TGF-β1诱导胆囊癌EMT过程中差异表达基因分析及NT5E和FcGBP的临床病理意义探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分TGF-β1诱导胆囊癌EMT发生中差异表达基因分析
     目的
     为研究胆囊癌侵袭转移的可能机制,我们利用TGF-β1诱导胆囊癌GBC-SD细胞发生上皮-间质转化(EMT),然后应用基因芯片技术检测GBC-SD细胞与发生EMT的GBC-SD细胞的基因,分析其差异表达的基因。
     方法
     使用5ng/ml的TGF-β1诱导胆囊癌GBC-SD细胞株,分别提取该组和未经诱导的胆囊癌GBC-SD细胞株组的总RNA,纯化后再进行荧光标记、对寡核苷酸芯片进行杂交,激光扫描仪对其进行扫描,根据荧光强度来筛选出两者之间的差异基因,然后进行在线生物信息学分析。
     结果
     基因芯片实验共筛选出264个在胆囊癌GBC-SD细胞和经TGF-β1诱导后胆囊癌GBC-SD细胞间表达差异的基因。166个基因在经TGF-β1诱导后胆囊癌GBC-SD细胞组中表达上调,98个基因表达下调,经基因功能分类注释系统查询(GO分类),他们涉及到细胞粘附、细胞周期等;信号通路分析发现他们涉及到细胞周期蛋白调节、磷酸肌醇介导的信号通路等。
     结论
     我们利用基因芯片技术检测胆囊癌GBC-SD细胞及TGF-β1诱导发生EMT后的胆囊癌GBC-SD细胞差异表达的基因。结合文献检索分析我们认为NT5E和FcGBP可能涉及到胆囊癌的侵袭转移过程,因此将这两个基因作为下一步深入研究的目标。
     第二部分NT5E和FcGBP基因及其蛋白在胆囊癌组织中的表达及意义
     目的
     通过检测胆囊腺癌及慢性胆囊炎组织中NT5E和FcGBP的mRNA和蛋白质的表达,验证第一部分基因芯片的结果,并探讨这两个蛋白与胆囊癌侵袭转移的关系。
     方法
     随机收取了15例未行放化疗患者的胆囊腺癌标本和15例慢性结石性胆囊炎患者的慢性胆囊炎标本,获取其总RNA和总蛋白。NT5E和:FcGBP的mRNA表达水平采用定量RT-PCR检测;NT5E和FcGBP的蛋白质表达水平采用Western-blot检测。
     结果
     1.通过定量RT-PCR分析显示,胆囊腺癌NT5EmRNA的表达明显上调,与慢性胆囊炎比较有高度显著差异(1.012+0.019vs0.225±0.021,P<0.01);而FcGBP mRNA在胆囊腺癌中的表达则与此相反,为明显下调且有高度显著差异(0.078±0.020vs0.321+0.017,P<0.01)。
     2.通过Western-blot分析发现NT5E蛋白在胆囊腺癌中的表达有明显上调,与慢性胆囊炎比较有高度显著差异(0.826±0.011vs0.412±0.017,P<0.01);而FcGBP蛋白在胆囊腺癌中的表达有明显下调,与慢性胆囊炎比较有高度显著差异(0.084±0.017vs0.187±0.025,P<0.01)。
     结论
     胆囊腺癌中的NT5E mRNA以及其蛋白较慢性胆囊炎中的明显高表达,而FcGBP mRNA则相反,为低表达,这正与前述基因芯片结果相符合:NT5E、FcGBP基因可能从两个相反的方面涉及胆囊癌EMT调节,进而与胆囊癌侵袭转移相关。
     第三部分胆囊良恶性病变组织中NT5E和FcGBP的表达及其临床病理意义
     目的
     检测胆囊腺癌及其癌旁组织、腺瘤、息肉和慢性胆囊炎标本中NT5E和FcGBP的表达,探讨其在胆囊良恶性病变中的临床病理意义以及与胆囊腺癌侵袭转移的关系。
     方法
     共收集到了108例胆囊腺癌、46例癌旁组织、30例腺瘤、15例息肉和35例慢性胆囊炎组织标本切片,采用En Vision免疫组化二步法对NT5E和FcGBP进行染色,整理数据后利用SPSS软件分析。
     结果
     (1)108例胆囊腺癌中NT5E阳性表达为59例(54.6%),46例癌旁组织中14例阳性(30.4%),30例腺瘤中5例阳性(16.7%),15例息肉中2例阳性(13.3%),35例慢性胆囊炎胆囊上皮中4例阳性(11.4%):胆囊腺癌中NT5E表达阳性率显著高于癌旁组织、腺瘤、息肉和慢性胆囊炎胆囊上皮,差异均有高度显著性(P<0.01);另一方面108例胆囊腺癌中FcGBP阳性表达为52例(48.1%),46例癌旁组织中中阳性为35例(76.1%),30例腺瘤中阳性为24例(80.0%),15例息肉中阳性为13例(86.7%),35例慢性胆囊炎胆囊上皮中阳性为30例(85.7%),FcGBP在胆囊腺癌中的阳性表达率明显低于其在癌旁组织、腺瘤、息肉和慢性胆囊炎胆囊上皮中的阳性表达率,并有显著性差异(P<0.05或P<0.01)。此外,良性病变的胆囊上皮不论NT5E阳性表达、FcGBP阴性表达,光镜下均可见呈不同程度不典型增生。
     (2)NT5E在高分化的腺癌、最大直径<2cm的肿块以及无淋巴结转移、无周围组织侵犯的病例中,其阳性表达率明显低于其在低分化的腺癌、最大直径≥2cm肿块以及发现淋巴结转移和周围组织浸润的病例的阳性表达率(P<0.05或P<0.01);但FcGBP在上述组织中的表达阳性率结果与NT5E相反(P<0.05或P<0.01);
     (3)采用Kaplan-Meier单因素生存分析,发现胆囊癌患者术后的平均生存期与其病理类型、有无淋巴结转移、肿块最大直径、周围组织侵犯的状况等均有密切关系(P<0.05或P<0.01);NT5E表达阳性的患者术后生存期明显低于阴性表达的患者(P<0.05),而FcGBP阳性表达的患者则生存期明显长于其阴性表达的患者(P<0.05)。NT5E阳性表达、FcGBP阴性表达患者的生存时间显著少于NT5E阴性表达、FcGBP阳性表达患者(P<0.01);Cox回归多因素分析也表明NT5E表达阳性(P=0.019)或FcGBP表达阴性(P=0.004)均是胆囊腺癌预后不良的评价指标。
     结论
     NT5E及FcGBP表达水平均为反映胆囊癌发生、进展以及临床生物学行为的重要指标;NT5E阳性表达者和(或)FcGBP阴性表达者预后较差。
Part I Differential analysis of the genes in gallbladder cancer with TGF-β1induced epithelial-mesenchymal transition
     Objective
     To explore the mechanism of invasion and metastasis of gallbladder cancer, gene chips were applied to investigate the differential expression of genes between gallbladder cancer cells with TGF-β1induced epithelial mesenchymal transition (EMT) and gallbladder cancer cells without TGF-β1induced EMT, which might provide potential therapeutic intervention of gallbladder cancer.
     Methods
