氮化镓基HEMT器件高场退化效应与热学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对氮化镓(GaN)基高电子迁移率晶体管(HEMTs)的高场退化效应以及器件中的热学问题展开研究。
     论文首先通过设计恒定应力-恢复实验以及阶梯应力-恢复实验,对GaN基HEMT器件的高场退化效应进行研究。通过对器件直流特性、光照恢复特性以及陷阱俘获-释放行为的比较,发现器件在不同的应力条件下存在不同的主导退化机制(而非单一机制)。对器件分别施加关态漏阶梯应力、VDS=0关态栅阶梯应力以及开态漏阶梯应力分析器件在高场下的关键行为,并在此基础上提出了热电子驱动的电子俘获机制与电场驱动的逆压电极化机制的耦合模型:在高输出功率情况下热电子驱动的电子俘获机制起主导作用,而在高场情况下(关态、VDS=0V、VGS<0V)电场驱动的逆压电极化效应更为显著。之后,提出了一种利用栅泄漏电流区分两种主要退化机制的方法。
     论文系统地研究了高温环境对AlGaN/GaN HEMT器件欧姆接触、肖特基接触、直流特性以及交流特性的影响,并给出了器件特性变化的可能机制。对欧姆接触的研究表明,欧姆接触金属化具有良好的高温稳定性;相对来讲,肖特基接触对温度更为敏感,本文基于陷阱辅助的Frenkel-Poole(FP)发射模型解释了高温下栅泄漏电流明显增加的机理,并得到合理的物理参数;研究发现,随着环境温度的升高,器件的最大饱和电流、跨导峰值和阈值电压有所漂移,这些参数的漂移主要因为高温下载流子迁移率和2DEG面密度变化所导致;论文对器件交流特性的研究表明,高温过程不会在器件中产生新的陷阱,但会使AlGaN势垒层中固有陷阱的活性增强。
     论文从电容特性、直流特性、交流特性以及频率特性等角度研究了高温存储对AlGaN/GaN HEMT器件的影响,发现了热存储有时会减小势垒层的有效厚度,例如在96小时250℃热存储前后的势垒层有效厚度减小近3nm;通过电导-频率法对器件的陷阱效应进行研究,得到热存储前的界面态密度Dit=(0.42~2.18)×1012cm-2eV-1,界面态时常数τit=(3.63~0.19)μs;96小时250℃热存储后的界面态密度减小到Dit=(0.27~1.83)×1012cm-2eV-1,界面态时常数τit=(3.65~0.12)μs,界面态密度明显降低。本文从陷阱的角度解释了热存储对器件界面特性的改善作用,这是由于高温存储形成了更为理想和紧密的肖特基接触,同时降低了栅下方的界面态密度,在两者的共同作用下,栅泄漏电流减小、击穿电压提高;热存储后器件的电流崩塌效应与栅延迟特性也得到较好的控制,体现了热存储对器件中界面态的抑制作用;此外,热存储对器件的频率特性没有明显的影响。之后将研究转向大栅宽器件,结果表明热存储对小栅宽器件的作用规律同样适用于大栅宽器件;最后对热存储条件进行了优化,24小时250℃热存储可以有效减小器件在后续工作中的参数漂移,起到固化器件的作用,是较为合理的热存储条件。
     论文实现了对多指栅AlGaN/GaN HEMT器件结温的测量。在排除逆压电偏置影响的前提下,利用微区拉曼技术对多指栅AlGaN/GaN HEMT器件在工作条件下的结温进行测量并完成对器件结-壳热阻的分析与计算。结果表明,自主研制的AlGaN/GaN HEMT器件结-壳热阻Rjc=2.62℃/W,与国内外目前文献所报道的GaN基HEMT器件的热阻相比已达到先进水平;对多指栅AlGaN/GaN HEMT器件中横向与纵向温度分布的研究,加深了对器件中热量产生位置与传播途径的理解。这对于预测器件寿命和优化器件版图结构,进而缓解大栅宽微波功率器件的自热效应具有非常重要的意义。
     论文建立了多指栅AlGaN/GaN HEMT器件的三维电-热模型。模型计入了材料热导率对温度的非线性影响,将2D电-热模型得到的焦耳热功率密度分布作为3D有限元模型的热源,通过求解稳态热传导方程,得到器件在工作情况下的温度分布细节。之后用微区拉曼结温测量结果对模型进行验证,两种方法的结果很好的吻合,验证了模型中器件参数的合理性。在此基础上,对多指栅AlGaN/GaNHEMT器件各层材料的热阻进行分解,模型得到的器件结-壳热阻与微区拉曼技术测试结果相比误差低于4%。最后,利用该模型对影响器件结温的关键因素进行分析,综合考虑散热、面积和功率特性等因素,总结了降低器件结温/热阻的有效措施,并提出针对多指栅AlGaN/GaN HEMT器件的热设计方案。
High electric-field degradation effects and thermal issues of GaN based highelectron mobility transistors (HEMTs) are investigated in this dissertation.
     Firstly, high electric-field degradation effects of GaN based HEMT areinvestigated by designing of constant stress-recovery and step stress-recovery schemes.Comparison of DC characteristics, light recovery characteristics and trapping-releasebehavior of the device shows that the dominant degradation mechanism under thespecific on-state stress differs from that of the off-state stress condition. Off-state drainstep stress, VDS=0gate step stress and on-state drain step stress are applied respectivelyto investigate the critical behavior of device under high electric-field. A coupled modelbased on the electron capture mechanism (hot-electron-driven) and the inversepiezoelectric polarization mechanism (electric field driven) is proposed to explain theobserved device degradation. The distinction of the two leading electrical degradationmechanisms is achieved by switch of gate leakage current behavior. The electroncapture mechanism plays a leading role when the device is biased at high output power,while in the case of high-field (Off state, VDS=0V, VGS<0V) the inverse piezoelectricpolarization effect is believed to be dominant.
