结直肠息肉发生、发展及恶变的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用免疫组织化学方法在结直肠息肉,腺瘤,腺癌渐变过程中检测出有重要意义的分子标记,并通过跨胎盘RNAi技术干扰其在子一代小鼠的表达,构建BMP息肉小鼠模型,初步证实BMP、TLR3、TLR4在结直肠息肉发生、发展、恶变的机制中有重要作用。方法:1)应用免疫组织化学方法(sP法)检测MBP2,TLR4, TLR3,COX2在儿童结直肠幼年性息肉,儿童结直肠错构瘤样息肉,成人结直肠炎性息肉,结直肠腺瘤,结直肠腺癌组织中的表达情况;2)将孕鼠随机分Ringer’s液空白对照组(空白组)、pSES阴性对照组(阴性组)、pSES-SiBMP4实验组(实验组),采用跨胎盘RNAi技术,在孕鼠的尾静脉注射沉默BMP4基因的质粒,通过跨胎盘RNAi干扰子一代小鼠的BMP4的表达,分别于出生1周,8周,10周处死子代小鼠,解剖观察子一代小鼠的结直肠肠道息肉位置及数量情况。结果:一、免疫组织化学结果:1.BMP2在腺体组织中呈现弥漫均一细胞浆的棕黄色颗粒的表达,在儿童幼年性息肉组(OD68.65±18.15),儿童错构瘤样息肉组(OD34.8±18),成人炎性息肉组(OD42.9±10.24),结直肠腺瘤组(OD50.3±10.2)中的表达明显高于结肠腺癌组(OD19.1±5.3),在结肠腺癌组中明显降低的表达确有显著差异(p<0.05)。2. TLR4的表达情况:1)儿童幼年性息肉组(OD4.05±1.36)与儿童错构瘤样息肉组之间的表达有显著差异性(p<0.05);儿童幼年性息肉组与结直肠腺癌组中的表达有显著差异性(p<0.05)。2)儿童错构瘤样息肉组(OD29.5±11)和结直肠腺瘤组的表达之间有显著差异(p<0.05)。3)结直肠腺瘤组(OD16.2±6.5)的表达与结直肠腺癌组(OD47.6±11.5)之间的表达有显著差异(p<0.05)。3. TLR3在儿童幼年性息肉组(OD270±90.42),儿童错构瘤样息肉组(OD191.3±47),结直肠腺瘤组(OD147.1±58),结直肠腺癌组(OD94.9±39.8)中的表达呈逐步下降趋势,在结直肠腺癌组中明显降低的趋势在相互比较中有显著差异(p<0.05)。4.COX2的表达主要是弥散的表达在腺上皮的细胞胞浆和细胞核膜上,在儿童幼年性息肉组(OD60.7±20.7),儿童错结肠腺瘤组(OD69.1±31.5),结直肠腺瘤组(OD53.8±16.4),结肠腺癌组(OD60.5±20.4)中的表达均高于成人结直肠息肉组(OD12.65+4.21),但相互比较无显著差异(p>0.05)。二、BMP息肉小鼠模型特点:1.运用RT-PCR,蛋白印迹法检测子一代小鼠结肠粘膜的BMP4的表达均较同周龄正常对照组显著降低;2.在出生后1周未见确切息肉样组织形成,第8周时可见包块样突起,经HE染色可见腺体上皮增生,病理证实为息肉形成,第10周包块突起明显,数量较8周增多,HE染色同样证实为结直肠息肉形成,未见腺瘤及腺癌样改变。结论:1)通过免疫组织化学的方法,证明在结直肠息肉,腺瘤,腺癌的渐变过程中有意义的三种分子标记:BMP缺失影响肠道的腺上皮的分化和增殖过程,导致结直肠息肉,腺瘤,腺癌的渐变过程;TLR3的低表达可能预示息肉恶变的高倾向;TLR4是结直肠息肉,腺瘤,腺癌的渐变过程的重要分子标记。2)通过跨胎盘RNAi技术首次成功构建了BMP息肉小鼠模型,为研究结直肠息肉发生、发展及恶变的机制奠定了实验室基础。通过本实验初步证实BMP,TLR3,TLR4参与了结直肠息肉的发生、发展和恶变机制。
     目的:通过免疫组织化学的方法检测结直肠息肉,结直肠腺瘤,结直肠腺癌中不同分子标记的表达情况,为结直肠息肉,结直肠腺瘤,结直肠腺癌的渐变过程找到有意义的分子标记物。方法:应用免疫组织化学方法(sP)法检测MBP2、TLR3、TLR4、COX2在儿童结直肠幼年性息肉,儿童结直肠错构瘤样息肉,成人结直肠炎性息肉,结直肠腺瘤,结直肠腺癌组织中的表达情况。结果:1.BMP2在腺体组织中呈现弥漫均一细胞浆的棕黄色颗粒的表达,在儿童幼年性息肉组(OD68.65±18.15),儿童错构瘤样息肉组(OD34.8±18),成人炎性息肉组(OD42.9±10.24),结直肠腺瘤组(OD50.3±10.2)中的表达明显高于结肠腺癌组(OD19.1±5.3),在结肠腺癌组中明显降低的表达确有显著差异(p<0.05)。2. TLR4的表达情况:1)儿童幼年性息肉组(OD4.05±1.36)与儿童错构瘤样息肉组之间的表达有显著差异性(p<0.05);儿童幼年性息肉组和结肠腺瘤组之间的表达无显著差异(p>0.05);儿童幼年性息肉组与结直肠腺癌组中的表达有显著差异性(p<0.05)。2)儿童错构瘤样息肉组(OD29.5±11)和结直肠腺瘤组的表达之间有显著差异(p<0.05);儿童错构瘤样息肉组与结直肠腺癌组的表达之间无显著差异(p>0.05)。3)结直肠腺瘤组(OD16.2±6.5)的表达与结直肠腺癌组(OD47.6±11.5)之间的表达有显著差异(p<0.05)。3. TLR3在儿童幼年性息肉组(OD270±90.42),儿童错构瘤样息肉组(OD191.3±47),结直肠腺瘤组(OD147.1±58)呈逐步下降趋势,在分别与结直肠腺癌组(OD94.9±39.8)的比较中有显著差异(p<0.05)。4.COX2的表达主要是弥散的表达在腺上皮的细胞胞浆和细胞核膜上,在儿童幼年性息肉组(OD60.7±20.7),儿童错结肠腺瘤组(OD69.1±31.5),结直肠腺瘤组(OD53.8±16.4),结肠腺癌组(OD60.5±20.4)中的表达均高于成人结直肠息肉组(OD12.65+4.21),但相互比较无显著差异(p>0.05)。结论:在结直肠息肉,结直肠腺瘤,结直肠腺癌的渐变过程中,BMP的缺失影响肠道的腺上皮的分化和增殖过程,导致结直肠息肉形成,甚至恶变;TLR3的低表达可能预示息肉恶变高倾向;TLR4是结直肠息肉,腺瘤,腺癌的渐变过程的重要分子标记。
     目的:采用跨胎盘RNAi的方法沉默孕鼠的BMP4,导致子一代小鼠结直肠多发性息肉形成从而建立BMP结肠息肉小鼠模型,证明BMP参与小鼠结直肠息肉发生机制。方法:将孕鼠随机分Ringer’s液空白对照组(空白组)、pSES阴性对照组(阴性组)、pSES-SiBMP4实验组(实验组),采用跨胎盘RNAi技术,在孕鼠的尾静脉注射沉默BMP4基因的质粒,通过跨胎盘作用干扰子一代小鼠的BMP4的表达,分别于出生1周,8周,10周处死子代小鼠,解剖观察子一代小鼠的结直肠的息肉位置及数量。结果:1.运用RT-PCR,蛋白印迹法检测子一代小鼠的结直肠BMP4的表达均较正常同龄对照组显著降低;2.在出生后第1周未见确切息肉样组织形成,第8周时可见包块样突起,经HE染色可见腺体上皮增生病理证实为息肉形成,第10周包块突起明显,数量较第8周增多,HE染色同样证实为结直肠息肉形成,未见腺瘤及腺癌样改变。结论:1.首次成功建立了BMP结直肠息肉小鼠模型,证明BMP参与了结直肠息肉形成机制。2.跨胎盘RNAi技术在干扰基因表达方面有广阔的应用前景,值得进一步推广和完善。
