胆固醇分子和PI3K/Akt及MAPK/ERK1/2信号通路在牛疱疹病毒1型感染MDBK细胞中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛疱疹病毒1型(Bovine herpesvirus type1, BoHV-1)是牛传染性鼻气管炎病(Infectious bovine rhinotracheitis, IBR)的病原体,该病毒感染主要引起呼吸道,消化道,生殖道,眼结膜和神经等多组织、器官的炎症;由该病毒感染引起呼吸道上皮细胞的坏死和免疫抑制导致继发曼氏溶血杆菌和睡眠嗜血杆菌感染的发生而致高死亡率,以及由于生殖道感染而导致的流产对奶牛养殖业造成巨大损失潜伏感染是本病毒重要特点,感染后该病毒在神经节和扁桃体内潜伏感染使患牛终生带毒而成为重要传染源,在应激或免疫力下降时病毒被激活而发病,该病在世界各地广泛分布已经给养牛业带来巨大经济损失。
     病毒感染靶细胞的过程中需要一些重要细胞分子的帮助才能完成复制周期,同时病毒与细胞相互作用的过程中可能会激活或抑制细胞的某些重要的信号传导通路,因此开展相应的基础研究寻找BoHV-1感染MDBK细胞的过程中涉及的关键分子和信号通路,对于揭示病毒与细胞相互作用的关系,从而解析该病毒的感染机理,甚至对于新药物的研发设计都具有重要意义。
     Lipid rafts是大量分布于细胞膜上具有多种生物学功能的特定结构,主要由胆固醇、糖苷鞘磷脂、鞘磷脂和磷脂等成分紧密结合有序排列而构成:该结构稳定存在于脂质双层细胞膜上,主要参与跨膜运输、胞吞和胞吐过程中蛋白质的分选,细胞粘附和迁移,细胞凋亡,突触传递,细胞骨架的组织等多种生物学功能。最近研究发现Lipid rafts与多种病原微生物的感染有关,而胆固醇作为该结构的重要成分是否参与了BoHV-1感染MDBK细胞的过程值得探索并深入研究。
     胆固醇分子是Lipid rafts的主要成分,通过研究胆固醇可以锚定研究Lipidrafts的功能,Methyl-β-cyclodextrin (MβCD)能够有效去除细胞胆固醇分子,可以用于Lipid rafts功能研究。本研究发现采用MβCD处理MDBK细胞可以有效的降低细胞胆固醇含量,同时能够显著抑制病毒的复制,且该抑制作用具有剂量依赖性,MβCD处理的MDBK细胞经外源水溶性胆固醇分子恢复处理后,可以部分回复病毒的复制功能,使病毒滴度增加,这表明细胞胆固醇分子的部分去除是造成该病毒滴度下降主要原因,进一步研究发现在病毒感染侵入后的阶段去除胆固醇分子对病毒的滴度影响不显著,胆固醇分子的去除并不影响病毒与MDBK细胞的结合。从病毒方面因素来考虑,采用MβCD处理病毒而降低囊膜胆固醇分子的含量也能导致病毒感染力下降,当补加外源性胆固醇分子时该抑制效应可以被部分抵消,可见胆固醇分子对于病毒的感染力具有重要作用。综上研究结果表明细胞膜胆固醇分子对于BoHV-1侵入靶细胞具有重要作用,而病毒囊膜胆固醇分子对于该病毒的感染力具有重要意义,这为深入研究该病毒致病机理打下基础。由于Lipid rafts内含有多种分子参与了细胞相关信号传导,我们推测胆固醇分子的去除,破坏了一些信号分子发挥作用的环境,导致病毒侵入的某些环节被阻断,鉴于目前BoHV-1感染的过程中激活了那些信号通路尚未见相关报道,所以该推论需要研究证实。
     Phosphatidylinositol3-kinases/Akt (PI3K/Akt)信号通路是执行多种生物学功能的信号调控系统,即在PI3K的调节下Akt通过调节多种蛋白分子的活性来执行PI3K调控的多种生理学反应,如细胞存活和细胞增殖,血管生成,代谢调控和细胞迁移等。丝裂原激活的蛋白激酶(Mitogen-activated protein kinase, MAPK)超家族能够将接受的多种刺激信号跨膜传递到细胞核执行相应的生物学功能,细胞外信号调节激酶1和2(Extracellular signal-regulated kinases1and2, Erkl/2)作为MAPK超家族的成员参与调节多种细胞生物学功能如细胞增殖、细胞转化、细胞分化、细胞存活和死亡等过程。BoHV-1感染MDBK细胞的过程中是否需要该PI3K/Akt和MAPK/Erk1/2信号通路的参与尚不清楚。