     High-temperature characteristics of AlGaN/GaN HEMTs including ohmic contact,Schottky contact, DC and AC characteristics are studied systematically and possibledegradation mechanisms are proposed to explain the various degradation phenomenon.The specific contact resistance keeps constant as temperature increases, which showsexcellent stability of the ohmic contact metallization under high temperatureenvironment. Trap-assisted Frenkel-Poole (FP) emission model can explain a significantincrease in gate leakage current at higher temperature and get reasonable physicalparameters. The saturation drain current and the peak trans-conductance decrease withthe increasing temperature, which is mainly due to the reduction in the2DEG mobilityand the decrease in the2DEG density. Our study on the conductance-frequency and thegate-lag characteristics reveals that no new trap is generated in the AlGaN/GaN HEMT,while the activity of the original trap in the AlGaN barrier is enhanced as thetemperature increases, which contributes to the electron escaping from the traps in thebarrier layer, thus suppresses the depletion effect of the trapped electrons to the channeland eventually leads to the weakening of the current collapse.
     The thermal storage reliability of AlGaN/GaN HEMTs is investigated fromcapacitance, DC, AC and frequency characteristic aspects. It is found that thermalstorage can reduce the effective thickness of the AlGaN barrier layer. Through thestorage of250℃and96hours, the effective thickness of the AlGaN barrier decreasesfrom25.7nm to22.8nm. The density and time constant of interface state traps ofdevices before and after thermal storage are obtained by Gp-ω calculation. It can be seenthat the interface state density is reduced significantly, and explain the improvement ofthermal storage on device interface characteristics. More ideal and intimate the Schottkycontact is formed due to high temperature storage, while removing the interface statedensity beneath the gate, thus reduce the gate leakage current increase the breakdownvoltage. Current collapse and gate-lag characteristics are suppressed after storage, whichimplies the inhibitory effect of thermal storage on the interface states. In addition,thermal treatment has no significant effect on the frequency characteristic of device.Research on the multi-finger devices shows that the principles of thermal storage ondevice with100μm gate width also applies to the multi-finger devices. Finally, thethermal storage condition is optimized,250℃and24hours heat storage plays the roleof the curing device and can effectively reduce the device parameter drift in thefollow-up work.
     By excluding the inverse piezoelectric bias, micro-Raman spectroscopy issuccessfully employed to measure the channel temperature of multi-finger AlGaN/GaNHEMT under operation. Then, the junction to case thermal resistance is calculated,compared to that of devices reported in current literature, our device has reached anadvanced level (Rjc=2.62℃/W). Research on the horizontal and vertical temperaturedistribution through the device enhances our understanding on the heat generationlocation and the transmission mode, which is of great importance for predicting thelifetime and to optimize the layout structure, and thus alleviate the self-heating effect inthe multi-finger microwave power devices.
     A coupled electro-thermal model is constructed to describe detailed electrical andthermal behavior of multi-finger AlGaN/GaN HEMTs in this paper. The model takesthe2DEG transport characteristic, the Joule heating power distribution and thenonlinear relationship of material thermal conductivity with temperature into account.The results reveal excellent correlation to the micro-Raman measurements, validatingour model for the design of better cooled structures. Furthermore, the influence oflayout design on the channel temperature of multi-finger AlGaN/GaN HEMT is studied using the proposed electro-thermal model, results indicates that parameters such as thenumber of fingers, finger width, and spacing are critical factors for thermal managementconsiderations and reasonable optimization methods for layout design are suggested toeliminate the self-heating effects.
引文
[1.1] Ku H, Liu C C H, Chong K K, et al, Enhancement of the light outputperformance for GaN-based light-emitting diodes by bottom pillar structure,Applied Physics Letters,2007, vol.91, pp.121109-121111.
    [1.2] Lu T C C, Kuo H C C, Fang K L, et al, Study of InGaN-GaN light-emittingdiodes with different last barrier thicknesses, IEEE Photonics TechnologyLetters,2010, vol.22, pp.860-862.
    [1.3] Ho C L L, Chen P C, Light extraction efficiency enhancement of GaN blueLED by liquid-phase-deposited ZnO rods, IEEE Photonics Technology Letters,2008, vol.20, pp.252-254.
    [1.4] Gaska R, Chen Q, Yang J, et al, High-temperature performance of AlGaN/GaNHEMTs on SiC substrates, IEEE Electron Device Letters,1997, vol.18,pp.492-497.
    [1.5] Wu Y F, Keller B P, Fini P, et al, Short channel Al0.5Ga0.5N/GaN MODEFTswith power density>3W/mm at18GHz, IEEE Electronics Device Letters,1997,vol.33, pp.1742-1743.
    [1.6] Sheppard S T, Doverspike K, Pribble W L, et al, High power microwaveGaN/AlGaN HEMTs on semi-insulating silicon carbide substrate, IEEEElectron Device Letters,1999, vol.20, pp.161-163.
    [1.7] Sullivan G J, Chen M Y, Higgins J A, et al, High power10GHz operation ofAlGaN HFETs on insulating SiC, IEEE Electron Device Letters,1998, vol.19,pp.198-200.
    [1.8] Khan M A, Adesida I, Kumar V, et al, AlGaN/GaN HEMTs on SiC with fTover120GHz, IEEE Electron Device Letters,2002, vol.23, pp.455-457.