Objective: To clarify the mechanism of the formation and malignanttransformation of colorectal polyps by testing the expression of somemolecular markers in the different pathological types of colorectal polypsand establishing a BMP colorectal polyps mice model with the new RNAinterference (RNAi) technology, which was targeted to postimplantationstaged mouse embryos by using tail vein injection. Methods:1) detecte theexpression of MBP2,TLR4, TLR3, COX2in children's colorectal juvenilepolyps, children's colorectal hamartoma polyps, adult colorectalinflammatory polyps, colorectal adenomas, colorectal adenocarcinoma byusing immunohistochemical methods.2) deliver siRNA targeted to BMP4to postimplantation staged mouse embryos using tail vein injection.Pregnant mice were completely random delivered three groups:Ringer’sliquid blank control group (blank group), pSES negative control group(negative group), pSES-SiBMP4group (experimental group). Results:一、outcomes of histochemistry and immunohistochemistry tests:1. BMP2was present in uniform diffuse cell plasma particles, the expression of BMP2 in children's juvenile polyps (OD68.65±18.15), children’s hamartomapolyps (OD34.8±18), adult inflammatory polyps (OD42.9±10.24),colorectal adenomas (OD50.3±10.2) was higher than that in colorectalcancer (OD19.1±5.3), the expression of BMP2in colorectal cancer wassignificantly decline (p <0.05).2. TLR4expression:1) The express betweenchildren's juvenile polyps (OD4.05±1.36) and children's hamartoma polypswas significant difference (p <0.05); The express between children’sjuvenile polyps and colorectal adenocarcinoma polyp was significantdifference (p <0.05).2) There was a significant difference betweenchildren’s hamartoma polyps (OD29.5±11) and colorectal adenomas (p <0.05);3) There was a significant difference between colorectal adenomas(OD16.2±6.5) and colorectal adenocarcinoma (OD47.6±11.5)(p <0.05).3. The expressions of TLR3in children's juvenile polyps (OD270+90.42),children's hamartoma polyps (OD191.3±47), colorectal adenomas (OD147.1±58), colorectal adenomas (OD94.9±39.8) have been graduallydecline, the decline trend in colorectal adenocarcinoma significantlydifference (p <0.05).4. The expression of COX2is mainly diffuse inglandular epithelium cells of the cytoplasm and cell membrane, theexpression in children's juvenile polyps (OD60.7±20.7), children'shamartoma polyps (OD69.1±31.5), colorectal adenomas (OD53.8±16.4),colorectal cancer (OD60.5±20.4) was higher than that in colorectal polyps(OD12.65±4.21), but compared each other no significant difference (p> 0.05).二、the characteristics of BMP polyps mice model:1. Using RT-PCR,western blot method to detect the generation mice, the expressions of BMP4are significantly lower than normal control group;6. Generation mice of oneweek have not been seen the exact polypoid organization in the colon, thereare visible plypoid organization in the colon of eight weeks and ten weeks ofgeneration mice. the polypoid organization in the colon was polyp testedby hematoxylin-eosin staining.Conclusion:1)In the evolution process ofcolorectal polyps from colorectal polyps, colorectal adenomas, to colorectaladenocarcinoma, there are significant difference molecular markers: thelack of BMP may lead to the formation and malignant transformation ofcolorectal polyps by affecting the proliferation and differentiong ofglandular epithelium; the lower expression of TLR3may indicate thetendency of malignant transformationof colorectal polyps; TLR4may bethe important molecular marker in the gradual transformation ofcolorectal polyps.2) we successfully established the colon polyps micemodel by delivering siRNA targeted to BMP4to postimplantation stagedmouseembryos using tail vein injection.
