. Tomishige, K., M. Asadullah, and K. Kunimori, Syngas production by biomass gasification usingRh/CeO2/SiO2 catalysts and fluidized bed reactor. Catalysis Today, 2004. 89(4): p. 389-403.
    [50]. Minkova, V., et al., Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide. Fuel Processing Technology, 2000. 62(1): p. 45-52.
    [51]. L, G., et al. CO2 gasification of pine sawdust. Effect of a coprecipitated Ni–Al catalyst. in Proceedings of the First World Conference on Biomass for Energy and Industry. 2000. Seville,Spain.
    [52]. Devi, L., K.J. Ptasinski, and F.J.J.G. Janssen, A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy, 2002. 24(2): p. 125-140.
    [53]. Corella, J., et al., Biomass gasification in fluidized bed: Where to locate the dolomite to improve gasification? Energy and Fuels, 1999. 13(6): p. 1122-1127.
    [54]. Chen, G., et al., Biomass pyrolysis/gasification for product gas production: The overall investigation of parametric effects. Energy Conversion and Management, 2003. 44(11): p. 1875-1884.
    [55]. Narvaez, I., J. Corella, and A. Orio, Fresh Tar (from a Biomass Gasifier) Elimination over a Commercial Steam-Reforming Catalyst. Kinetics and Effect of Different Variables of Operation. Ind. Eng. Chem. Res., 1997. 36: p. 317-327.
    [56]. Van Der Hoeven, T.A., H.C. De Lange, and A.A. Van Steenhoven, Analysis of hydrogen-influence on tar removal by partial oxidation. Fuel, 2006. 85(7-8): p. 1101-1110.
    [57]. Di Blasi, C., Influences of physical properties on biomass devolatilization characteristics. Fuel, 1997. 76(10): p. 957-964.
    [58]. Chan, W.C.R., M. Kelbon, and B. Krieger-Brockett, Single-particle biomass pyrolysis: correlations of reaction products with process conditions Ind. Eng. Chem. Res., 1988. 27: p. 2261-2275.
    [59]. Encinar, J.M., et al., Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: Influence of variables. Fuel Processing Technology, 1998. 55(3): p. 219-233.
    [60]. Beaumont, O. and Y. Schwob, Influence of physical and chemical parameters on wood pyrolysis Ind. Eng. Chem. Proc. Des. Dev., 1984. 23: p. 637-641.
    [61]. JPA, N., K. HAM, and O. P., Behaviour of tar in biomass gasification systems. Tar related problems and their solutions.Novem Report No. 9919. Energy from Waste and Biomass(EWAB). The Netherlands, 1999.
    [62]. Miccio, F., et al., Generation and conversion of carbonaceous fine particles during bubbling fluidised bed gasification of a biomass fuel. Fuel, 1999. 78: p. 1473-1481.
    [63]. Engstrom, F., Hot gas clean-up bioflow ceramic filter experience. Biomass and Bioenergy, 1998. 15(3): p. 259-262.
    [64]. Olivares, A., et al., Biomass Gasification: Produced Gas Upgrading by In-Bed Use of Dolomite. Industrial and Engineering Chemistry Research, 1997. 36(12): p. 5220-5226.
    [65]. Sutton, D., B. Kelleher, and J.R.H. Ross, Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 2001. 73(3): p. 155-173.
    [66]. Ponzio, A., S. Kalisz, and W. Blasiak, Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Processing Technology, 2006. 87(3): p. 223-233.
    [67]. Nordgreen, T., T. Liliedahl, and K. Sjostrom, Metallic iron as a tar breakdown catalyst related to atmospheric, fluidised bed gasification of biomass. Fuel, 2006. 85(5-6): p. 689-694.
    [68]. Miyazawa, T., et al., Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass. Catalysis Today, 2006. 115(1-4): p. 254-262.
    [69]. Kimura, T., et al., Development of Ni catalysts for tar removal by steam gasification of biomass. Applied Catalysis B: Environmental, 2006. 68(3-4): p. 160-170.