    [1.9] Khan M A, Chen Q, Shur M S, et al, CW operation of short channelGaN/AlGaN doped channel heterostructure field effect transistors at10GHzand15GHz, IEEE Electron Device Letters,1996, vol.17, pp.584-585.
    [1.10] Johnson E O, Physical limitations on frequency and power parameters oftransistors, RCA Review,1965, pp.163-177.
    [1.11] Baliga A J, Power semiconductor device figure of merit for high frequencyapplications, IEEE Electron Device Letters,1989, vol.10, pp.455-457.
    [1.12] Khan M A, Bhattarai A, Kuznia J N, et al, High electron mobility transistorbased on a GaN/AlxGa1-xN heterojunction, Applied Physics Letters,1993,vol.63, pp.1214-1215.
    [1.13] Khan M A, Kkuznia J N, Olson D T, et al, Microwave performance of a0.25μm gate AlGaN/GaN heterostructure field effect transistors, AppliedPhysics Letters,1994, vol.65, pp.1121-1123.
    [1.14] Wu Y F, Keller B P, Keller S, et al, Measured microwave power performanceof AlGaN/GaN MODFET, IEEE Electron Device Letters,1996, vol.17,pp.455-457.
    [1.15] Mishra U K, Wu F Y, Keller P B, et al, GaN microwave electronics, TopicalSymp on Millimeter Waves, Kanagawa, Japan,1997.
    [1.16] Green B M, Chu K K, Chumbes E M, et al, The effect of surface passivation onthe microwave characteristics of undoped AlGaN/GaN HEMTs, IEEE ElectronDevice Letters,2000, vol.21, pp.268-270.
    [1.17] Mizutani T, Ohno Y, Akita M, et al, A study on current collapse inAlGaN/GaN HEMTs induced by bias stress, IEEE Electron Devices,2003,vol.50, pp.2015-2020.
    [1.18] Ando Y, Okamoto Y, Miyamoto H, et al,10W/mm AlGaNGaN HFET with afield modulating plate, IEEE Electron Device Letters,2003, vol.24,pp.289-291.
    [1.19] Tilak V, Green B, Kaper V, et al, Influence of barrier thickness on thehigh-power performance of AlGaN/GaN HEMTs, IEEE Electron DeviceLetters,2001, vol.22, pp.504-506.
    [1.20] Vescan A, Dietrich R, Wieszt A, et al, AlGaN/GaN MODFETs onsemi-insulating SiC with3W/mm at20GHz, Electronics Letters,2001, vol.36,pp.1234-1236.
    [1.21] Wu Y F, Moore M, Saxler A, et al,3.5-watt AlGaN/GaN HEMTs andamplifiers at35GHz, in Dig. IEDM Tech,2003, pp.23.5.1-23.5.3.
    [1.22] Kasahara K, Miyamoto H, Ando Y, et al, Ka-band2.3W power AlGaN/GaNheterojunction FET, in Dig. IEDM Tech,2002, pp.677-680.
    [1.23] Wu Y F, Saxler A, Moore M, et al,30-W/mm GaN HEMTs by field plateoptimization, IEEE Electron Device Letters,2004, vol.25, pp.117-119.
    [1.24] Kim H, Thompson R M, Tilak V, Effects of SiN passivation and high-electricfield on AlGaN-GaN HFET degradation, IEEE Electron Device Letters,2003,vol.24, pp.421-423.
    [1.25] Meneghesso G, Rampazzo F, Kordo P, Current collapse and high electric fieldreliability of unpassivated GaN/AlGaN/GaN HEMTs, IEEE Electron Device,2006, vol.53, pp.2932-2941.
    [1.26] Trew, Robert Robert J, GaN MESFETs for high-power and high-temperaturemicrowave applications,1995, vol.31, pp.498-500.
    [1.27] Kondo H, Sugimoto M, Kanechika M, et al, Drive with GaN power HEMTsunder high temperature environment, Integrated Power Systems,2006, pp.1-4.
    [1.28] Theron D, Gaquiere C, Vescan A, et al, Current instabilities in GaN-baseddevices, IEEE Electron Device Letters,2001, vol.22, pp.62-64.
    [1.29] Vetury R, Zhang N Q, Keller S, et al, The impact of surface states on the DCand RF characteristics of AlGaN/GaN HFETs, IEEE Electron Devices,2001,vol.48, pp.560-566.
    [1.30] Kim H, Tilak V, Green B M, et al, Reliability evaluation of high powerAlGaN/GaN HEMTs on SiC substrate, phys. stat. sol.(a),2001, vol.188,pp.203-206.
    [1.31] Trew R J, Green D S, and Shealy J B, AlGaN/GaN HFET reliability, IEEEMicrowave Magazine,2009, pp.116-127.
    [1.32] Binari S C, Klein P B, and Kazior T E, Trapping effects in GaN and SiCmicrowave FETs, Proceedings of the IEEE,2002, vol.90, pp.1048-1058.
    [1.33] Simin G, Koudymov A, Tarakji A, et al, Induced strain mechanism of currentcollapse in AlGaN/GaN heterostructure field-effect transistors, AppliedPhysics Letters,2001, vol.79, pp.2651-2653.
    [1.34] Mittereder J A, Binari S C, Klein P B, et al, Current collapse induced inAlGaN/GaN high-electron-mobility transistors by bias stress, Applied PhysicsLetters,2003, vol.83, pp.1650-1652.
    [1.35] Kim H, Thompson R M, Tilak V, et al, Effect of SiN passivation andhigh-electric field on AlGaN-GaN HFET degradation, IEEE Electron DeviceLetters,2003, vol.24, pp.421-423.