     Objective: To find the meaningful molecular markers for theformation and malignant transformation of colorectal polyps by testingthe expression of some molecular markers in the colorectal polyps,colorectal adenomas and colorectal adenocarcinoma. Methods: detectethe expression of MBP2,TLR4, TLR3, COX2in children's colorectaljuvenile polyps, children's colorectal hamartoma polyps, adultcolorectal inflammatory polyps, colorectal adenomas, colorectaladenocarcinoma by using immunohistochemical methods. Results:1.BMP2was present in uniform diffuse cell plasma particles, theexpression of BMP2in children's juvenile polyps (OD68.65±18.15),children’s hamartoma polyps (OD34.8±18), adult inflammatorypolyps (OD42.9±10.24), and colorectal adenomas (OD50.3±10.2)was higher than that in colorectal cancer (OD19.1±5.3), the expressionof BMP2in colorectal cancer was significantly decline (p <0.05).2.TLR4expression:1) The express between children's juvenile polyps(OD4.05±1.36) and children's hamartoma polyps was significant difference (p <0.05); The express between children's juvenile polypsand colonic adenoma was no significant difference (p>0.05); Theexpress between children’s juvenile polyps and colorectaladenocarcinoma polyp was significant difference (p <0.05).2) Therewas a significant difference between children’s hamartoma polyps (OD29.5±11) and colorectal adenomas (p <0.05); there was no significantdifference between children’s hamartoma polyps and colorectaladenocarcinoma (p>0.05).3) There was a significant differencebetween colorectal adenomas (OD16.2±6.5) and colorectaladenocarcinoma (OD47.6±11.5)(p <0.05).3. The expressions ofTLR3in children's juvenile polyps (OD270+90.42), children'shamartoma polyps (OD191.3±47), colorectal adenomas (OD147.1±58), colorectal adenomas (OD94.9±39.8) have been gradually decline,the decline trend in colorectal adenocarcinoma significantly difference(p <0.05).4. The expression of COX2is mainly diffuse in glandularepithelium cells of the cytoplasm and cell membrane, the expression inchildren's juvenile polyps (OD60.7±20.7), children's hamartomapolyps (OD69.1±31.5), colorectal adenomas (OD53.8±16.4),colorectal cancer (OD60.5±20.4) was higher than that in colorectalpolyps (OD12.65±4.21), but compared each other no significantdifference (p>0.05). Conclusion: In the evolution process of colorectalpolyps from colorectal polyps, colorectal adenomas, to colorectal