     本研究发现BoHV-1感染MDBK细胞的过程中能够激活Akt和Erk1/2,包括感染的早期短暂激活和晚期持续性激活,且经紫外线灭活的病毒仍然能够在感染的早期激活Akt和Erk1/2而不能在晚期激活Akt和Erkl/2,表明病毒与细胞结合和/侵入的过程中能够激活Akt和Erk1/2,后期Akt和Erk1/2的持续性激活与病毒基因表达的过程有关;病毒诱导的Akt激活可以被PI3K抑制剂Ly294002特异性阻断,病毒诱导的Erkl/2激活可以被MAPK激酶(MAPK kinase, MEK1/2)的抑制剂U0126所抑制,这表明Akt和Erk1/2的上游激活子分别是PI3K和MEK1/2。此外用Akt的抑制剂Ly294002处理MDBK细胞导致病毒滴度下降1.5log,表明PI3K的激活对于病毒的复制具有重要意义,而MEK1/2的抑制剂处理细胞后病毒滴度无明显变化,表明抑制MAPK/Erk1/2信号通路不影响病毒的复制;进一步研究发现PI3K的激活对于该病毒的复制周期中侵入后阶段影响显著,尽管病毒与细胞结合即可激活该PI3K/Akt信号通路,但是抑制PI3K的活性并不影响病毒与细胞的结合,同样在侵入阶段抑制PI3K的活性对于该病毒的复制影响不显著;本研究首次阐明在BoHV-1感染MDBK细胞的过程中能够激活PI3K/Akt和MAPK/Erk1/2两个信号通路,特别是PI3K的激活对于病毒复制周期的侵入后阶段具有重要意义。
     Lipid rafts形成一个疏水性微环境,可能是多种分子相互作用的位点和场所,我们前期的研究发现胆固醇分子参与BoHV-1感染MDBK细胞的侵入过程,而在该病毒侵入和/结合靶细胞的过程中又能激活PI3K/Akt和MAPK/Erk1/2两个信号通路,但是该信号通路的早期激活过程是否受胆固醇分子的影响并不清楚,本试验发现降低细胞表面胆固醇含量对该病毒诱导的PI3K/Akt和MAPK/Erkl/2早期激活影响不显著。
     本研究首次阐明在BoHV-1感染MDBK细胞的过程中需要细胞胆固醇分子的参与才能有效的完成侵入过程,在感染的早期和晚期都能激活PI3K/Akt和MAPK/Erk14/2两个信号通路,且PI3K/Akt通路的激活对于该病毒复制具有重要意义,而细胞表面胆固醇含量的降低对该病毒诱导的PI3K/Akt和MAPK/Erk1/2早期激活影响不显著。
Bovine herpesvirus-1(BoHV-1) is an important pathogen of cattle, which mainly causes severe respiratory disease. Also it is responsible for several other infections, such us conjunctivitis, genital lesion, abortion, enteritis and encephalitis. Inflammation and cell necrosis and death of respiratory epithelia, and immunosuppression caused by the virus infection often predispose cattle to secondary or opportunistic infections in particular Mannheimia haemolytica and Haemophilus somnus, which results in enhanced morbidity and mortality. Abortions caused by the virus infection of the genital tract results in significant economic loss in the cow industry worldwide. Infection with herpesviruses is commonly characterized by the ability to establish latent infection, mainly in ganglion cells and tonsils. Once infected, the virus persists for life and may be re-activated at intervals if the host is subjected to stress or immunosuppression, for example by dexamethasone treatment. The continuous circulation of the virus among the bovine population is the cause of serious economic losses for the cattle industry worldwide.