    [1.36] Kikkawa T, Nagahara M, Okamoto N, et al, Surface-charge controlledAlGaN/GaN-power HFET without current collapse and gm dispersion, in Dig.IEDM Tech,2001, pp.585-588.
    [1.37] Coffie R, Buttari D, Heikman S, et al, P-capped GaN-AlGaN-GaNhigh-electron mobility transistors (HEMTs), IEEE Electron Device Letters,2002, vol.23, pp.588-590.
    [1.38] Koley G, Tilak V, Eastman L F, et al, Slow transients observed in AlGaN/GaNHFETs: effects of SiNx passivation and UV illumination, IEEE ElectronDevices,2003, vol.50, pp.886-893.
    [1.39] Sahoo D K, Lal R K, Kim H, et al, High-field effects in Silicon NitridePassivated GaN MODFETs, IEEE Electron Devices,2003, vol.50,pp.1163-1170.
    [1.40] Lee C, Tserng H, Witkowski L, et al, Effects of RF stress on power and pulsedIV characteristics of AlGaN/GaN HEMTs with field-plate gates, ElectronLetters,2004, vol.40, pp.1147-1148.
    [1.41] Valizadeh P, Pavlidis D, Investigation of the impact of Al mole-fraction on theconsequences of RF stress on AlxGa1xN/GaN MODFETs, IEEE ElectronDevices,2005, vol.52, pp.1933-1939.
    [1.42] Edwards A P, Mittereder J A, Binari S C, et al, Improved reliability ofAlGaN-GaN HEMTs using an NH3plasma treatment prior to SiN passivation,IEEE Electron Device Letters,2005, vol.26, pp.225-227.
    [1.43] Adivarahan V, Yang J, Koudymov A, et al, Stable CW operation of field-platedGaN-AlGaN MOSHFETs at19W/mm, IEEE Electron Device Letters,2005,vol.26, pp.535-537.
    [1.44] Meneghesso G, Pierobon R, Rampazzo F, et al, Hot-electron-stress degradationin unpassivated GaN/AlGaN/GaN HEMTs on SiC, in Proc. of the IEEE Int.Rel. Phys. Symp.,2005, pp.415-422.
    [1.45] Sozza A, Dua C, Morvan E, et al, Evidence of traps creation inGaN/AlGaN/GaN HEMTs after a3000hour on-state and off-state hot-electronstress, in Dig. IEDM Tech,2005, pp.601-604.
    [1.46] Singhal S, Roberts J C, Rajagopal P, et al, GaN-on-Si failure mechanisms andreliability improvements, in Proc. IEEE IRPS,2006, pp.95-98.
    [1.47] Joh J and Del A, Mechanisms for electrical degradation of GaN high electronmobility transistors, in Dig. IEDM Tech,2006, pp.1-4.
    [1.48] Chou Y C, Leung D, Smorchkova I, et al, Degradation of AlGaN/GaN HEMTsunder elevated temperature lifetesting, Microelectron Reliability,2004, vol.44,pp.1033-1038.
    [1.49] Trew R J, Wide Bandgap Semiconductor transistors for microwave poweramplifiers, IEEE Microwave Magazine,2000, vol.1, pp.46-54.
    [1.50] Daumiller I, Kirchner C, Kamp M, et al, Evaluation of the temperature stabilityof AlGaN/GaN heterostructure FETs, IEEE Electron Device Letters,1999,vol.20, pp.448-450.
    [1.51] Kuball M, Rajasingam S, Sarua A, et al, Thermal management and devicefailure assessment of high-power AlGaN/GaN HFETs, Device ResearchConference,2002, pp.99-100.
    [1.52] Kim H, Tilak V, Green B M, et al, Reliability evaluation of high powerAlGaN/GaN HEMTs on SiC substrate, phys. stat. sol.(a),2001, vol.188,pp.203-206.
    [1.53] Vetury R, Zhang N Q, Keller S, et al, The impact of surface states on the DCand RF characteristics of AlGaN/GaN HFETs, IEEE Electron Devices,2001,vol.48, pp.560-566.
    [1.54] Valizadeh P and Pavlidis D, Effects of RF and DC stress on AlGaN/GaNMODFETs: A low-frequency noise-based investigation, IEEE Device andMaterials Reliability,2005, vol.5, pp.555-563.
    [1.55] Kim H, Thompson R M, Tilak V, et al, Effects of SiN passivation andhigh-electric field on AlGaN-GaN HFET degradation, IEEE Electron DeviceLetters,2003, vol.24, pp.421-423.
    [1.56] Sozza A, Dua C, Morvan E, et al, Evidence of traps creation inGaN/AlGaN/GaN HEMTs after a3000hour on-state and off-state hot-electronstress, in Dig. IEDM Tech,2005, pp.590-593.
    [1.57] Zanoni E, Meneghesso G, Verzellesi G, et al, A review of failure modes andmechanisms of GaN-based HEMTs, in Dig. IEDM Tech,2007, pp.381-384.
    [1.58] Koley G, Tilak V, Eastman L F, et al, Slow transients observed in AlGaN/GaNHFETs: effects of SiNx passivation and UV illumination, IEEE ElectronDevices,2003, vol.50, pp.886-893.
    [1.59] Joh J, Del A, Mechnaisms for electrical degradation of GaN high electronmobility transistors, in Dig. IEDM Tech,2006, pp.148-151.
    [1.60] Islam S S, Anwar A F M, Temperature-dependent nonlinearities inGaN/AlGaN HEMTs, IEEE Electron Devices,2002, vol.49, pp.710-717.
    [1.61] Shiwei F, Wang D F, Zhu X D, et al, The temperature characteristics ofAlGaN/GaN double heterostructure HEMTs, Solid-State and IntegratedCircuits Technology,2004, vol.3, pp.2284-2286.
