一种用于大功率LED冷却的高强度散热器的设计及性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LED被喻为新型照明光源,它具有发光效率高、耗电量小、使用寿命长、可靠性高、安全性好等突出特征,因此LED是一种节能、环保的绿色光源,LED器件具有广阔的应用前景,但是当结温超过一定值时,LED的发光效率和使用寿命会迅速下降。近年来,LED器件向着密集化的方向发展,这使得芯片功率密度过大,导致热量不能及时、有效地散出,因此,如何提高散热技术、控制结温、降低成本成为LED实现产业化急需解决的瓶颈问题。
     本文所设计的用来冷却大功率LED的散热器采用了一种新的高强度散热技术,由于其工作原理尚未定量揭示,暂定名为“闭式非相变传热管”技术器,主要研究成果如下:
     1、对闭式非相变传热管进行了性能测试,通过点加热、不同热流密度加热、启动特性与反重力效应等实验,研究了其工作特征及机理。
     2、针对80W大功率LED在环境温度为22。C、自然对流冷却的条件下提出了一种闭式非相变传热管散热系统,能使LED的结温有效地控制在75℃以下,并研究了LED输入功率、散热器倾斜角度对LED的结温、照度和散热器总热阻的影响。研究表明:利用该散热系统可以使80W功率LED的结温降至73.5℃;LED输入功率和散热器倾斜角度对结温、照度和散热器总热阻有明显的影响。
     3、利用Fluent软件对闭式非相变传热管进行了数值模拟与优化,并且找到了相应几何参数的最优解,使得与传统LED冷却装置相比,重量更轻、结构更紧凑、热阻更小。
     本研究为大功率LED散热提供了一种有效途径,为相应的散热器开发奠定了基础。
LED is a new lighting device which has advantages in the following aspects: high efficiency, low cost of power, long life, and high reliability, so it is an energy-efficient and environmental friendly lighting source. LEDs will be widely used in the future, but when LED junction temperature exceeds a certain value, its efficiency and life will reduce sharply. In recent years, because of the compactness of LEDs packaging, the heat flux increases rapidly, and cooling gets more and more important. How to improve cooling capability, control the junction temperature, and reduce the cost have become issues problem of LED industrialization.
     In this paper, a new high performance radiator for cooling high power LED is put forward. Because of its operation principle has not been revealed quantitatively, it is named "closed non-phase-change transition heat transfer pipe". The research results of this paper can be described as follows.
     1. The point heating, different heat flux heating, startup, and downward heat transfer performance of the radiator is tested and analyzed.
     2. This paper proposes a closed non-phase-change heat transfer pip system for a high-power 80W LED in a large space with natural convection. The experimental results show that optimization of the heat sink design using a heat pipe can decrease the LED junction temperature to 73.5℃. Also, results indicate LED input power and heat sink tilt angle have strong effects on LED junction temperature and LED luminance.
     3. The closed non-phase-change heat transfer pip radiator was numerical simulation and optimization with Fluent, and the results show that the radiator has lower thermal resistance with tight structure.
     This research provides an effective method for cooling high power LED, and builds the basis for corresponding radiator.
引文
[1]何开钧.LED——照明科技的明天[J].厦门科技,2005,2.
    [2]Daniel A. Steigerwald, Jerome C. Bhat, Dhat, Dave Collins et al. Illumination with Solid State Lighting Technology[J]. IEEE Journal on Selected Topics in Quantum Electronics.2002,8(2):310-320.
    [3]杨清德,康娅.LED及其工程应用[M].北京:人民邮电出版社,2007.
    [4]朱建华,岑盈盈,陆华洋等.大功率白光LED在照明器具中的应用研究[J].浙江科技学院学报,2007,19(4):269-272.
    [5]Su Da, Wang Demiao. Technical research on heat-release packaging of high-power LEDs[J]. Semiconductor technology,2007,32(9):742-744,749.
    [6]Regina MM, Mueller GO, Krames MR, et al. High-power phosphor-converted light-emitting diodes based on Ⅲ-Nitrides[J]. IEEE Journal of Selected Topics in Quantum Electronics,2002,8(2):339-345.
    [7]Arik M, Petroski J, Weaver S. Thermal challenges in the future generation solid state lighting application:lingt emitting diodes. IEEE 8th intersociety Conference on Thermal and Thermo mechanical Phenomena in Electronic Systems[C],2002: 113-120.
    [8]Barton DL, Marek O, Piotr P, et al. Life tests and filure mechanisms of GaN-AlGaN-lighting emitting diodes[A], SPIE[C],1998:3279:17-27.
    [9]Wen S, Lu GQ. Finite-element modeling of thermal and thermo mechanical behavior for three-dimensional packaging of power electronics modules[A], IEEE,7th intersociety Conference on Thermal and Thermo mechanical Phenomena in Electronic System[C],2000:303-309.