     For the virus successful infection of susceptible cells, series of cellular molecules must be involved for the facility of a complete life cycle. And during the cause of the virus-cell interactions, some cellular signaling pathways were involved. Thus, it is of great significance to investigate the virus infection-associated cellular molecules andsingnaling pathways, for the dissecting of virus replication mechanism. Above basic research on virus-cell interaction could also contribute to the pharmacology development, for providing some target molecule for the novel medicine design. Lipid rafts, specific membrane microdomains enriched in cholesterol,(glyco)sphingolipids and phospholipids, which tightly packaged and ordered, are known to be involved in the regulation of various biological phenomena, including membrane transport protein sorting during endocytosis and exocytosis, cell adhesion, migration, cell apoptosis, synaptic transmission and organization of the cytoskeleton et al. Accumulating evidence suggests that many pathogens require Lipid rafts at multiple stages of their life cycles. However, as an important component of Lipid raft, the role of cholesterol in the life cycle of BoHV-1infection of Madin-Darby bovine kidney (MDBK) cells remains unknown, thus it deserves extensive investigation.
     Cholesterol is an important component of membrane Lipid raft, by the surveys of its role for the virus infection will contribute to understand the function of Lipid raft in the virus infection. Methyl-β-cyclodextrin (MβCD) is an effective reagent to sequester cell membrane cholesterol and was used for this research. Here, we examined the role of cholesterol for both viral envelope and target cell membrane for BoHV-1infection. Cholesterol depletion by pretreatment of MDBK cells with MβCD, inhibited the production of BoHV-1in a dose-dependent manner. This inhibitory effect was partially reversed by cholesterol replenishment, indicating that the reduction was caused by cholesterol depletion. Cholesterol depletion at the stage only had a mild effect on the virus production. However, cell membrane cholesterol depletion did not reduce the virus attachment. In addition, treatment of BoHV-1particles with MβCD also reduced the virus infectivity significantly and the effect was partially reversed by addition of exogenous cholesterol. Taken together, these data implicated that cell membrane cholesterol mainly contributed to BoHV-1entry into MDBK cells and the viral envelope cholesterol was also essential for the virus infectivity. Why Lipid raft is associated with the virus entry process is not known. We hypothesis that some molecules in the Lipid raft is associated with some cellular signal transductions as well some process of the virus entry. However, as to the information of cellular signaling pathways involved in BoHV-1infectin of into MDBK cells is not known.
     Phosphatidylinositol3-kinases (PI3K) PI3K/Akt is an important signaling pathway which executes series of biological function. A number of molecules are directly or indirectly regulated by Akt, to carry out PI3K-regulated responses such as cell survival, growth, proliferation, angiogenesis, metabolism, and migration. The members of mitogen-activated protein kinase (MAPK) superfamily respond to diverse cellular stimuli through transducing signals from the cell membrane to the nucleus. Extracellular signal-regulated kinases1and2(Erkl/2) is a member of MAPK family, which regulate a wide range of cellular functions including cell proliferation, transformation, differentiation, cell survival and death. So far it is not clear whether PI3K/Akt and MAPK/Erkl/2signaling pathways are involved in the process of BoHV-linfection of MDBK cells.
     This study indicated that infection of MDBK cells with BoHV-1induced an early-stage transient and a late-stage sustained activation of both PI3K/Akt and MAPK/Erkl/2signaling pathways. Analysis with the stimulation of UV-irradiated virus indicated that the virus binding and/or entry process was enough to trigger the early phase activations, while the late phase activations were viral protein expression dependent. Biphasic activation of both pathways was suppressed by the selective and potent inhibitors Ly294002for PI3K and U0126for MAPK kinase (MEK1/2), respectively. Furthermore, treatment of MDBK cells with Ly294002caused a1.5-log reduction in virus titer, while U0126had little effect on the virus production. And the inhibition effect mainly occurred at the post-entry stage of the virus replication cycle. This was the first time to reveal that BoHV-1actively induced both PI3K/Akt and MAPK/Erkl/2signaling pathways, and the activation of PI3K was important for fully efficient replication, especially for the post-entry stage.
     In previous study, we reported that cholesterol-rich Lipid raft is involved in the life cycle of BoHV-1infection of MDBK cells, especially for the virus entry process. During the virus binding and/or entry process, both PI3K/Akt and MAPK/Erkl/2signaling pathways are activated. But whether Lipid raft was involved in the virus induced signaling stimulation process was not clear. The following experiments revealed that cholesterol depletion had a minor influence on the virus triggered signaling pathways.
     Taken together, here for the first time experimental data revealed that cholesterol was required for the virus effective infection of MDBK cells at the entry stage, and it induced an early-stage transient and a late-stage sustained activation of both PI3K/Akt and MAPK/Erkl/2signaling pathway. The activation of PI3K/Akt signaling is of great significance for the virus replication especially at the post-entry stage. In addition, the depletion of cellular cholesterol had minor effect on the virus induced PI3K/Akt and MAPK/Erkl/2signaling pathways activation.