     adenocarcinoma, there are significant difference molecular markers. Inthe evolution process of colorectal polyps from colorectal polyps,colorectal adenomas, to colorectal adenocarcinoma, there aresignificant difference molecular markers: the lack of BMP may lead tothe formation and malignant transformation of colorectal polyps byaffecting the proliferation and differentiong of glandular epithelium;the lower expression of TLR3may indicate the tendency of malignanttransformationof colorectal polyps; TLR4may be the importantmolecular marker in the gradual transformation of colorectalpolyps.We wish to understand the malignant transformation ofcolorectal polyps by testing the expression of molecular markers.
     Objective: To establish a BMP colorectal polyp’s mice model with thenew RNA interference (RNAi) technology, which was targeted to postimplantation staged mouse embryos by using tail vein injection. and toprove that the BMP is related to the formation of the colorectal polyps.
     Methods: deliver siRNA targeted to BMP4to post implantation stagedmouse embryos using tail vein injection. Pregnant mice were completelyrandom delivered three groups, Ringer’s liquid blank control group (blankgroup), pSES negative control group (negative group), pSES-SiBMP4group(experimental group). Results:1. Using RT-PCR, western blot method todetect the generation mice, the expressions of BMP4are significantly lowerthan normal control group;2. generation mice of one week have not beenseen the exact polypoid organization in the colon, there are visible polypoidorganization in the colon of eight weeks and ten weeks of generation mice.The polypoid organization was polyps by hematoxylin-eosinstaining.Conclusion:1. we successfully established the colon polyps’ micemodel by delivering siRNA targeted to BMP4to post implantation stagedmouse embryos using tail vein injection. We also prove that the BMP isrelated to the formation of the colorectal polyps.2. The new RNAinterference (RNAi) technology which was targeted to post implantationstaged mouse embryos using tail vein injection is worth further promote andperfect.
引文
[1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,[J]2002. CA cancerClin,2005,55(2):74-108.
    [2] Wilmink ABM. Overview of epidemiology of colorectal cancer. Dis ColonRectum,1997,40:483-489
    [3]郑树,蔡善荣。中国大肠癌的病因学及人群防治研究。[J]2004.中华肿瘤杂志.26(1):1-3.
    [4] Morson BG. Genesis of colorectal cancer [J]. Clin Gastronterol,1976;5:505-507.
    [5] Betes Ibanez M, Munoz-Navas MA, Dugue JM, et, al. Diagnostic value of distalcolonic polyps for prediction of advanced proximal neoplastic in an average-riskpopulation undergoing screening colonoscopy[J]. Gastrointestinal Endosc,2004,59(6):634-1.
    [6]王毅军,陈锡美。结肠息肉癌变机制研究进展[J].同济大学学报(医学版),2004,25(2):163-5.
    [7]郭勤,沈守荣,李夏雨等。炎症因子促进结直肠癌发生发展[J],2011.中南大学学报:医学版,7:646-649。
    [8] Slattery ML, Lundgreen A, Herrick JS, et al. Genetic variation in the transforminggrowth factor-β signaling pathway and survival after diagnosis with colon andrectal cancer [J].Cancer2011;117(18):4175-83.
    [9] Dumitru CD,Antonysamy MA,Tomai MA, et al. Potentiation of the anti-tumoreffects of imidazoquinoline immune response modifiers bycyclophosphamide[J].Cancer Biol Ther,2010;10(2):155-65.
    [10]Pham TN, Hong CY, Min JJ, et al. Enhancement of antitumor effect using dendriticcells activated with natural killer cells in the presence of Toll-like receptoragonist[J].Exp Mol Med,2010;42(6):407-19.