    [10]毛德丰,郭伟玲,高国等.功率LED热特性分析[J].照明工程学报,2009,20(2):30-34.
    [11]Petroski J. Thermal challenges facing new generation light emitting diodes(LEDs) for lighting applications[J]. Proc. SPIE.2002,4(776):215-222.
    [12]Robert F. Karlicek, Jr. High Power LED packaging[C].2005 Conference on Lasers& Electro-Optics,2005:337-339.
    [13]Lan Kim, Woong Joon Hwang, Moo Whan Shin. Thermal Resistance Analysis of High Power LEDs with Multi-chip Package[C].2006 electronic components and technology conference,2006:1073-1081.
    [14]Jerry A. Simmons, Solid State Lighting:Synergisms with Office of Science Materials Programs[C], EMaCC Metting,2001.
    [15]Lumileds Lighting LLC Company,http://www.lumileds.com.
    [16]Cree Company press release,http://www.cree.com.
    [17]Nichia Company press release,http://www.nichia.com.
    [18]Yung S.Liu, Jung-Tsung Hsu, Jim Chi.Shyi-Ming Pan, et al., Progress of SolidState Lighting Technology in Taiwan[J]. Proc.of SPIE,2004(5187):199-206.
    [19]LED行业深度研究报告[R].广发证券,2010.
    [20]彭万华.我国超高亮度及白光LED产业的现状与发展[J].激光与红外,2005,35(4):223-227.
    [21]T.J.Lu,L.Valdevit,A.G.Evans. Active cooling by metallic sandwich structures with periodic cores[J]. Progress in Materials Science,2005(50):789-815.
    [22]Corinne Perret, Jumana Boussey, Christian Schaeffer, et al. Analytic Modeling, Optimization,and Realization of Cooling Devices in Silicon Technology[J]. IEEE. Transactions on Components and Packaging Technologies,2000(4):665-672.
    [23]彭捷.高功率LED应用中的主要问题[J].光源与照明,2004(3):4-7.
    [24]韩琦,流丽.高亮度白光LED技术及市场分析[J].国际光电与显示,2004:129-131.
    [25]Kevin A.Moores, Yogendra K.Joshi. Numerical and Experimental Thermal Characterization of a Liquid Cooled AlSiC Power Electronics Base Plate with Integral Pin Fins[C].2000 Inter Society Conference on Thermal Phenomena.IEEE,2000: 385-390.
    [26]胡爱华.中国LED产业现状及市场前景[J].现代显示,2001(1):48-49.
    [27]崔元日,潘苏予.第四代照明光源——白光LED[J].灯与照明,2004,28(2):31-34.
    [28]徐建华.LED生产过程中的质量控制[J].电子工艺技术,2003,24(4):172-176.
    [29]陈伟.大功率发光二极管光源的散热研究[D].武汉:华中科技大学,2007.
    [30]钱可元,郑代顺,罗毅.GaN基功率型LED芯片散热性能测试与分析[J].半导体光电,2006,27(3):236-239.
    [31]李炳乾.基于金属线路板的新型大功率LED及其光电特性研究[J].光子学报,2005,34(3):372-374.
    [32]维捷斯拉夫本达,约翰戈沃,邓肯A格兰特.功率半导体器件——理论及应用[M].北京:化学工业出版社,2005.
    [33]王垚浩,余彬海,李舜勉.功率LED芯片键合材料对器件热特性影响的分析 与仿真[J].佛山科学技术学院学报,2005,23(4):14-17.
    [34]Scheeper G, Visser J A. Detailed thermal modeling of high powered LEDs[C]. Proc.25th IEEE SEMITHERM Symposium,2009:87-91.
    [35]Aqkahn T, Garimella S V, Petroski J, et al. Optimal design of miniature piezoelectric fans for cooling light emitting deodes[C]. Proc. Inter Society Conference on Thermal Phanomena,2004:663.
    [36]Ma H K, Chen B R, Lan H W, et al. Study of an LED device with bibrating piezoelectric fins[C]. Proc.25th IEEE SEMI-THERM Symposium,2009:267-272.
    [37]Chau S W, Lin C H, YEH C H, et al. Study on the cooling enhancementof LED heat sources via an electrohydrodynamic approach[C]. Proc.The 33rd Annual Conference of the IEEE Industrial Electronics Society,2007:2934-2937.
    [38]Luo X B, Liu S. A microjet array cooling system for thermal management of high-brightness LEDs[C]. Proc. IEEE Transactions on Advanced Packaging,2007: 475-484.
    [39]Liu S, Yang J H, Gan Z Y, et al. Structural soptimization of a microjet based cooling system for high power LEDs[J]. International J. Thermal Sciences,2008,47: 1086-1095.