     The preliminary research in our lab had optimazied5ng/ml as the concentration of TGF-β1for EMT induction. GBC-SD cells with and without TGF-β1induced EMT were cultured, then the total RNA were extracted and labeled with fluorescent probe. The hybridazition was performed by using the human genome oligonucleotide microarray containing21,522transcripts. The image data were initially collected by LuxScan10KA dual Channel laser scanner. Final analysis was conducted by MAS2.0.
     Results
     264differentially expressed genes were definited between GBC-SD cells with and without TGF-β1induced EMT, among which166genes were up-regulated and98genes were down-regulated in gallbladder cancer cells after TGF-β1induced EMT. According to GO classification, the differentially expressed genes belong to the groups such as reduction, oxidation, protein binding, and cell adhesion. Most interestingly, revealed by the pathway analysis, these genes were associated with the cyclin dependent kinase pathway regulation, intrinsic prothrombin activation pathway, cell cycle regulation, phosphoinositide-mediated signaling, etc.
     Conclusions
     Through the anlysis and comparison of the gene expression profile, quite a few differentially expressed genes were newly identified. These genes were involved in a variety of signaling pathways. After reference review, we thought NT5E and FcGBP might play important roles in the invasion and metastasis of gallbladder cancer with TGF-β1induced EMT. So these two genes were choosed for further research.
     Part Ⅱ The significance of NT5E and FcGBP expression in gallbladder adenocarcinoma
     Objective
     The in vivo study of gallbladder adenocarcinoma and chronic cholecystitis was performed to verify the results obtained in microarray study and further investigate the role of NT5E and FcGBP in invasion and metastasis of gallbladder adenocarcinoma.
     Methods
     The total RNA and protein were extracted from specimens both of15patients diagnosed as gallbladder adenocarcinoma and15patients diagnosed as chronic cholecystitis. The mRNA transcription and protein expression levels of NT5E and FcGBP were evaluated by RT-PCR and Western-blot respectively. Statistic analysis was performed afte data collection
     Results
     1. NT5E mRNA was significantly lower in chronic cholecystitis than that in gallbladder adenocarcinoma,0.225±0.021vsl.012±0.019, P<0.01,while FcGBP mRNA was significantly higher in chronic cholecystitis than that in gallbladder adenocarcinoma (0.321±0.017vs0.078±0.020, P<0.01)
     2. Western blot demonstrated that NT5E expression was significantly higher in gallbladder adenocarcinoma than that in chronic cholecystitis (0.826±0.011vs0.412±0.017, P<0.01),while the expression of FcGBP protein was significantly lower in gallbladder adenocarcinoma than that in chronic cholecystitis (0.084±0.017vs0.187±0.025, P<0.01)
     Conclusions
     NT5E expression was upregulated and FcGBP expression was downregulated in gallbladder adenocarcinoma compared to chronic cholecystitis in vitro that was constistent with in vitro study in part one.It was suggested that NT5E and FcGBP might play an important role in the process of gallbladder epithelial malignant transformationwhich is associated with gallbladder adenocarcinoma invasion and metastasis.