引文
[1]. Sandri-Goldin RM (editor). Alpha Herpesviruses:Molecular and Cellular Biology. Caister Academic Press publisher. ISBN,978-1-904455-09-7. August 2006, from http://www.horizonpress.com/ahv.
    [2]. Davison AJ.Herpesvirus systematics. Vet Microbiol.2010,143(1),52-69.
    [3]. Fauquet, C. M., Majo, M. A., Maniloff, J., Desselberger, U. & Ball, L.2005. Virus Taxonomy:Classification and Nomenclature of Viruses. Eighth Report of the International Committee on the Taxonomy of Viruses. London:Elsevier Academic Press.
    [4]. Gibbs EPJ, Rweyemamu MM. Bovine herpesviruses I. Bovine herpesvirus 1. Vet Bull.1977; 47:317-43.
    [5]. McKercher DG, Bibrack B, Richards WP. Effects of the infectious bovine rhinotracheitis virus on the central nervous system of cattle. J Am Vet Med Assoc. 1970,156(10):1460-7.
    [6]. McKercher DG, Wada EM. The virus of infectious bovine rhinotracheitisas a cause of abortion in cattle. J Am Vet Med Assoc.1964,144:136-42.
    [7]. Gratzek JB, Peter CP, Ramsey FK. Isolation and characterization of a strain of infectious bovine rhinotracheitis virus associated with enteritis in cattle:isolation, serologic characterization, and induction of the experimental disease. Am J Vet Res. 1966,27(121):1567-72.
    [8]. Hungerford, T.G.1990. Hungerford's Diseases of Livestock,9th, McGraw-Hill Book Company, Sydney, NSW. Ackermann M, Engels M. Pro and contra IBR-eradication. Vet Microbiol,2006.113:293-302.
    [9]. Barenfus M, Delliquadra CA, Mcintyre RW, Schroeder RJ. Isolation of infectious bovine rhinotracheitis virus from calves with meningoencephalitis. J Am Vet Med Assoc,1963.143:725-728.
    [10]. d"Offay JM, Mock RE, Fulton RW. Isolation and characterization of encephalitic bovine herpesvirus type 1 isolates from cattle in North America. Am J Vet Res. 1993,54:534-549.
    [11]. Jones C, Chowdhury S. A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Ani Heal Res Rev.2008,8:187-205.
    [12]. Okazaki K, Fujii S, Takada A, Kida H. The amino-terminal residue of glycoprotein B is critical for neutralization of bovine herpesvirus 1. Virus Res.2006, 115(2):105-11.
    [13]. Cai WH, Gu B, Person S. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol.1988,62(8):2596-604.
    [14]. Ligas MW, Johnson DC. A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells. J Virol.1988,62(5):1486-94.
    [15]. Kimman TG, de Wind N, Oei-Lie N, Pol JM, Berns AJ, Gielkens AL. Contribution of single genes within the unique short region of Aujeszky's disease virus (suid herpesvirus type 1) to virulence, pathogenesis and immunogenicity. J Gen Virol. 1992,73(Pt2):243-51.
    [16]. Schwyzer M, Ackermann M. Molecular virology of ruminant herpesviruses. Vet Microbiol.1996,53(1-2):17-29.
    [17]. Kaashoek MJ, Rijsewijk FA, Ruuls RC, Keil GM, Thiry E, Pastoret PP, et al. Virulence, immunogenicity and reactivation of bovine herpesvirus 1 mutants with a deletion in the gC, gG, gI, gE, or in both the gl and gE gene. Vaccine.1998, 16(8):802-9.
    [18]. Israel, B.A., Herber, R., Gao, Y., Letchworth Ⅲ, G.J. Induction of a mucosal barrier to bovine herpesvirus 1 replication in cattle. Virology.1992,188:256-264.
    [19]. Van Drunnen Little-van den Hurk, S.. Parker. M.D., Fitzpatrick, D.R., van den Hurk, J.V., Campos, M., Babiuk, L.A., Zamb, T. Structural, functional, and immunological characterization of bovine herpesvirus 1 glycoprotein gI expressed by recombinant baculovirus. Virology.1992.190:378-392.