    [40]岂兴明.小型环路热管的研究[D].吉林:吉林大学,2004.
    [41]刘静,周一欣.以低熔点金属或其合金作为流动工质的芯片散热用散热装置:中国,02131419.5[P].2002.
    [42]马璐,刘静,周一欣等.LED液态金属冷却方法试验研究[J].光电子激光,2009,20(9):1150-1153.
    [43]Cheng J H, Lliu C K, Chao Y L, et al. Cooling performance of silicon-based thermoelectric device on high power LED[C]. Proc. International Conference on Thermoelectrics,2005:53-56.
    [44]Liu C K, Dai M J. ith micro-thermoelectric device[C]. Proc. Microsystems Packaging Assembly and Circuits Technology,2007:29-33.
    [45]鲁祥友,华泽钊,谢远来,等.基于热管散热的LED器件封装热分析[J].电力电子技术,2009,43(3):73-75.
    [46]Lu X Y, Hua T C, Liu M J, et al. Thermal analysis of loop heat pipe used for high-power LED [J]. Thermochimica Acta,2009,493(1/2):25-29.
    [47]Hu Xue-Gong, Tang Da-Wei. Special behaviors of dryout and heat transfer in vertical rectangular microgrooves[J]. Journal of Engineering Thermophysics,2007, 28(5):820-822.
    [48]吴越.用于大功率LED冷却的微槽群相变换热技术的理论与实验研究[D].北京:中国科学院工程热物理研究所,2010.
    [49]张红,杨峻,庄骏.热管节能技术[M].北京:化学工业出版社,2009.
    [50]Gaugler R S. Heattransferdevice[P]. U S 2350348,1944.
    [51]Trefethen L. On the surface tension pumping of liquids or a possible role of the candlewick inspace exploration. G E Tech Info[P]. Serial No.615 D115.
    [52]Grover G M, Cotter T P. Erikson G F. Structure of very high thermal conductance[J]. J Appl Phys,964,35(6).
    [53]Cotter T P. Theory of heat pipes[R]. Los Alamos Scientific Lab. Report No. LA-3246-MS,1965.
    [54]Dunn P, Reay D A. Heat Pipes[D]. Oxford:Pergamon Press,1978.
    [55]Tien C L, Sun K H. Minimum meniscus radius of heat pipe wicking materials[J]. Int J Heat Mass Transfer,1971,14(11).
    [56]Gray V H. The rotating heat pipe, a wickless hollow shaft for transfer-ringhigh heat fluxes[S]. ASME Paper No.69-HT-19,1969.
    [57]Chi S W. Heat Pipe Theory and Practice[D]. New York:McGraw-Hill,1976.
    [58]郭宏新,刘丰.热棒(低温热管)研究及其在寒区冻土铁路路基中的应用.第九届全国热管会议论文集,昆明,2004.
    [59]Littwin D A, MccurleyJ. Proc 4th Int Heat Pipe Conf[C]. London,1981: 213-224.
    [60]Cotter T P. Pricipies and Prospects of Micro heat pipes[C]. Proc5thInt Heat Pipe Conf. Tsukuba,1984.
    [61]Ma T Z, Jiang Z Y. Heat Pipe Research and Development in China[C]. Proc5thInt Heat Pipe Conf. Tsukuba,1984.
    [62]庄骏,张红.2010年热管技术展望[J].化工机械,1998,25(1).
    [63]吕崇德.热工参数测量与处理[M].北京:清华大学出版社,2001.
    [64]刘召军,谢旭良,李增耀,等.热管型散热器换热性能的实验研究及数值模拟[J].工程热物理学报,2009,30(7):1178-1180.
    [65]寇志海,白敏丽,杨洪武.大功率LED冷却用平板热管散热器的实验研究[J].光电子激光,2010,21(4):485-488.
    [66]房华,李阳.大功率LED的热量分析与设计[J].现代显示,2007,9(79):67-70.
    [67]Sparrow E M, Faghri M. Fluid-to-fluid conjugate heat transfer for a vertical pipe-internal forced convection[J]. ASME J Heat Transfer,1981,102:402-407.
    [68]陈伟,罗小兵,程婷,等.大功率LED用微喷射流冷却系统的实验研究[J]. 光电器件,2007,28(10):478-482.
    [69]陈懿,环路热管工质充装量对启动性能影响的实验研究[J].铁道勘测与设计,2010(5):174-179.
    [70]陈彬彬,刘伟,刘志春,等.平板式小型环路热管的实验研究[J].宇航学报,2011,32(4):953-958.
    [71]莫冬传,丁楠,吕树申,等.平板型环路热管应用于LED的启动特性研究[J].工程热物理学报,2009,30(10):1759-1762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700