     Part Ⅲ Differential expression of NT5E and FcGBP
     and their clinicopathological significance in benign and malignant lesions of the gallbladder
     Objective
     The differential expression of NT5E and FcGBP in benign and malignant lesions of gallbladder is investigated immunochemically and the clinicopathological significance between them is evaluated.
     Methods
     Specimens of gallbladder adenocarcinoma (n=108), peritumoral tissues (n=46), adenoma (n=30), polypus (n=15) and chronic cholecystitis (n=35) were paraffin-embedded to sections which detected by En VisionTM immunohistochemistry to evaluate the expression level of NT5E and FcGBP.
     Results
     (1) The NT5E expression was significantly up-regulated in gallbladder adenocarcinoma (54.6%) than that in peritumoral tissues (30.4%) and other benign lesions including adenoma (16.7%), polypus (13.3%) and chronic cholecystitis (11.4%)(P<0.01). The ratio of positive FcGBP expression was significantly down-regulated in gallbladder adenocarcinoma (48.1%) than that in peritumoral tissues (76.1%), adenoma (80.0%), polypus (86.7%) and chromic cholecystitis (85.7%)(P<0.05). Atypical hyperplasia in gallbladder epithelium was observed in the benign lesions with NT5E and/or FcGBP expression.
     (2) The NT5E expression in well-differentiated adenocarcinoma, small tumor size (diameter<2cm), no lymph node metastasis and no peripheral tissue invasion was significantly down-regulated than that in poor-differentiated adenocarcinoma, larger tumor size (diameter≥2cm), lymph node metastasis and peripheral tissue invasion (P<0.5or P<0.01). However, the expression of FcGBP showed a negative correlation in those cases (P<0.05or P<0.01).
     (3) The monovariable Kaplan-Meier survival analysis showed that the pathological type, tumor maxium diameter, lymph node metastasis, peripheral tissue invasion, NT5E and FcGBP expression were significantlyrelated to the average survival time of patients with the gallbladder adenocarcinoma (P<0.05or P<0.01). Furthermore, the survival time of patients with NT5E expression was significantly shorter than those without NT5E expression (P<0.05). And FcGBP showed a negative correlation in those cases (P<0.05). Interestingly, the overall survival time of cases withNT5E(-)FcGBP(+) was significantly longer than those with NT5E(+)FcGBP(-). Multivariable Cox analysis revealed that NT5E expression (P=0.019) or FcGBP expression (P=0.004) was negatively associated with survival period and positively associated with mortality after surgery.
     Conclusions
     The expression of NT5E and FcGBP in gallbladder adenocarcinoma is an independent marker for evaluation of the disease progression, clinical biological behaviors and prognosis. Patients with FcGBP expression had a better prognosis while patients with NT5E expression got a worse prognosis.
引文
[1]Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology[J].Pathology,2007,39 (3):305-318.
    [2]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J].J Cell Biol,1982,95, (1):333-339.
    [3]Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions[J].Biochem Pharmacol,2000,60 (8): 1091-1099.
    [4]Valastyan S, Weinberg RA. Tumor metastasis:molecular insights and evolving paradigms[J].Cell,2011,147(2):275-292.
    [5]Raghu K, Eric G. Epithelial-mesenchymal transition and its implications for fibrosis [J]. J Clin Invest.2003,112(12):1776-1784.
    [6]Bierie B, Moses HL. TGF-beta and cancer[J].Cytokine Growth Factor Rev,2006, 17 (12):29-40.
    [7]Perlman R, Schiemann WP, Brooks MW, et al. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation[J].Nat Cell Biol,2001,3 (8):708-714.
    [8]苏燕胜,陆向东,秦卫军等.转化生长因子β 1在睾丸肿瘤中的表达及临床意义[J].现代泌尿外科杂志,2011,16,(1):42-44.
    [9]朱亚青,张盛.胆囊癌中转化生长因子β1与细胞增殖和细胞周期关系的研究[J].南通大学学报,2009,29(1):8-10.
    [10]Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer[J].Proc Jpn Acad Ser B Phys Biol Sci,2009,85(8):314-323.
    [11]Kim JH, Kim HN, Lee KT, et al. Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis[J].Tumour Biol,2008,29 (1):41-49.
    [12]李江涛,冯雪冬,刘颖斌等.肿瘤表达谱基因芯片筛选胆囊癌肿瘤相关基因的初步研究[J].中华外科杂志,2006,44(21):1508-1509.
    [13]冼书林,陆云飞,陈忠彪等.基因芯片技术在乳腺癌诊断和治疗中的应用[J].广东医学,2011,32(20):2741-2743.
    [14]Shin JA, Hong OK, Lee HJ, et al. Transforming growth factor-beta induces epithelial to mesenchymal transition and suppresses the proliferation and transdifferentiation of cultured human pancreatic duct cells[J].J Cell Biochem, 2011,112(1):179-188.