    [20]. Li, Y., Van Drunnen Little-van den Hurk, S., Liang. X., Babiuk, L.A., Functional analysis of the transmembrane anchor region of bovine herpesvirus 1 glycoprotein gB. Virology.1997,228:39-54.
    [21]. Johnson, R. M., and Spear, P. G. Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. J. Virol.1989,63:819-827.
    [22]. Chase, C. C. L., Carter-Allen, K., Lohff, C., and Letchworth, G. J. Bovine cells expressing bovine herpesvirus 1 (BHV1) glycoprotein IV resist infection by BHV1, herpes simplex virus and pseudorabies virus. J. Virol.1990,64:4866-72.
    [23]. Rudolph J, Seyboldt C, Granzow H, et al. The gene 10 (UL49.5) product of equine herpesvirus 1 is necessary and sufficient for functional processing of glycoprotein M. J Virol.2002,76:2952-2963.
    [24]. Lipinska A D, Koppers-Lalic D, Rychlowski M, et al. Bovine herpesvirus 1 UL49.5 protein inhibits the transporter associated with antigen processing despite complex formation with glycoprotein M. J Virol.2006,81:5822-5832.
    [25]. Spear, P. G. Entry of alhaherpesviruses into cells. Virology.1993,4:167-180. Muggeridge, M. I. Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB. gD, gH and gL in transfected cells. J. Gen. Virol.2000,81:2017-2027.
    [26]. Spear, P. G., R. J. Eisenberg, and G. H. Cohen. Three classes of cell surface receptors for alphaherpesvirus entry. Virology.2000,275:1-8.
    [27]. Winkler, M.T., Doster, A., Jones, C. Persistence and reactivation of bovine herpesvirus 1 in the tonsils of latently infected calves. J. Virol.2000,74: 5337-5346.
    [28]. Chowdhury SI, Coats J, Neis RA, Navarro SM, Paulsen DB, Feng JM. A bovine herpesvirus type 1 mutant virus with truncated glycoprotein E cytoplasmic tail has defective anterograde neuronal transport in rabbit dorsal root ganglia primary neuronal cultures in a microfluidic chamber system. J Neurovirol.2010, 16(6):457-65.
    [29]. Kampa J, Alenius S, Emanuelson U, Chanlun A, Aiumlamai S. Bovine herpesvirus type 1 (BHV-1) and bovine viral diarrhoea virus (BVDV) infections in dairy herds: self clearance and the detection of seroconversions against a new atypical pestivirus. Vet J.2009,182(2):223-30.
    [30]. Ohmann, H.B., Babuik, L.A.,1985. Viral-bacterial pneumonia in calves:effect of bovine herpesvirus-1 on immunologic functions. J. Infect. Dis.151,937-947.
    [31]. Brown Jr., T.T., Ananaba, G.,. Effect of respiratory infections caused by bovine herpesvirus-1 or parainfluenza-3 virus on bovine alveolar macrophage functions. Am. J. Vet. Res.1998,49:1447-1451.
    [32]. Hinley, S., Hill, A.B., Srikumaran, S. Bovine herpesvirus-1 infection affects the peptide transport activity in bovine cells. Virus Res.1998,53:91-96.
    [33]. Nataraj, C., Eidmann, S., Hariharan, M.J., Sur, J.H., Perry, G.A., Srikumaran, S., Bovine herpesvirus 1 downregulates the expression of bovine MHC class I molecules. Viral Immunol.1997,10:21-34.
    [34]. Noel, E.J., Israel, B.A., Letchworth Ⅲ, G.J., Czuprynski, C.J. Effects of immunization with bovine herpesvirus-1 glycoproteins on bovine herpesvirus-1-induced alteration of bovine neutrophil chemotatic and anti-Pasteurella haemolytica activities. Vaccine.1988,7:433-440.
    [35]. Noel, E.J., Israel, B.A., Letchworth Ⅲ, G.J., Czuprynski, C.J. Preincubation of bovine blood neutrophils with bovine herpesvirus-1 does not impair neutrophil interaction with Pasteurella haemolytica Al in vitro. Vet. Immunol. Immunopathol. 1988,19:273-284.
    [36]. Filion, L.G., McGuire, R.L., Babiuk, L.A. Nonspecific suppressive effect of bovine herpesvirus type 1 on bovine leukocyte functions. Infect. Immun.1981,42: 106-112.