    [70]. Juutilainen, S.J., P.A. Simell, and A.O.I. Krause, Zirconia: Selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas. Applied Catalysis B: Environmental, 2006. 62(1-2): p. 86-92.
    [71]. Mojtahedi, W., et al., Catalytic decomposition of ammonia in fuel gas produced in pilot-scale pressurized fluidized-bed gasifier. Fuel Processing Technology, 1995. 45(3): p. 221-236.
    [72]. Simell, P., Catalytic hot gas cleaning of gasification gas. Catalysis Today, 1996. 27: p. 55-62.
    [73]. Houben, M.P., H.C. de Lange, and A.A. van Steenhoven, Tar reduction through partial combustion of fuel gas. Fuel, 2005. 84(7-8): p. 817-824.
    [74]. Coll, R., et al., Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation. Fuel Processing Technology, 2001. 74(1): p.19-31.
    [75]. Jess, A., Catalytic upgrading of tarry fuel gases: a kinetic study with model components. Chemical Engineering and Processing, 1996. 35(6): p. 487-494.
    [76]. Delgado, J., M.P. Aznar, and J. Corella, Biomass Gasification with Steam in Fluidized Bed: Effectiveness of CaO, MgO, and CaO-MgO for Hot Raw Gas Cleaning. Industrial and Engineering Chemistry Research, 1997. 36(5): p. 1535-1543.
    [77]. Asadullah, M., et al., Demonstration of real biomass gasification drastically promoted by effective catalyst. Applied Catalysis A: General, 2003. 246(1): p. 103-116.
    [78]. Rapagna, S., N. Jand, and P.U. Foscolo, Catalytic gasification of biomass to produce hydrogen rich gas. International Journal of Hydrogen Energy, 1998. 23(7): p. 551-557.
    [79]. Mudge, L.K., et al. Catalysts for gasification of biomass. in Symposium Papers - Energy from Biomass and Wastes. 1987.
    [80]. Engelen, K., et al., A novel catalytic filter for tar removal from biomass gasification gas: Improvement of the catalytic activity in presence of H2S. Chemical Engineering Science, 2003. 58: p. 665-670.
    [81]. Czernik, S., et al., Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Industrial and Engineering Chemistry Research, 2002. 41(17): p. 4209-4215.
    [82]. Devi, L., et al., Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy, 2005. 30(4): p. 565-587.
    [83]. Rapagn, S., et al., Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification. Biomass and Bioenergy, 2002. 22(5): p. 377-388.
    [84]. Garcia, L., et al., Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Applied Catalysis A: General, 2000. 201(2): p. 225-239.
    [85]. Arauzo, J., et al., Catalytic Pyrogasification of Biomass. Evaluation of Modified Nickel Catalysts. Industrial and Engineering Chemistry Research, 1997. 36(1): p. 67-75.
    [86]. Courson, C., et al., Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catalysis Today, 2000. 63(2-4): p. 427-437.
    [87]. Asadullah, M., et al., Catalyst development for the gasification of biomass in the dual-bed gasifier. Applied Catalysis A: General, 2003. 255(2): p. 169-180.
    [88]. Asadullah, M., et al., Role of catalyst and its fluidization in the catalytic gasification of biomass to syngas at low temperature. Industrial and Engineering Chemistry Research, 2002. 41(18): p. 4567-4575.
    [89].贾永斌等,氧化钙在流化床稀相段对焦油裂解的影响.中国矿业大学学报, 2004. 5: p. 552-556.
    [90]. EG, B., M. LK, and B. MD, Methanol and ammonia from biomass. Chemical Engineering Progress, 1984. 80(12): p. 43-46.
    [91]. Yoshinori, et al., Catalyst for steam gasi cation of wood to methanol synthesis gas. Industrial Engineering Chemistry Production Research Development, 1984. 23: p. 225-229.
    [92]. R, B., et al. Steam gasification of biomass in a fIuidized bed. Effect of a Ni–Al catalyst. in Proceedings of the Tenth European Conference and Technology Exhibition on Biomass for Energy and Industry. 1998. Wurzburg, Germany.