    [15]Kuroki T, Tajima Y, Matsuo K, et al. Genetic alterations in gallbladder carcinoma[J].Surg Today,2005,35 (2):101-105.
    [16]Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition[J].Cell Res,2009,19 (2):156-172.
    [17]Ouyang G, Wang Z, Fang X, et al. Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells [J]. Cell Mol Life Sci,2010,67(15):2605-2618.
    [18]Kang Y, Massague J. Epithelial-mesenchymal transitions:twist in development andmetastasis[J].Cell,2004,118 (3):277-279.
    [19]Thiery JP. Epithelial-mesenchymal transitions in tumour progression[J].Nat Rev Cancer,2002,2(6):442-454.
    [20]Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J].Cell,2004,117 (7):927-939.
    [21]Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer:role of phosphatidylinositol 3'kinase/AKT pathways[J].Oncogene,2005, 24 (50):7443-7454.
    [22]Adachi Y, Takeuchi T, Nagayama T, et al. Zebl-mediated T-cadherin repression increases the invasive potential of gallbladder cancer[J].FEBS Lett,2009,583 (2):430-436.
    [23]Meulmeester E, Ten Dijke P. The dynamic roles of TGF-beta in cancer[J]J Pathol,2011,223 (2):205-218.
    [24]牛坚,陈澍周,钱海鑫.TGF-β1及p27在原发性胆囊癌中的表达及临床意义[J].中国普外基础与临床杂志,2004,11(6):518-521.
    [25]朱亚青,陈澍周,陈玉泉.转化生长因子β1在胆囊癌中的表达及意义[J].肝胆胰外科杂志,2001,13(4):207-208.
    [26]Henttinen T, Jalkanen S, Yegutkin GG. Adherent leukocytes prevent adenosine formation and impair endothelial barrier function by Ecto-5'-nucleotidase/CD73-dependent mechanism[J].J Biol Chem,2003,278 (27):24888-24895.
    [27]Resta R.Thompson LF. T cell signalling through CD73[J].Cell Signal,1997,9 (2):131-139.
    [28]Spychala J. Tumor-promoting functions of adenosine[J].Pharmacol Ther,2000, 87 (23):161-173.
    [29]Ludwig HC, Rausch S, Schallock K, et al. Expression of CD 73 (ecto-5'-nucleotidase) in 165 glioblastomas by immunohistochemistry and electronmicroscopic histochemistry[J].Anticancer Res,1999,19(3 A): 1747-1752.
    [30]Bartsch JE, Staren ED, Appert HE. Adhesion and migration of extracellular matrix-stimulated breast cancer[J].J Surg Res,2003,110 (1):287-294.
    [31]Navarro JM, Olmo N, Turnay J, et al. Ecto-5'-nucleotidase from a human colon adenocarcinoma cell line. Correlation between enzyme activity and levels in intact cells[J].Mol Cell Biochem,1998,187 (12):121-131.
    [32]Arvilommi AM, Salmi M, Airas L, et al. CD73 mediates lymphocyte binding to vascular endothelium in inflamed human skin[J].Eur J Immunol,1997,27(1): 248-254.
    [33]Bianchi V, Spychala J. Mammalian 5'-nucleotidases[J] J Biol Chem,2003,278 (47):46195-46198.
    [34]MacLellan DL, Steen H, Adam RM, et al. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells[J].Proteomics,2005,5(18):4733-4742.
    [35]Cronstein BN, Daguma L, Nichols D, et al. The adenosine/neutrophil paradox resolved:human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit 02 generation respectively[J].J Clin Invest,1990,85 (4): 1150-1157.
    [36]Adair TH. Growth regulation of the vascular system:an emerging role for adenosine[J].Am J Physiol Regul Integr Comp Physiol,2005,289 (2):283-296.
    [37]Woodhouse EC, Amanatullah DF, Schetz JA, et al. Adenosine receptor mediates motility in human melanoma cells[J].Biochem Biophys Res Commun,1998,246 (3):888-894.
    [38]Zhou P, Zhi X, Zhou T, et al. Overexpression of Ecto-5'-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix[J].Cancer Biol Ther,2007,6 (3):426-431.
    [39]Kobayashi K, Blaser MJ, Brown WR. Identification of a unique IgG Fc binding site in human intestinal epithelium[J].J Immunol,1989,143(8):2567-2574.
    [40]O'Donovan N, Fischer A, Abdo EM, et al. Differential expression of IgG Fc binding protein (FcgammaBP) in human normal thyroid tissue, thyroid adenomas and thyroid carcinomas[J].J Endocrinol,2002,174 (3):517-524.
    [41]Gazi MH, He M, Cheville JC, et al. Downregulation of IgG Fc binding protein (Fc gammaBP) in prostate cancer [J]. Cancer Biol Ther,2008,7 (1):70-75.
    [42]Rajkumar T, Vijayalakshmi N, Gopal G, et al. Identification and validation of genes involved in gastric tumorigenesis[J].Cancer Cell Int,2010,10, (1):45-48.