    [11]覃胜灵,陈皓,邱伟华。TOLL样受体在肿瘤中的研究进展[J]。中华实验外科杂志,2009(9)1233-1234
    [12]杨玉娴,冯广友。TOLL样受体在肿瘤免疫[J]。医学信息,2008(4)344-347
    [13]Fiocchi C,TGF-beta\Smad signaling defects in inflammatory bowel disease:mechanisms and possible novel therapies for chronic inflammation. J ClinInvest,2001,108:523-526
    [14]Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques.2008;44(5):613-616.
    [15]Hogan BL. Bone morphing enatic proteins: multifunctional regulators of vertebratedevelopment. Genes Dev.1996;10:1580-1594.
    [16]Calegari F, Haubensak W, Yang D, Huttner WB,Buchholz F. Tissue-specific RNAinterference in post implantation mouse embryos with endoribonuclease-preparedshort interfering RNA. Proc Natl Acad Sci.2002;99(22):14236-14240.
    [17]欧阳玉洁258例结直肠息肉的分析与治疗,中国医药导刊,2011,13(6):981-982
    [18]施诚仁,金先庆,李仲智,小儿外科学人民卫生出版社。2009.8:319-321
    [19]吴培红,钟亮玉,吴静。内镜下高频电凝电切除结肠息肉115分析[J].实用医学杂志,2004,20(10):1154-1155
    [20]Guptak SK,Fitzgerald JF, Croffie JM,et al. Experience with juvenile polyps inNorth American Children: the need for pancolonoscopy[J].Am JGastroenterol,2001,96(6):1695-1697
    [21]Longo WE, Touloukian RJ, West AB, et al. Malignant potential of juvenilepolyposis coli. Report of a case and review of the literature[J].Dis ColonRectum,1993,33(11):980-984
    [22]顾芳,吕愈敏,郭霞。大肠幼年性息肉,息肉病的内镜特点与癌关系的探讨[J]。中国内镜杂志,1997,3(1):21-22
    [23]Spigelamn AD. Cancer and the Petuz-Jeghers syndrome[J].J Gut,1989,30(11):1589-1590
    [24]Amos CI.Fine mapping of a genetic locus for Petuz-Jeghers syndrome onchromosome19p1[J].J Cancer Res,1997,57(17):3653-3656
    [25]肖宗汉,大肠息肉病理分析和内镜治疗[J]。中国内镜杂志,2003,9(1):77-78
    [26]李国华,廖旺弟,徐萍等,南昌地区2889例大肠息肉的临床病理分析[J]。中国肿瘤临床,2007,34(19)1105-1108
    [27]付志军,潘文生,石虹等,大肠息肉80例临床病理分析[J]。上海医科大学学报,1999,26(1):77
    [28]Takeda K, Kaisho T, Akira S, et al. Toll-like receptors. Annu Rev Immunol,2003,21:335-367.
    [29]何晓霞等,Toll样受体的研究进展,西北国防医学杂志[J]2010.31.6:445-446
    [30]Salann B,Coste I,Rissoan MC,et al.TLR3can directly trigger apoptosis in humancancer cells.J Immunol,2006,176(8):4894-4901
    [31]金海敏等,半定量RT-PCR法检测TLR4在人大肠癌中的表达,现代实用医学J2009,21(7):682-684
    [32]Bendelac A,Mdezhitov R.Adjuvants of immunity:hamessing innate immunity topromote adaptive immunity[J].J Exp Med,2002,195(5):F19-F23
    [33]Lei He,Lin Zhang,et al.The roles of toll like receptors in carcinogenesis and cancerimmunotherapy[J].Chinese-German Journal of Clincal Oncology,2010,VOL,9,No,2, P118-120
    [34]He W, Liu Q, W ang L, ChenW, L iN, Cao X. TLR4signaling promotes immuneescape of hum an lung cancer cells by inducing immunosuppressive cytokines andapoptos is resistance [J]. Mo l Immunol2007,44(11):2850-2859.
    [35]Kelly MG, Alvero AB, C hen R, S ilasiDA, Abraham sVM, C hanS, et al TLR4signarling promotestumor growth and paclitaxel chemoresistance in ovarian cancer[J]. C ancer Res,2006,66(7):3859-3868.