    [1.62] Chien C L, Cheng F S, Chien P L, Performance of AlGaN/GaN heterostructureFETs over temperatures, Solid-State and Integrated Circuits Technology,2004,pp.2265-2268.
    [1.63] Chang Y C, Zhang Y M, and Zhang Y M, A thermal model for static currentcharacteristics of AlGaN/GaN high electron mobility transistors includingself-heating effect, Journal of Applied Physics,2006, vol.99, pp.044501.
    [1.64]任春江,陈堂胜,焦刚,温度对AlGaN/GaN HEMT电学性能的影响,固体电子学研究与进展,2007, vol.27, pp.329-334.
    [1.65] Tartarin J G, Chevallier J, Delage S, Increased reliability of AlGaN/GaNHEMTs versus temperature using deuterium, Microwave Integrated CircuitConference,2008, pp.187-189.
    [1.66] Geok I N, Arulkumaran S, Study on the temperature dependence of themicrowave-noise characteristics in AlGaN/GaN HEMTs, IEEE ElectronDevices,2010, vol.57, pp.2353-2357.
    [1.67] Sozza A, Dua C, Morvan E, et al, Thermal stability of Mo-based Schottkycontact for AlGaN/GaN HEMT, Electronics Letters,2005, vol.41, pp.61-62.
    [1.68] Danesin F, Tazzoli A, Zanon F, et al, Thermal storage effects on AlGaN/GaNHEMT, Microelectronics Reliability,2008, vol.48, pp.1361-1365.
    [1.69] Wang X H, Liu X Y, Huang J, et al, Thermal storage of AlGaN/GaNhigh-electron-mobility transistors, IEEE Device and Materials Reliability,2010,vol.10, pp.360-365.
    [1.70] Medjdoub F, Marcon D, Das J, GaN-on-Si HEMTs Above10W/mm at2GHztogether with high thermal stability at325°C, Proceedings of the5th EuropeanMicrowave Integrated Circuits Conference,2010, pp.37-40.
    [1.71] Akita M, Kishimoto S, Mizutani T, High-frequency measurements ofAlGaN/GaN HEMTs at high temperatures, IEEE Electron Device Letters,2001,vol.22, pp.376-377.
    [1.72] Gaska R, Chen Q, Yang J, et al, High-temperature performance of AlGaN/GaNHFETs on SiC substrates, IEEE Electron Device Letters,1997, vol.18,pp.492-494.
    [1.73] Pierce D G, Brusius P G, Electro-migration: A review, Microelectronics andReliability, Reliability Physics of Advanced Electron Devices,1997, vol.37,pp.1053-1072.
    [1.74] Freeman J C, et al, Channel temperature model for microwave AlGaN/GaNpower HEMTs on SiC and sapphire, in Dig. IEEE MTT-S,2004,pp.2031-2034.
    [1.75] Darwish A M, Bayba A, and Hung H A, Accurate determination of thermalresistance of FETs, IEEE Transactions on Microwave Theory and Techniques,2005, vol.53, pp.306-313.
    [1.76] Ji H F, Kuball M, Sarua A, et al, Three-dimensional thermal analysis of aflip-chip mounted AlGaN/GaN HFET using confocal micro-Ramanspectroscopy, IEEE Electron Devices,2006, vol.53, pp.2658-2661.
    [1.77] Bertoluzza F, Delmonte N, and Menozzi R, Three-dimensional finite-elementthermal simulation of GaN-based HEMTs, Microelectronics Reliability,2009,vol.49, pp.468-473.
    [2.1] Chu K K, Green B, Eastman L F, et al, High performance piezoelectricAlGaN/GaN HEMT’s on sapphire,2003, European Gallium Nitride Workshop.
    [2.2] Vetury R, Chen C H, Ibbetson J P, et al, Understanding DC and RFperformance of HEMTs,1998, ONR-MURI review meeting.
    [2.3] Luther B P, Mohney S E, Jackson T N, et al, Investigation of the mechanismfor ohmic contact formation in Al and Ti/Al contacts to n-type GaN, AppliedPhysics Letters,1997, vol.70, pp.57-59.
    [2.4] Lester L F, Brown J M, Ramer J C, et al, Nonalloyed Ti/Al ohmic contacts ton-type GaN using high-temperature premetallization anneal, Applied PhysicsLetters,1996, vol.69, pp.2737-2739.
    [2.5] Ruvimov S, Liliental-Weber Z, Washburn J, et al, Microsturcture of Ti/Al andTi/Al Ni/Au ohmic contacts for n-GaN, Applied Physics Letters,1996, vol.69,pp.1556-1558.
    [2.6] Liu Q Z, Lau S S, Review of the metal-GaN contact technology, Solid-StateElectronics,1998, vol.42, pp.677-691.
    [2.7] Wang Y Y, Zhen C M, Gong H X, et al, Measurement of the specific contactresistance of Au/Ti/p-diamond using Transmission Line Model, Acta PhysicaSinica,2000, pp.1348-1351.
    [2.8] Binari S C, Dietrich H B, Kelner G, et al, H, He and N implant isolation ofn-type GaN, Journal of Applied Physics,1995, vol.78, pp.3008-3011.
    [2.9] Chu K K, Smart J A, Shealy J R, et al, AlGaN/GaN piezoelectric HEMT’s withsubmicron gates on sapphire, Proceedings of State-of-the-Art Programs onCompound Semiconductor,1998.
    [2.10] Wu Y F, Keller B P, Keller S, et al, Very high breakdown voltage and largetransconductance realized on GaN heterojunction field effect transistors,Applied Physics Letters,1996, vol.69, pp.1438-1440.