    [43]Hunt PN, Wilson MD, von Schalburg KR, et al. Expression and genomic organization of zonadhesin-like genes in three species of fish give insight into the evolutionary history of a mosaic protein[J].BMC Genomics,2005,6 (1): 165-169.
    [44]徐立宁,邹声泉.胆囊癌分子生物学研究现状及前景[J].实用肿瘤杂志,2005,20(1):7-9.
    [45]邹声泉,张林.全国胆囊癌临床流行病学调查报告[J].中国实用外科杂志,2000,20(1):43-46.
    [46]Serra I, Calvo A, Baez S, et al. Risk factors for gallbladder cancer. An international collaborative case-control study [J].Cancer,1996,78 (7): 1515-1517.
    [47]Maringhini A, Moreau JA, Melton LJ, et al. Gallstones, gallbladder cancer, and other gastrointestinal malignancies. An epidemiologic study in Rochester, Minnesota[J].Ann Intern Med,1987,107 (1):30-35.
    [48]邹声泉.胆囊癌研究现状及综合治疗[J].中国实用外科杂志,2011,31(3):192-194.
    [49]陈澍周,陈莉.胆道肿瘤组织中p62和p21表达的临床意义[J].中华肝胆外科杂志,2001,7(2):94-97.
    [50]Delehedde M, Cho SH, Sarkiss M, et al. Altered expression of bcl-2 family member proteins in nonmelanoma skin cancer[J].Cancer,1999,85(7): 1514-1522.
    [51]许元鸿,欧阳兵,于国志.SurvivinP16及RB表达与原发性胆囊癌发生和发展的关系[J].世界华人消化杂志,2007,15(12):1389-1392.
    [52]陈波,徐立宁,邹声泉Survivin和hTERT在原发性胆囊癌中的表达及其与临床病理的联系[J].中国普通外科杂志,2007,16(2):177-179.
    [53]Durak I, Cetin R, Canbolat O, et al. Adenosine deaminase,5'-nucleotidase, guanase and cytidine deaminase activities in gastric tissues from patients with gastric cancer[J].Cancer Lett,1994,84(2):199-202.
    [54]Sunderman FW, Jr. The clinical biochemistry of 5'-nucleotidase[J].Ann Clin Lab Sci,1990,20(2):123-139.
    [55]汤钊猷.现代肿瘤学.复旦大学出版社,上海,1993,46:141-144.
    [56]Soderholm AL, Lindqvist C, Haglund C. Tumour markers and radiological examinations in the follow-up of patients with oral cancer[J].J Craniomaxillofac Surg,1992,20 (5):211-215.
    [57]余建群,廖方义,程曼玲.胃癌双对比造影表现出血5’-核苷酸酶相关性的研究[J].四川大学学报(医学版),2003,34(1):128-130.
    [58]Sanfilippo O, Camici M, Tozzi MG, et al. Relationship between the levels of purine salvage pathway enzymes and clinical/biological aggressiveness of human colon carcinoma[J].Cancer Biochem Biophys,1994,14 (1):57-66.
    [59]Borkje B, Laerum OD, Schrumpf E. Enzyme activities in biopsy specimens from large-bowel mucosa in colorectal adenomas and carcinomas[J].Scand J Gastroenterol,1987,22 (5):533-538.
    [60]Pavesi F, Lotzniker M, Scarabelli M, et al. Efficiency of composite laboratory tests in the diagnosis of liver malignancies[J].Int J Biol Markers,1989,4 (3): 163-169.
    [61]Lee H, Lin EC, Liu L, et al. Gene expression profiling of tumor xenografts:In vivo analysis of organ-specific metastasis[J].Int J Cancer,2003,107 (4): 528-534.
    [62]Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease:recent insights and progress[J].Curr Gastroenterol Rep,2010,12 (5):319-330.
    [63]刘玉霞,李留霞,高瑞格.MUC2、CD24在卵巢上皮性肿瘤中的表达及意义[J].山东医药,2009,49(5):88-89.
    [64]Goldin RD, Roa JC. Gallbladder cancer:a morphological and molecular update[J].Histopathology,2009,55 (2):218-229.
    [65]Briggs CD, Neal CP, Mann CD, et al. Prognostic molecular markers in cholangiocarcinoma:a systematic review[J].Eur J Cancer,2009,45 (1):33-47.
    [66]Bu XD, Li N, Tian XQ, et al. Altered expression of MUC2 and MUC5AC in progression of colorectal carcinoma[J].World J Gastroenterol,2010,16 (32): 4089-4094.
    [67]Albert TK, Laubinger W, Muller S, et al. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide[J].J Proteome Res,2010,9 (6):3108-3117.
    [68]于大中,于亚男,田字彬.TFF3和β-catenin在不同大肠黏膜组织中的表达[J].世界华人消化杂志,2011,19(15):1579-1584.
    [69]Chan MW, Chan VY, Leung WK, et al. Anti-sense trefoil factor family-3 (intestinal trefoil factor) inhibits cell growth and induces chemosensitivity to adriamycin in human gastric cancer cells[J].Life Sci,2005,76 (22):2581-2592.