    [36]Wang L, L iu Q, Sun Q, Zh ang C, Chen T, C ao X. TLR4signaling in cancer cellspromotes chemoattraction of immature dendritic cells via autocrine CCL20[J].Biochem Biophys Res Commun,2008,366(3):852-856
    [37]Clevers H, At the crossroads of inflammation and cancer. Cel,2004,118:671-674
    [38]Balkwill F, Mantovani A. Inflammation and caner: back to Vichow?Lancet,2001,357:539-545
    [39]Shacter E, Weitzman SA. Chronic inflammation and cancer.Oncology(WillistonPark),2002,16:217-226
    [40]Wozney JM, Rosen V, Celeste J,et al.Noverl regulation of boneformation:Morlecular ciones and activites[J],Science,1988,242(4855):1528-1534
    [41]Nakashima M, Reddi AH.Nat Biotechnol,2003,21(9):1025-1023
    [42]Hogan BLM. Bone morphogenetic proteins: multifunctional regulators ofvertebrate development[J], Genes Dev,1996,10(13):1580-1584
    [43]Mehler MF, Mabie PC, Zhang D, et al. Bone morphogenetic proteins in the nervoussystem[J], Trends Neurosci,1997,20(7):309-317
    [44]Shi Y, Massagué J. Mechanisms of TGF-βsignaling from cell membrane to thenucleus, Cell,2003,113(6):685-700
    [45]Hogan BLM. Bone morphogenetic proteins: multifunctional regulators ofvertebrate development, Genes Dev,1996,10(13):1580-1584
    [46]Massagué J, Chen YG. Controlling TGF-βsignaling, Genes Dev,2000,14(6):627-644
    [47]Massagué J, Wotton D. Transcriptional control by the TGF-β/Smad signalingsystem, EMBO J,2000,19(8):1745-1754
    [48]Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptionaltargets,regulationofsignals, andsignalingcrosstalk, Cytokine Growth Factor Rev,2005,16(3):251-263
    [49]Hardwick SJ,Van Den Brink GR,Bleuming SA,et al.Bone morphogenetic protein2is expressed by,and acts upon,mature epithelial cells in the colon,Gastroenterology,2004,126:111-121
    [50]张旖晴,王志荣,陈锡美等。骨形成蛋白-2在结肠癌中的表达及意义[J].2007中华消化内镜杂志,24(5):365-368.
    [51]Zhang F, Warskulat U, Wettstein M, et al. Hypersmolarity stimulates prostaglandinsynthesis and cyclooxygenase-2expression in activated rat liver macrophages [J].1995;312(Pt1):135-143.
    [52]张煜敏等, COX2与结肠肿瘤的关系,国外医学,消化系疾病分册[J].1999.19.1:17-19
    [53]Wasilewicz MP, Kolodziei B, Bojulko T, et al. Expression of cyclooxygenase-2incolonic polyps. Pol arch med wewn.2010,120(9):313-320
    [54]Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin[J],Science,2005,307(5717):1904-1909
    [55]Beck SE, Fiorino A, et al. Bone morphogenetic protein signaling and growthsuppression in colon cancer[J], Am J Physiol Gastrointest Liver Physiol,2006,291(1): G135-G145
    [56]Loh K, Chia JA, Greco S, et al. Bone morphogenic protein3inactivation is an earlyand frequent event in colorectal cancer development[J], Genes ChromosomesCancer,2008,47(6):449-460
    [57]Williams CS, Dubios RN. Prostaglandin endoperoxide synthase: Why twoisoforms[J].Am J Physiol,1996,270(1): G393-G400
    [58]徐朝久,张灿珍,环氧化物酶与肿瘤关系的研究进展。[J]临床肿瘤学杂志。2002,7(2):148-150
    [59]王潇苓,周毅,结肠癌转移与COX2相关性临床研究分析。[J]包头医学,2010,34(2):65-67
    [60]Wasilewicz MP, Kolodziej B, Bojulko T, et al. Expression of cyclooxygenase-2incolonic polyps.[J] pol Arch Med Wewn.2010,120(9):313-320
    [61]邹英鹰,姚楠,王芳等,CDX2和COX2在人大肠肿瘤中的表达特点及与转移的关系[J]。昆明医学院报2010(1):19-23
    [62]汪美华,万美珍,周林艳等,COX-2,VEGF在结肠癌组织中的表达及其临床意义[J]。Journal of basic and clinical oncology21(4):294-295
    [63]吴齐兵,孙国平。探讨COX-2在结肠癌中表达的临床意义及预后[J]。安徽医学,31(7):730-732
    [64]Takanami I,Lymphatic microvessel density using D2-40is associated with nodalmetastasis in non-small cell lung cancer[J].Oncol Rep,2006,15(2):437-422
    [65]Kosinski C, Li VS, Chan AS,et al. Gene expression patterns of human colon topsand basak crypts and BMP antagonists as intestinal stem cell niche factors, ProcNat Acad Sci USA,2007,104(39):15418-15423
    [66]Cadigan KM, Nusse R. Wnt signaling: a common theme in animaldevelopment.Genes Dev,1997,ll (24):3286-3305.