    [2.11] Theron D, Gaquiere C, Vescan A, et al, Current instabilities in GaN-baseddevices, IEEE Electron Device Letters,2001, vol.22, pp.62-64.
    [2.12] Mittereder J A, Binari S C, Klein P B, et al, Current collapse induced inAlGaN/GaN high-electron-mobility transistors by bias stress, Applied PhysicsLetters,2003, vol.83, pp.1650-1652.
    [2.13] Kim H, Thompson R M, Tilak V, et al, Effect of SiN passivation andhigh-electric field on AlGaN-GaN HFET degradation, IEEE Electron DeviceLetters,2003, vol.24, pp.421-423.
    [3.1] Dieci D, Sozzi G, Menozzi R, et al, Electric-field-related reliability ofAlGaAs/GaAs power HFETs: Bias dependence and correlation withbreakdown, IEEE Electron Devices,2001, vol.48, pp.1929-1937.
    [3.2] Menozzi R, Cova P, Canali C, et al, Breakdown walkout in pseudomorphicHEMT’s, IEEE Electron Devices,1996, vol.43, pp.543-546.
    [3.3] Chowdhury U, Jimenez J L, Lee C, et al, TEM observation of crack-andpit-shaped defects in electrically degraded GaN HEMTs, IEEE Electron DeviceLetters,2008, vol.29, pp.1098-1100.
    [3.4] Park J, Shin M W, Lee C C, et al, Thermal modeling and measurement ofGaN-based HFET devices, IEEE Electron Device Letters,2003, vol.24,pp.424-426.
    [3.5] Kotani, Junji, et al, Computer simulation of current transport in GaN andAlGaN Schottky diodes based on thin surface barrier model, Applied SurfaceScience,2004, vol.237, pp.213-218.
    [3.6] Kumar V, Zhou L, Selvanathan D, et al, Thermally-stable low-resistanceTi/Al/Mo/Au multilayer ohmic contacts on n-GaN, Journal of Applied Physics,2002, vol.92, pp.1712-1714.
    [3.7] Zhang A P, Dang G, Ren F, et al. Temperature dependence and currenttransport mechanisms in AlxGa1-xN Schottky rectifiers, Applied Physics Letters,2000, vol.76, pp.3816-3818.
    [3.8] Miller E J, Yu E T, Waltereit P, et al, Analysis of reverse-bias leakage currentmechanisms in GaN grown by molecular-beam epitaxy, Applied PhysicsLetters,2004, vol.84, pp.535-537.
    [3.9] Frenkel J, On Pre-breakdown phenomena in insulators and electronicsemi-conductors, Phys. Rev.,1938, vol.54, pp.647-648.
    [3.10] Chin V W L, Tansley T L, Osotchan T, Electron mobilities in gallium, indium,and aluminum nitrides, Journal of Applied Physics,1994, vol.75,pp.7365-7372.
    [3.11] Arslan E, Altindal, z elik S, et al, Dislocation governed current transportmechanism in (Ni/Au)–AlGaN/AlN/GaN heterostructures, Journal of AppliedPhysics,2009, vol.105, pp.023705-023711.
    [3.12] Zhang H, Miller E J, Yu E T, Analysis of reverse-bias leakage currentmechanisms in GaN grown by molecular-beam epitaxy, Journal of AppliedPhysics,2006, vol.99, pp.023703-023705.
    [3.13] Ozgur A, Fan Z F, Mohammad S N, et al, High temperature characteristics ofAlGaN/GaN modulation doped field-effect transistors, Applied Physics Letters,1996, vol.69, pp.3872-3875.
    [3.14] Arulkumaran S, Egawa T, Ishikawa H, et al. High-temperature effects ofAlGaN/GaN high electron mobility transistors on sapphire and semi-insulatingSiC substrates, Applied Physics Letters,2002, vol.80, pp.2186-2188.
    [3.15] Stoklas R, Gregu ová D, Novák J, et al, Investigation of trapping effects inAlGaN/GaN/Si field-effect transistors by frequency dependent capacitance andconductance analysis, Applied Physics Letter,2008, vol.93,pp.124103-124105.
    [3.16] Kim H, Thompson R M, Tilak V, et al, Effects of SiN passivation andhigh-electric field on AlGaN-GaN HFET degradation, IEEE Electron DeviceLetters,2003, vol.24, pp.421-423.
    [3.17] Arulkumarana S, Ng G I, Effect of gate-source and gate-drain Si3N4passivationon current collapse in AlGaN/GaN high-electron-mobility transistors on silicon,Applied Physics Letters,2007, vol.90, pp.173504-173506.
    [3.18] Binari S C, Ikossi K, Roussos J A, et al, Trapping effects and microwave powerperformance in AlGaN/GaN HEMTs, IEEE Electron Devices,2001, vol.48,pp.465-471.
    [4.1] Sozza A, Dua C, Morvan E, et al, Thermal stability of Mo-based Schottkycontact for AlGaN/GaN HEMT, Electronics Letters,2005, vol.41, pp.61-62.
    [4.2] Danesin F, Tazzoli A, Zanon F, et al, Thermal storage effects on AlGaN/GaNHEMT, Microelectronics Reliability,2008, vol.48, pp.1361-1365.
    [4.3] Wang X H, Liu X Y, Huang J, et al, Thermal storage of AlGaN/GaNHigh-Electron-Mobility Transistors, IEEE Device and Materials Reliability,2010, vol.10, pp.360-365.
    [4.4] Medjdoub F, Marcon D, Das J, GaN-on-Si HEMTs above10W/mm at2GHztogether with high thermal stability at325°C, Proceedings of the5th EuropeanMicrowave Integrated Circuits Conference,2010, pp.37-40.