    [93]. Wang, W., et al., Kinetics of Ammonia Decomposition in Hot Gas Cleaning. Industrial and Engineering Chemistry Research, 1999. 38: p. 4175-4182.
    [94]. Baker, E.G., et al., Steam Gasification of Biomass with Nickel Secondary Catalysts. Industrial and Engineering Chemistry Research, 1987. 26(7): p. 1335-1339.
    [95]. Mojtahedi, W. and J. Abbasian, Catalytic decomposition of ammonia in a fuel gas at high temperature and pressure. Fuel, 1995. 74(11): p. 1698-1703.
    [96]. Brage, C., et al., Use of amino phase adsorbent for biomass tar sampling and separation. Fuel, 1997. 76(2): p. 137-142.
    [97]. McKendry, P., Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 2002. 83(1): p. 37-46.
    [98]. Raveendran, K., A. Ganesh, and K.C. Khilar, Pyrolysis characteristics of biomass and biomass components. Fuel, 1996. 75(8): p. 987-998.
    [99]. Stamm, A., Thermal Degradation of Wood and Cellulose. J. Ind. Eng. Chem., 1956. 48: p. 413-417.
    [100]. Di Blasi, C., G. Signorelli, and G. Portoricco, Countercurrent fixed-bed gasification of biomass at laboratory scale. Industrial & Engineering Chemistry Research, 1999. 38(7): p. 2571-2581.
    [101]. Cetin, E., et al., Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 2004. 83(16): p. 2139-2150.
    [102]. Demirbas, A. and G. Arin, An overview of biomass pyrolysis. Energy Sources, 2002. 24(5): p. 471-482.
    [103]. Gercel, H.F., The effect of a sweeping gas flow rate on the fast pyrolysis of biomass. Energy Sources, 2002. 24(7): p. 633-642.
    [104]. Sensoz, S. and M. Can, Pyrolysis of pine chips: 1. effect of pyrolysis temperature and heating rate on the product yields. Energy Sources, 2002. 24(4): p. 347-355.
    [105]. Yaman, S., Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 2004. 45: p. 651-671.
    [106]. Wu, Z.S., et al., Test results and operation performance analysis of a 1-MW biomass gasification electric power generation system. Energy & Fuels, 2003. 17(3): p. 619-624.
    [107].赖艳华等,秸秆类生物质热解特性及其动力学研究.太阳能学报, 2002. 23(2): p. 203-206.
    [108].刘乃安等,一种新的生物质热分解失重动力学模型.科学通报, 2001. 46(10): p. 876-880.
    [109]. Nai-an, L., WangBing-hong, and F. Wei-cheng, Kinetic Compensation Effect in Biomass Thermal Decomposition. Fire Safety Science, 2002. 11(2): p. 63-70.
    [110]. Mattsson, J.E., Country Report on Standardization of Solid Biofuels in Sweden. 2000.
    [111]. Bassilakis, R., R.M. Carangelo, and M.A. Wojtowicz, TG-FTIR analysis of biomass pyrolysis. Fuel, 2001. 80(12): p. 1765-1786.
    [112]. Saade, R.G. and J.A. Kozinski, Numerical modeling and TGA/FTIR/GCMS investigation of fibrous residue combustion. Biomass and Bioenergy, 2000. 18(5): p. 391-404.
    [113]. Lapuerta, M., J.J. Hernandez, and J.J. Rodriguez, Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass and Bioenergy, 2004. 27(4): p. 385-391.
    [114]. Di Blasi, C., Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis, 1998. 47(1): p. 43-64.
    [115].杨海平,油棕废弃物热解的实验及机理研究.博士论文. 2005,武汉:华中科技大学.
    [116]. Ivan Milosavijevie, E.M.S., Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind. Eng. Chem. Res. , 1995. 34: p. 1081-1091.
    [117].J. A. Caballero, R.F., New kinetic model for thermal decomposition of heterogeneous material. Ind. Eng. Chem. Res., 1995. 34: p. 806-812.
    [118]. Rao, T.R. and A. Sharma, Pyrolysis rates of biomass materials. Energy, 1998. 23(11): p. 973-978.