    [67]Morin PJ, Weeraratna AT. Wnt signaling in human cancer. Cancer TreatRes.2003.1(5):l69-187.
    [68]Brueckl WM,Limmert T,Brabletz T,Guenther K,Jung A,Herm ann K,W iestGH,Kirchner Hohenberger Hahn EQ Wein A.Mismatch repair deficiency insporadic synchronous colorectal cancer.Anticancer Res。2000,20(60):4727-4732.
    [69]Kim JC,Koo KH,Roh SA,Cho YK,Kim HC,Y_u CS,Kim HJ,Kim JS,Cho M K.Genetic and epigenetic changes in the APC gene in sporadic colorectalcarcinoma with synchronous adenoma.Int J Colorectal Dis,2003,18(3):203-209.
    [70]Akiyama Nagasaki H,Yagi KO,Nomizu Yuasa Y.Beta—catenin and adenomatouspolyposis coli(APC)mutations in adenomas from hereditary non—polyposiscolorectal cancer patients.Cancer2000,157(2):l85-191.
    [71]Doetschman T, Gregg RG, Maeda N, et al. Targetted correction of a mutant HPRTgene in mouse embryonic stem cells. Nature.1987;330:576-578.
    [72]Thomas KR, Capecchi, MR. Site-directed mutagenesis by gene targeting in mouseembryo-derived stem cells. Cell.1987;51:503-512.
    [73]Siddall LS, Barcroft LC, Watson AJ. Targeting gene expression in thepreimplantation mouse embryo using morpholino antisense oligonucleotides. MolReprod Dev.2002;63:413-421.
    [74]Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, et al, BMP-4is required forhepatic specification of mouse embryonic stem cell-derived definitiveendoderm.Nat Biotechnol,2006,24(11):1402-1411
    [75] Perry JM, Harandi OF, Paulson RF. Bmp4, SCF, and hypoxia cooperativelyregulate the expansion of murine stress erythroid progenitors. Blod,2007,109(10):4494-4502
    [76]Paddison PJ, Hannon GJ. RNA interference: the new somatic cell Genetics. CancerCell.2002;2:17-23
    [77]O'shea KS, De Boer LS, Slawny NA, Gratsch TE. Transplacental RNAi:Deciphering Gene Function in the Postimplantation-Staged Embryo. J BiomedBiotechnol.2006;4:18-27.
    [78]Theresa E, Gratsch TE, De Boer LS, O'Shea KS. RNA inhibition of BMP-4geneexpression in postimplantation mouse embryos. Genesis.2003;37(1):12-17.
    [79]叶志金,郑力,元翠玲等,APCMin/+结直肠癌癌前病变小鼠模型的生物学特性[J]临床与实验病理学杂志2011,4,393-395
    [80]Reitmair AH, Redston M, Cai JC, Chuang TC, et al. Spontaneous intestinalcarcinomas and skin neoplasms in Msh2-deficient mice. CancerRes.1996,56(16):3842-3849
    [81]Johnson L, Greenbaum D, Cichowski K, Mercer K, et al. K-ras is an essential genein the mouse with partial functional overlap with N-ras. GenesDev,1997,11(19):2468-2481
    [82]Donehower LA, Harvey M, Slagle BL, et al, Mice deficient for p53aredevelopmentally normal but susceptible to spontaneous tumours.Nature,1992,356(6366):215-221
    [83]Pinto D, Clevers H, Wnt, stem cells and cancer in the intestine, Biol Cell,2005,97(3):185-196
    [84]Sancho E, Battle E, Clevers H, Signaling pathways in intestinal development andcancer, Annu Rev Cell Dev Biol,2004,20:695-723
    [85]宋银宏,张琼,张昌菊,经典Wnt信号途径与结直肠肿瘤的发生(J)生命的化学,2005(6)498-499
    [86]Behrens J.The role of the Wnt signalling pathway in colorectal tumorigenesisJ.Biochem Soc Trans.2005,33(Pt4):672-675.