    [4.5] Arulkumaran S, Egawa T, Ishikawa H, et al, High-temperature effects ofAlGaN/GaN high electron mobility transistors on sapphire and semi-insulatingSiC substrates, Applied Physics Letters,2002, vol.80, pp.2186-2188.
    [4.6] Krispin P, Spruytte S G, Harris J S, et al, Electrical depth profile of p-typeGaAs/Ga(As,N)/GaAs heterostructures determined by capacitance-voltagemeasurements, Journal of Applied Physics,2000, vol.88, pp.4153-4158.
    [4.7] Stoklas R, Gregu ová D, Novák J, et al, Investigation of trapping effects inAlGaN/GaN/Si field-effect transistors by frequency dependent capacitance andconductance analysis, Applied Physics Letter,2008, vol.93, pp.124103-124105.
    [4.8] Miczek M, Mizue C, Hashizume T, et al, Effects of interface states andtemperature on the C-V behavior of metal/insulator/AlGaN/GaNheterostructure capacitors, Journal of Applied Physics,2008, vol.103,pp.104510-104520.
    [4.9] Miller E J, Dang X Z, Wieder H H, et al, Trap characterization by gate-drainconductance and capacitance dispersion studies of an AlGaN/GaNheterostructure field-effect transistor, Journal of Applied Physics,2000, vol.87,pp.8070-8073.
    [4.10] See http://www.ioffe.rssi.ru/SVA/NSM/for an archive of material properties.
    [4.11]林若兵,王欣娟,冯倩,等, AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究,Acta Physica Sinica,2008, vol.57, pp.4487-4491.
    [4.12] Singhal S, Roberts J C, Rajagopal P, et al, GaN-on-Si failure mechanisms andreliability improvements, in Proc. IEEE44th Annu. Int. Rel. Phys. Symp.,2006,pp.95-98.
    [4.13] Sozza A, Dua C, Morvan E, et al, Thermal stability of Mo-based Schottkycontact for AlGaN/GaN HEMT, Electronics Letters,2005, vol.41, pp.61-62.
    [4.14] Zhao M, Wang X H, Liu X Y, et al, Thermal storage of AlGaN/GaNhigh-electron-mobility transistors, IEEE Device and Materials Reliability,2010,vol.10, pp.360-365.
    [4.15] Chu R M, Shen L, Fichtenbaum N, Zhen Chen, et al, Correlation betweenDC–RF dispersion and gate leakage in deeply recessed GaN/AlGaN/GaNHEMTs, IEEE Electron Device Letters,2008, vol.29, pp.303-305.
    [5.1] Wu Y F, Saxler A, Moore M, et al,30-W/mm GaN HEMTs by field plateoptimization, IEEE Electron Device Letters,2004, vol.25, pp.117-119.
    [5.2] Gaska R, Chen Q, Yang J, et al, High-temperature performance of AlGaN/GaNHFETs on SiC substrates, IEEE Electron Device Letters,1997, vol.18,pp.492-494.
    [5.3] Pierce D G, Brusius P G, Electro-migration: A review, Microelectronics andReliability, Reliability Physics of Advanced Electron Devices,1997, vol.37,pp.1053-1072.
    [5.4] Arai F, Ng C, Pou L, et al, Ultra-small site temperature sensing by carbonnanotube thermal probes,4th IEEE Conference on Nanotechnology,2004,pp.146-148.
    [5.5] Raphal A, Jean-Claude J, Weaver J, et al, SThM temperature mapping andnonlinear thermal resistance evolution with bias on AlGaN/GaN HEMTdevices, IEEE Electron Devices,2007, vol.54, pp.385-390.
    [5.6] Roesch W J, Thermo-reliability relationships of GaAs ICs, IEEE10th AnnualGallium Arsenide Integrated Circuit Symposium,1988, pp.61-64.
    [5.7] Park J, Shin M W, Lee C C, Thermal modeling and measurement ofAlGaN-GaN HFETs built on sapphire and SiC substrates, IEEE ElectronDevices,2004, vol.51, pp.1753-1759.
    [5.8] Aigouy L, Tessier G, Mortier M, et al, Scanning thermal imaging ofmicroelectronic circuits with a fluorescent nanoprobe, Applied Physics Letters,2005, vol.87, pp.184105-184107.
    [5.9] Xi Y, Schubert E F, Junction-temperature measurements in GaN UVlight-emitting diodes using the diode forward voltage, Proceedings IEEE LesterEastman Conference on High Performance Devices,2004, pp.84-89.
    [5.10] Donarski R J, Jastrzebski A K, Barnaby J E, Pulsed I-V and temperaturemeasurement system for characterisation of microwave FETs, IEEE MTT-SInternational Microwave Symposium Digest,1995, vol.3, pp.1523-1526.
    [5.11] Mehrotra V, Boutros K, Brar B, Electric-field dependence of junctiontemperature in GaN HEMTs,65th Annual Device Research Conference,2007,pp.143-144.
    [5.12] Kuzmik J, Javorka P, Alam A, et al, Investigation of self-heating effects inAlGaN-GaN HEMTs, International Symposium on Electron Devices forMicrowave and Optoelectronic Applications,2001, pp.21-26.
    [5.13] Hamann H F, Lacey J, Weger A, et al, Spatially-resolved imaging ofmicroprocessor power: hotspots in microprocessors, The Tenth IntersocietyConference on Thermal and Thermomechanical Phenomena in ElectronicsSystems,2006, pp.5-125.
    [5.14] Donald M, Albright G J, Microthermal Imaging in the infrared, ElectronicsCooling,1997, vol.3.