    [119]. Hsisheng Teng, Y.-C.W., Thermogravimetric Studies on the Kinetics of Rice Hull Pyrolysis and the Influence of Water Treatment. Ind. Eng. Chem. Res., 1998. 37: p. 3806-3811.
    [120]. F.Mengxiang, Y.C. Study of biomass gasification and combustion. in Proceedings of the International Conference on Energy and Environment. 1998. Shanghai.
    [121].许越主编,催化剂设计与制备工艺. 2003,北京:化学工业出版社.
    [122]. Bain, R.L., et al., Evaluation of catalyst deactivation during catalytic steam reforming of biomass-derived syngas. Industrial and Engineering Chemistry Research, 2005. 44(21): p. 7945-7956.
    [123].金良超,正交设计与多指标分析. 1988,北京:中国铁道出版社.
    [124].于岩等,铝厂污泥在不同煅烧温度的晶相结构研究.结构化学, 2003. 22(5): p. 607-612.
    [125].朱警等,选择加氢催化剂载体氧化铝的改性及其工业应用(1).化工进展, 2004. 23(2): p. 192-194.
    [126].穆玮等,选择加氢催化剂载体氧化铝的改性及其工业应用(2).化工进展2004. 23(3): p. 300-303.
    [127].王越,钡改性的Ni/γ-Al2O3催化剂用于甲烷部分氧化的研究.燃料化学学报, 2005. 33(6): p. 750-754.
    [128].杨咏来,甲烷重整反应镍基催化剂上积炭/消炭性能研究.博士后出站报告. 2001,大连:中国科学院大连化学物理研究所.
    [129]. Jeong, H., et al., Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts. Journal of Molecular Catalysis A: Chemical, 2006. 246(1-2): p. 43-48.
    [130]. Cum, G., et al., Role of frequency in the ultrasonic activation of chemical reactions. Ultrasonics, 1992. 30(4): p. 267-270.
    [131]. Yu, F., et al., Effect of ultrasonic power on the structure of activated carbon and the activities of Ru/AC catalyst. Ultrasonics. In Press, Corrected Proof.
    [132]. Wang, L. and J. Zheng, Ultrasonic pretreatment of liquid NaK metal catalyst for side-chain alkenylationof o-xylene with 1,3-butadiene. Ultrasonics Sonochemistry, 2006. 13(3): p. 215-219.
    [133]. Bianchi, C.L., et al., Preparation of Pd/C catalysts via ultrasound: a study of the metal distribution. Ultrasonics Sonochemistry, 1997. 4(4): p. 317-320.
    [134]. Srivastava, D.N., et al., Preparation of porous cobalt and nickel oxides from corresponding alkoxides using a sonochemical technique and its application as a catalyst in the oxidation of hydrocarbons. Ultrasonics Sonochemistry, 2003. 10(1): p. 1-9.
    [135]. Fisher, J.G., et al., Microwave reaction bonding of silicon nitride using an inverse temperature gradient and ZrO2 and Al2O3 sintering additives. Journal of the European Ceramic Society, 2003. 23(5): p. 791-799.
    [136]. Berry, F.J., et al., Microwave heating during catalyst preparation: influence on the hydrodechlorination activity of alumina-supported palladium-iron bimetallic catalysts. Applied Catalysis A: General, 2000. 204(2): p. 191-201.
    [137]. Bangala, D.N., N. Abatzoglou, and E. Chornet, Steam Reforming of Naphthalene on Ni-Cr/Al2O3 Catalysts Doped with MgO, TiO2, and La2O3. AIChE Journal, 1998. 44(4): p. 927-936.
    [138]. Liu, Y. and D. Sun, Effect of CeO2 doping on catalytic activity of Fe2O3/[gamma]-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. Journal of Hazardous Materials, 2007. 143(1-2): p. 448-454.
    [139]. Roggenbuck, J., et al., Mesoporous CeO2: Synthesis by nanocasting, characterisation and catalytic properties. Microporous and Mesoporous Materials, 2007. 101(3): p. 335-341.