    [87]He XC, Zhang J,Tong WG, et al. BMP signaling inhibits intestinal stem cellself-renewal through suppression of Wnt-β-cantenin signaling, Nat Genet,2004,36(10):1117-1121
    [88]Katoh M, Networking of WNT, FGF, Notch, BMP, and Hedge-hog signalingpathways during carcinogenesis, Setm Cell Rev,2007,3(1):30-38
    [89]Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4gene injuvenile polyposis, Science,1998,280(5366):1086-1088
    [90]Howe JR, Bair JL, Sayed MG. et al. Germline mutations of the gene encoding bonemorphogenetic protein receptor1A in juvenile polyposis, Nat Genet,2001,28(2):184-187
    [91]Howe JR, Sayed MG, Ahmed AF, et al, The prevalence of MADH4and BMPR1Amutations in juvenile polyposis and absence of BMPR2, BMPR1B,and ACVR1mutations, J Med Genet,2004,41(7):484-491
    [92]Duerr EM, Mizukami Y,Moriichi K, et al.Oncogenic KRAS regulate BMP4expression in colon cancer cell lines.[J] Biochem Biophys ResCommun,2007,353(3):817-822
    [93]Li J, Sun C, Yuan Y,et al, Bone morphogenetic protein-4polymorphism andcolorectal cancer risk: a meta analysis.[J] Mol Biol Rep.2011
    [1]Medzhitov R,Preston—Hurlburt P,Janeway CAJ.A humanhomologue of theDrosophila Toll protein signals activation of adaptive immunity[J].Nature,1997,388(6640):394—397.
    [2]Higgs R,Cormican P,Cahalane S,et a1.Induction of a novel chicken Toll—likereceptor following Salmonella enterica serovar typhimurium infection[J]. InfectImmun,2006,74(3):1692—1698.
    [3] Palsson—McDermott EM, O’Neill LA. Signal transduction by thelipopolysaccharide receptor,Tol1.1ike receptor-4[J].Immunology,2004,113(2):153—162.
    [4] Akira S,Takeda K.Toll—like receptor signaling[J].Nat Rev Immunol,2004,4(7):499-511.
    [5] Akira S, Uematsu S, Takeuehi O. Pathogen recognition and innateimmunity[J].Cell,2006,124(4):783-801.
    [6] vail Beijnum JR,Buurman WA,Grifioen AW.Convergence and amplification oftoll—like receptor(TLR)and receptor for advanced glyeation endproducts(RAGE)signaling pathways via high mobility groupB1(HMGB1)[J].Angiogenesis,2008,11(1):91-99.
    [7] McGettrick AF,O’Neill LA.The expanding family of MyD88-like adaptors inToll-like receptor signal transduction[J].Mol Immunol,2004,41(6-7):577-582
    [8]Yamamoto M, Sato S, Hemmi H, et a1. Role of adaptor TRIF in theMyD88-independent toll—like receptor signaling pathway[J].Science,2003,301(5633):640-643.
    [9] Akira S,Takeda K.Toll—like receptor signaling[J].Nat Rev Immunol,2004,4(7):499-511.
    [10]吕宝军,张红雨,王晓鸿,苟新敏。乳腺癌组织TLR4蛋白表达及与细胞凋亡和增殖的关系[J].中华普通外科学文献,2011,5(3):22-24.
    [11]黄宏耀,陈巍巍,张秋莹等。结肠癌组织中TOLL样受体4基因表达[J].微循环学杂志,2010,20(1):65-66.
    [12] H uang B, Zhao J, L iH, H e KL, Ch enY, Chen SH, et a.l Tol llik e recep tors ontumor cells facilitate evas ion of imm un e surveillance [J]. Can cer Res,2005,65(12):5009-5014.
    [13] Wang EL, Q ian ZR, Nakasono M, Tanahash i T, Y osh imoto K,Bando Y, et alHigh expression of Toll like receptor4/m yeloiddifferen tiat ion factor88signalscorrelates with poor prognos is in colorectal cancer [J]. B r J Can cer,2010,102(5):908-915.
    [14] He W, Liu Q, W ang L, ChenW, L iN, Cao X. TLR4signaling promotes immuneescape of hum an lung cancer cells by inducing immunosuppressive cytokines andapoptos is resistance [J]. Mo l Immunol2007,44(11):2850-2859.
    [15] Kelly MG, Alvero AB, C hen R, S ilas iDA, Abraham sVM, C hanS, et al TLR4signarling promotestumor growth and paclitaxel chemoresistance in ovarian cancer[J]. C ancer Res,2006,66(7):3859-3868.
    [16] Wang L, L iu Q, Sun Q, Zh ang C, Chen T, C ao X. TLR4signaling in cancer cellspromotes chemoattraction of immature dendritic cells via autocrine CCL20[J].Biochem Biophys Res Commun,2008,366(3):852-856

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700