    [70]许鸿志,任建林.TFF3与胃癌关系研究进展[J].世界华人消化杂志,2009,17(5):495-499.
    [1]Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J].Cell,2009,139 (5):871-890.
    [2]戴维奇,徐凌,柯爱武,等.上皮间质转化在肿瘤发生发展中的作用[J].医药论坛杂志,2011,32(12):203-206.
    [3]Rik Derynck, Kohei Miyazono. The TGF-beta family. Cold Spring Harbor Laboratory Press:New York,2007; 939-964.
    [4]Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer[J].Proc Jpn Acad Ser B Phys Biol Sci,2009,85 (8):314-323.
    [5]Niessen CM, Gottardi CJ. Molecular components of the adherens junction[J].Biochim Biophys Acta,2008,1778 (3):562-571.
    [6]Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence[J].Cancer Cell,2008,14 (1):79-89.
    [7]Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition[J].Cell Res,2009,19 (2):156-172.
    [8]Garrod D, Chidgey M. Desmosome structure, composition and function[J].Biochim Biophys Acta,2008,1778 (3):572-587.
    [9]De Craene B, Gilbert B, Stove C, et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program[J].Cancer Res,2005,65(14):6237-6244.
    [10]Imamichi Y, Menke A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition[J].Cells Tissues Organs,2007,185 (13):180-190.
    [11]Zhao Y, Min C, Vora SR, et al. The lysyl oxidase pro-peptide attenuates fibronectin-mediated activation of focal adhesion kinase and pl30Cas in breast cancer cells[J].J Biol Chem,2009,284 (3):1385-1393.
    [12]Frame MC, Inman GJ. NCAM is at the heart of reciprocal regulation of E-cadherin-and integrin-mediated adhesions via signaling modulation[J].Dev Cell,2008,15 (4):494-496.
    [13]Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEFl proteins in epithelial mesenchymal transition induced by TGF-beta[J].Mol Biol Cell,2007,18 (9):3533-3544.
    [14]Deckers M, van Dinther M, Buijs J, et al. The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells [J].Cancer Res,2006,66(4): 2202-2209.
    [15]Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression[J].Cancer Sci,2007, 98(10):1512-1520.
    [16]Valcourt U, Kowanetz M, Niimi H, et al. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition[J].Mol Biol Cell,2005,16 (4):1987-2002.
    [17]Kishigami S, Mishina Y. BMP signaling and early embryonic patterning[J].Cytokine Growth Factor Rev,2005,16(3):265-278.
    [18]Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition:new insights in signaling, development, and disease[J].J Cell Biol,2006,172 (7): 973-981.
    [19]Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart[J].Cells Tissues Organs,2007,185 (13): 146-156.
    [20]Klattig J, Englert C. The Mullerian duct:recent insights into its development and regression[J].Sex Dev,2007,1 (5):271-278.
    [21]Hugo H, Ackland ML, Blick T, et al. Epithelial-mesenchymal and mesenchymal--eithelial transitions in carcinoma progression[J].J Cell Physiol, 2007,213 (2):374-383.
    [22]Han G, Lu SL, Li AG, et al. Distinct mechanisms of TGF-betal-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis[J].J Clin Invest,2005,115(7):1714-1723.
    [23]张红燕,孙洋,李珊珊,等.TGF-β1引发的上皮-间质转化与食管鳞癌浸润转移的关系[J].世界华人消化杂志,2008,16(28):3162-3166.
    [24]Gordon KJ, Dong M, Chislock EM, et al. Loss of type Ⅲ transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression^].Carcinogenesis,2008,29 (2):252-262.
    [25]王玺皓,龙汉安.TGF-β引发的上皮间质转化与肿瘤侵袭转移的关系[J].泸州医学院学报,2010,33(1):94-96
    [26]Shintani Y, Maeda M, Chaika N, et al. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling [J].Am J Respir Cell Mol Biol,2008,38(1):95-104.
    [27]Fischer AN, Fuchs E, Mikula M, et al. PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression[J].Oncogene,2007,26 (23):3395-3405.
    [28]Neil JR, Schiemann WP. Altered TAB 1:1 kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression[J].Cancer Res,2008,68(5):1462-1470.
    [29]Willis BC, Borok Z. TGF-beta-induced EMT:mechanisms and implications for fibrotic lung disease[J].Am J Physiol Lung Cell Mol Physiol,2007,293 (3): 525-534.
    [30]Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis[J].Cytokine Growth Factor Rev,2006,17 (12):19-27.
    [31]Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads[J].Annu Rev Cell Dev Biol,2005,21:659-693.
    [32]Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway[J].J Cell Biol,2007,178 (3):437-451.
    [33]Mercado-Pimentel ME, Hubbard AD, Runyan RB. Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation[J].Dev Biol,2007,304 (1):420-432.
    [34]Hoot KE, Lighthall J, Han G, et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression[J]. Clin Invest,2008,118(8):2722-2732.
    [35]Ju W, Ogawa A, Heyer J, et al. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation[J].Mol Cell Biol,2006,26 (2):654-667.