    [140]. Dou, B., et al., Catalytic cracking of tar component from high-temperature fuel gas. Applied Thermal Engineering, 2003. 23: p. 2229-2239.
    [141].何少华等,试验设计与数据处理. 2002,长沙:国防科技大学出版社.
    [142]. Tonanon, N., et al., Improvement of mesoporosity of carbon cryogels by ultrasonic irradiation. Carbon, 2005. 43(3): p. 525-531.
    [143]. Richardson, J.T., R.M. Scates, and M.V. Twigg, X-ray diffraction study of the hydrogen reduction of NiO/[alpha]-Al2O3 steam reforming catalysts. Applied Catalysis A: General, 2004. 267(1-2): p. 35-46.
    [144]. Roh, H.-S., K.-W. Jun, and S.-E. Park, Methane-reforming reactions over Ni/Ce-ZrO2/[theta]-Al2O3 catalysts. Applied Catalysis A: General, 2003. 251(2): p. 275-283.
    [145]. de Almeida, R.M., et al., Preparation and evaluation of porous nickel-alumina spheres as catalyst in the production of hydrogen from decomposition of methane. Journal of Molecular Catalysis A: Chemical. In Press, Corrected Proof.
    [146]. Cairon, O., et al., Acid-catalysed benzene hydroconversion using various zeolites: Bronsted acidity, hydrogenation and side-reactions. Applied Catalysis A: General, 2003. 238(2): p. 167-183.
    [147].叶贻杰,生物质灰特性及其结渣机理的研究.硕士论文. 2007,武汉:华中科技大学.
    [148]. Richardson, S.M. and M.R. Gray, Enhancement of residue hydroprocessing catalysts by doping with alkali metals. Energy and Fuels, 1997. 11(6): p. 1119-1126.
    [149].蒋剑春,应浩,戴伟娣,生物质流态化催化气化技术工程化研究.太阳能学报, 2004. 25(5): p. 678-684.
    [150].米铁,陈汉平, and高斌等,生物质的流化床热解实验研究.华中科技大学学报(自然科学版), 2005. 33(9): p. 71-74.
    [151].张谋,液氨法脱除烟气中碳、硫、氮氧化物的实验研究.硕士论文. 2007,武汉:华中科技大学.
    [152]. Raveendran, K., A. Ganesh, and K.C. Khilar, Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 1995. 74(12): p. 1812-1822.
    [153]. Peace, G.S., Taguchi Methods. 1993, USA: Addison Wesley Publishing Company.
    [154]. Simell, P., et al., Provisional protocol for the sampling and anlaysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass and Bioenergy, 2000. 18(1): p. 19-38.
    [155].张晓东, et al.,生物质热解煤气中焦油含量的影响因素.燃烧科学与技术, 2003. 9(4): p. 329-334.
    [156].钟浩等,生物质热解气化技术的研究现状及其发展.云南师范大学学报, 2001. 21: p. 41-44.
    [157].张晓东,生物质热解气化及热解焦油催化裂化机理研究.博士学位论文. 2003,杭州:浙江大学.
    [158]. Turn, S., et al., An experimental investigation of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 1998. 23(8): p. 641-648.
    [159]. Bridgwater, A.V., The technical and economic feasibility of biomass gasification for power generation. Fuel, 1995. 74(5): p. 631-653.
    [160]. Mathieu, P. and R. Dubuisson, Performance analysis of a biomass gasifier. Energy Conversion andManagement, 2002. 43(9-12): p. 1291-1299.
    [161]. Ong'iro, A., et al., Thermodynamic simulation and evaluation of a steam CHP plant using ASPEN Plus. Applied Thermal Engineering, 1996. 16(3): p. 263-271.
    [162]. Sotudeh-Gharebaagh, R., et al., Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel, 1998. 77(4): p. 327-337.
    [163].汪洋,代正华, and于广锁等,运用Gibbs自由能最小化方法模拟气流床煤气化炉.煤炭转化, 2004. 27(4): p. 27-33.
    [164].沈来宏,肖军, and高杨,串行流化床生物质催化制氢模拟研究.中国电机工程学报, 2006. 26(11): p. 7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700