    [5.15] Dai P, Canfield P, Location of defective cells in HBT power amplifier arraysusing IR emission microscopy, Microelectronics Reliability,2001, vol.41,pp.1137-1141.
    [5.16] Webb P W, Russell, I A D, Thermal resistance of gallium-arsenide field-effecttransistors, IEEE Proceedings G Circuits, Devices and Systems,1989, vol.136,pp.229-234.
    [5.17] Oxley C H, Coaker B M, Priestley N E, Measured thermal images of a galliumarsenide power MMIC with and without RF applied to the input, Solid StateElectronics,2003, vol.47, pp.755-758.
    [5.18] Radivojevic Z, Andersson K, Bogod L, et al, Novel materials for improvedquality of RF-PA in base-station applications, IEEE Transactions onComponents and Packaging Technologies,2005, vol.28, pp.644-649.
    [5.19] Mahalingam M, Mares E, Infrared temperature characterization of high powerRF devices, IEEE MTT-S International Microwave Symposium Digest,2001,vol.3, pp.2199-2202.
    [5.20] Wilson J, Decker, K, GaAs MMIC thermal modeling for channel temperaturesin accelerated life test fixtures and microwave modules, IEEE/CPMTProceedings of the Semiconductor Thermal Measurement and ManagementSymposium,1994, pp.121-128.
    [5.21] Kuball M, Hayes J M, Uren M J, et al, Measurement of temperature in activehigh-power AlGaN/GaN HFETs using Raman spectroscopy, IEEE ElectronDevice Letters,2002, vol.23, pp.7-9.
    [5.22] Sarua A, Bullen A, Haynes M, et al, High-resolution Raman temperaturemeasurements in GaAs p-HEMT multifinger devices, IEEE Electron Devices,2007, vol.54, pp.1838-1842.
    [5.23] Claflina B, Heller E R, Winninghamc B, Accurate channel temperaturemeasurement in GaN-based HEMT devices and its impact on acceleratedlifetime predictive models, CS MANTECH Conference,2009.
    [5.24] Daniel C H, and Bertolucci M D, Symmetry and Spectroscopy: Courier DoverPublications,1989.
    [5.25] Jeong P, MooWhan S, and Chin C L, Thermal modeling and measurement ofAlGaN/GaN HEMTs built on sapphire and SiC substrates, IEEE ElectronDevice,2004, vol.51, pp.1753-1759.
    [5.26] Kuball M, Rajasingam S, and Sarua A, Measurement of temperaturedistribution in multifinger AlGaN/GaN heterostructure field-effect transistorsusing micro-Raman spectroscopy, Applied Physics Letters,2003, vol.82,pp.124-126.
    [5.27] See http://www.triquint.com/products/types/discrete-fets/gan-fets.cfm.
    [6.1] Rajasingam S, Pomeroy J W, Kuball M, et al, Micro-Raman temperaturemeasurements for electric field assessment in active AlGaNGaN HFETs, IEEEElectron Device Letters,2004, vol.25, pp.456–458.
    [6.2] Nuttinck S, Wagner B K, Banerjee B, et al, Thermal analysis of AlGaN-GaNpower HFETs, IEEE Microwave Theory and Tech.,2003, vol.51,pp.2445–2452.
    [6.3] Kuzmik J, Javorka P, Alam A, et al, Determination of channel temperature inAlGaN/GaN HEMTs grown on sapphire and silicon substrates using DCcharacterization method, IEEE Electron Devices,2002, vol.49, pp.1496–1498.
    [6.4] Dietrich R, Wieszt A, Vescan A, et al, Power handling limits and degradation oflarge area AlGaN/GaN RF-HEMTs, Solid-State Electronics,2003, vol.47,pp.123–125.
    [6.5] Lee J W and Webb K J, A temperature-dependent nonlinear analytic model forAlGaN-GaN HEMTs on SiC, IEEE Trans. Microwave Theory Tech.,2004,vol.52, pp.2–9.
    [6.6] Baig M A, Khandkar M Z H, Khan J A, et al, A study of temperature field in aGaN heterostructure field-effect transistor, Microelectronics Journal,2003,vol.34, pp.207–214.
    [6.7] Sun J, Fatima H, Koudymov A, et al, Thermal management of AlGaN-GaNHFETs on sapphire using flip-chip bonding with epoxy underfill, IEEEElectron Device Letters,2003, vol.24, pp.375–377.
    [6.8] Darwish A M, Bayba A J, and Hung H A, Thermal resistance calculation ofAlGaN-GaN devices, IEEE Trans. Microwave Theory Tech.,2004, vol.52,pp.2611-2620.
    [6.9]李晶,利用Flotherm对大功率LED封装的热分析, Journal of MinxiVocational and Tchnical College,2010, vol.12, pp.112-117.
    [6.10] Prejs A, Wood S, R Pengelly, et al, Thermal analysis and its application to highpower GaN HEMT amplifiers, Cree Inc.
    [6.11] Das J, Oprins H, Hangfeng Ji, et al, Improved thermal performance ofAlGaN/GaN HEMTs by an optimized flip-chip design, IEEE Electron Devices,2006, vol.53, pp.2696-2702.
    [6.12] Florescu D I, Asnin V M, Pollak F H, et al, Thermal conductivity of fully andpartially coalesced lateral epitaxial overgrown GaN/sapphire (0001) byscanning thermal microscopy, Applied Physics Letters,2000, vol.77,pp.1464-1466.
    [6.13] Kenneth K C, Design and fabrication of aluminum gallium nitride/galliumnitride based heterojunction field effect transistors for microwave applications,School of Cornell University,2000, pp.60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700