    [36]Takano S, Kanai F, Jazag A, et al. Smad4 is essential for down-regulation of E-cadherin induced by TGF-beta in pancreatic cancer cell line PANC-1[J].J Biochem,2007,141 (3):345-351.
    [37]Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-betal induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro[J].J Biol Chem,2007,282 (30):22089-22101.
    [38]Bardeesy N, Cheng KH, Berger JH, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer[J].Genes Dev,2006,20 (22):3130-3146.
    [39]Desgrosellier JS, Mundell NA, McDonnell MA, et al. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation[J].Dev Biol,2005,280 (1):201-210.
    [40]Xu GP, Li QQ, Cao XX, et al. The Effect of TGF-betal and SMAD7 gene transfer on the phenotypic changes of rat alveolar epithelial cells[J].Cell Mol Biol Lett,2007,12 (3):457-472.
    [41]Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage[J].Gastroenterology,2008,135 (2):642-659.
    [42]Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival:implications in development and cancer [J].Development,2005, 132 (14):3151-3161.
    [43]Jamora C, Lee P, Kocieniewski P, et al. A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis[J].PLoS Biol,2005,3 (1): 11-15.
    [44]Cho HJ, Baek KE, Saika S, et al. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway[J].Biochem Biophys Res Commun,2007,353(2): 337-343.
    [45]Morita T, Mayanagi T, Sobue K. Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling[J].J Cell Biol,2007,179 (5):1027-1042.
    [46]Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness[J].Oncogene,2007,26 (13):1862-1874.
    [47]Wang Z, Wade P, Mandell KJ, et al. Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug[J].Oncogene, 2007, 26 (8): 1222-1230.
    [48]Kurrey NK, K A, Bapat SA. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level[J].Gynecol Oncol, 2005,97(1): 155-165.
    [49]Whiteman EL, Liu CJ, Fearon ER, et al. The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes[J].Oncogene, 2008,27(27): 3875-3879.
    [50]Moreno-Bueno G, Cubillo E, Sarrio D, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition[J].Cancer Res, 2006, 66 (19): 9543-9556.
    [51]Boutet A, De Frutos CA, Maxwell PH, et al. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney[J].EMBO J, 2006, 25 (23): 5603-5613.
    [52]Boutet A, Esteban MA, Maxwell PH, et al. Reactivation of Snail genes in renal fibrosis and carcinomas: a process of reversed embryogenesis?[J].Cell Cycle, 2007,6(6): 638-642.
    [53]Cicchini C, Filippini D, Coen S, et al.Snail controls differentiation of hepatocytes by repressing HNF4alpha expression[J].J Cell Physiol, 2006, 209 (1):230-238.
    [54]Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins[J].Annu Rev Physiol, 2008, 70: 431-457.
    [55]Taki M, Verschueren K, Yokoyama K, et al. Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells[J].Int J Oncol, 2006, 28 (2): 487-496.
    [56]Jorda M, Olmeda D, Vinyals A, et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor[J].J Cell Sci, 2005, 118 (15): 3371-3385.
    [57]Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype?[J].Nat Rev Cancer, 2007,7 (6):415-428.
    [58]Nishimura G, Manabe I, Tsushima K, et al. DeltaEFl mediates TGF-beta signaling in vascular smooth muscle cell differentiation[J].Dev Cell,2006,11 (1):93-104.
    [59]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J].Nat Cell Biol,2008,10 (5):593-601.
    [60]Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J].Genes Dev,2008,22(7):894-907.
    [61]Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J].J Biol Chem,2008, 283 (22):14910-14914.
    [62]Long J, Zuo D, Park M. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin[J].J Biol Chem,2005,280 (42):35477-35489.
    [63]Eger A, Aigner K, Sonderegger S, et al. DeltaEFl is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells[J].Oncogene,2005,24 (14):2375-2385.
    [64]Vandewalle C, Comijn J, De Craene B, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell j unctions [J].Nucleic Acids Res, 2005,33 (20):6566-6578.
    [65]Bindels S, Mestdagt M, Vandewalle C, et al. Regulation of vimentin by SIP1 in human epithelial breast tumor cells[J].Oncogene,2006,25(36):4975-4985.
    [66]Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer [J]. Cancer Res, 2008,68 (2):537-544.
    [67]Aigner K, Dampier B, Descovich L, et al. The transcription factor ZEB1 (deltaEFl) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity[J].Oncogene,2007,26 (49):6979-6988.
    [68]Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis[J].Cancer Res,2006,66 (9):4549-4552.
    [69]Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition[J].J Cell Biol, 2006,174 (2):175-183.
    [70]Seeker GA, Shortt AJ, Sampson E, et al. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling[J].Exp Cell Res,2008,314 (1):131-142.
    [71]Alcorn JF, Guala AS, van der Velden J, et al. Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-betal[J].J Cell Sci,2008, 121 (7):1036-1045.
    [72]Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway[J].Curr Opin Cell Biol,2005,17 (6):596-603.
    [73]Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasti city [J]. Science,2005, 307(5715):1603-1609.
    [74]任陈,申洪.上皮-间质转化的信号转导机制[J].国际病理科学与临床杂志,2009,29(4):365-368.
    [75]Davies M, Robinson M, Smith E, et al. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-betal involves MAPK, Smad and AP-1 signalling pathways[J].J Cell Biochem,2005,95(5):918-931.
    [76]Lee MK, Pardoux C, Hall MC, et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA[J].EMBO J,2007,26 (17): 3957-3967.
    [77]Uttamsingh S, Bao X, Nguyen KT, et al. Synergistic effect between EGF and TGF-betal in inducing oncogenic properties of intestinal epithelial cells[J].Oncogene,2008,27(18):2626-2634.
    [78]Marchetti A, Colletti M, Cozzolino AM, et al. ERK5/MAPK is activated by TGFbeta in hepatocytes and required for the GSK-3beta-mediated Snail protein stabilization[J].Cell Signal,2008,20 (11):2113-2118.
    [79]Santibanez JF. JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes[J].FEBS Lett,2006, 580 (22):5385-5391.
    [80]Delaney JR, Mlodzik M. TGF-beta activated kinase-1:new insights into the diverse roles of TAK1 in development and immunity[J].Cell Cycle,2006,5 (24): 2852-2855.
    [81]Yamashita M, Fatyol K, Jin C, et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta[J].Mol Cell,2008,31 (6):918-924.
    [82]Sorrentino A, Thakur N, Grimsby S, et al. The type Ⅰ TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner[J].Nat Cell Biol,2008,10 (10):1199-1207.
    [83]Aroeira LS, Aguilera A, Selgas R, et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis:role of vascular endothelial growth factor[J].Am J Kidney Dis,2005,46 (5):938-948.
    [84]刘小贤,张浩,孙剑,等.TGF-β1对大鼠腹膜间皮细胞转分化的影响及其机制[J].中南大学学报(医学版),2010,35(2):1672-7347.
    [85]Tavares AL, Mercado-Pimentel ME, Runyan RB, et al. TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart[J].Dev Dyn,2006,235 (6):1589-1598.
    [86]Cho HJ, Yoo J. Rho activation is required for transforming growth factor-beta-induced epithelial-mesenchymal transition in lens epithelial cells[J].Cell Biol Int,2007,31(10):1225-1230.
    [87]Pellegrin S, Mellor H. Actin stress fibres[J].J Cell Sci,2007,120 (20): 3491-3499.
    [88]Vardouli L, Moustakas A,Stournaras C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta[J].J Biol Chem,2005,280 (12):11448-11457.
    [89]Yan W, Fu Y, Tian D, et al. PI3 kinase/Akt signaling mediates epithelial-mesenchymal transition in hypoxic hepatocellular carcinoma cells[J].Biochem Biophys Res Commun,2009,382 (3):631-636.
    [90]Kang MH, Kim JS, Seo JE, et al. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway[J].Exp Cell Res,2010,316 (1):24-37.
    [91]Skurk C, Maatz H, Rocnik E, et al. Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells[J].Circ Res, 2005,96 (3):308-318.
    [92]Park JW, Kim WH, Shin SH, et al. Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway[J].Biochim Biophys Acta,2011,1813(5):763-771.
    [93]Rodriguez-Barbero A, Dorado F, Velasco S, et al. TGF-betal induces COX-2 expression and PGE2 synthesis through MAPK and PI3K pathways in human mesangial cells[J].Kidney Int,2006,70 (5):901-909.
    [94]Lin CC, Chiang LL, Lin CH, et al. Transforming growth factor-beta 1 stimulates heme oxygenase-1 expression via the PI3K/Akt and NF-kappaB pathways in human lung epithelial cells[J].Eur J Pharmacol,2007,560 (23):101-109.
    [95]Yeh YY, Chiao CC, Kuo WY, et al. TGF-betal increases motility and alphavbeta3 integrin up-regulation via PI3K, Akt and NF-kappaB-dependent pathway in human chondrosarcoma cells[J].Biochem Pharmacol,2008,75 (6): 1292-1301.
    [96]Kattla JJ, Carew RM, Heljic M, et al. Protein kinase B/Akt activity is involved in renal TGF-betal-driven epithelial-mesenchymal transition in vitro and in vivo[J].Am J Physiol Renal Physiol,2008,295 (1):215-225.
    [97]Pon YL, Zhou HY, Cheung AN, et al. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells[J].Cancer Res,2008,68 (16):6524-6532.
    [98]Nawshad A, Medici D, Liu CC, et al. TGFbeta3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex[J].J Cell Sci,2007,120 (9):1646-1653.
    [99]Yin L, Velazquez OC, Liu ZJ. Notch signaling:emerging molecular targets for cancer therapy[J].Biochem Pharmacol,2010,80 (5):690-701.
    [100]Hurlbut GD, Kankel MW, Lake RJ, et al. Crossing paths with Notch in the hyper-network[J].Curr Opin Cell Biol,2007,19(2):166-175.
    [101]Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system[J].Immunity,2010,32 (1):14-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700