    [37]. Hanon, E., Lambot, M., Hoornaert, S., Lyaku, J., Pastoret, P.P. Bovine herpesvirus 1-induced apoptosis:phenotypic characterization of susceptible peripheral blood mononuclear cells. Arch. Virol.1998,143:441-452.
    [38]. Waren, L.M., Babiuk, L.A., Campos, M. Effects of BHV-1 on PMN adhesion to bovine lung endothelial cells. Vet. Immunol. Immunopathol.1996,55:73-82.
    [39]. Winkler, M.T., Doster, A., Jones, C. Bovine herpesvirus 1 can infect CD4 (+) T lymphocytes and induce programmed cell death during acute infection of cattle. J. Virol.1999,73:8657-8668.
    [40]. Eskra, L., Splitter, G.A. Bovine herpesvirus-1 infects activated CD4 lymphocytes. J. Gen. Virol.1997,78:2159-2166.
    [41]. Saini, M., Sharma, B., Singh, L.N., Gupta. P.K. Apoptosis in bovine herpesvirus-1 infected peripheral blood mononuclear cells. Indian J. Exp. Biol.1999,37: 976-979.
    [42]. Leite F, Kuckleburg C, Atapattu D, Schultz R, Czuprynski CJ. BHV-1 infection and inflammatory cytokines amplify the interaction of Mannheimia haemolytica leukotoxin with bovine peripheral blood mononuclear cells in vitro. Vet Immunol Immunopathol.2004,99(3-4):193-202.
    [43]. Brower A, Homb KM, Bochsler P, Porter R, Woods K, Ubl S, Krueger D, Cigel F, Toohey-Kurth K. Encephalitis in aborted bovine fetuses associated with Bovine herpesvirus 1 infection. Vet Diagn Invest.2008,20(3):297-303.
    [44].陈天祥.间接血凝检测牛传染性鼻气管炎抗体的探讨[J].中国兽禽传染病,1987,5:35-36.
    [45].王柳,等.光生物素标记DNA探针检测感染细胞的BHV-1 DNA[J].生物技术,1992,2(6):14-16.
    [46]. Vilcek S,Nettleton PF, Herring AJ, et al.Detection of BHV-1 in clinical samples by the polymerase chain reaction. Deutsche Tieraztliche Wochenschrift,1995, 102(6):249-250.
    [47].殷震,刘景华.动物病毒学[M],科学出版社,1997.1028.
    [48]. Del Medico Zajac, M.P., Puntel, M., Zamorano, P.I., Sadir, A.M., Romera, S.A.BHV-1 vaccine induces cross-protection against BHV-5 disease in cattle. Res.Vet. Sci.2006,81:327-334.
    [49]. Romera, S.A., Hilgers, L.A., Puntel, M., Zamorano, P.I., Alcon, V.L., Dus Santos, M.J.,Blanco Viera, J., Borca, M.V., Sadir, A.M. Adjuvant effects of sulfolipocyclodextrin in a squalane-in-water and water-in-mineral oil emulsions for BHV-1 vaccines in cattle. Vaccine,2000,9:132-141.
    [50]. Kramps, J. A., J. Magdalena, J. Quak, K. Weerdmeester, M. J. Kaashoek, M. A. Maris-Veldhuis, F. A. M. Rijsewijk, G. Keil, and J. T. van Oirschot. A simple, specific, and highly sensitive blocking enzyme-linked immunosorbent assay for detection of antibodies to bovine herpesvirus 1. J. Clin. Microbiol.1994,32: 2175-2181.
    [51]. Van Oirschot, J. T., M. J. Kaashoek, M. A. Maris-Veldhuis, K. Weerdmester, and F. A. M. Rijsewijk. An enzyme-linked immunosorbent assay to detect antibodies against glycoprotein gE of bovine herpesvirus 1 allows differentiation between infected and vaccinated cattle. J. Virol. Methods,1997,67:23-34.
    [52]. Van Oirschot, J. T., M. J. Kaashoek, F. A. M. Rijsewijk, and J. A. Stegeman. The use of marker vaccines in eradication of herpesviruses. J. Biotechnol,1996, 44:75-81.
    [53]. Kaashoek, M. J., F. A. M. Rijsewijk, and J. T. Van Oirschot. Persistence of antibodies against bovine herpesvirus 1 and virus reactivation two or three years after infection. Vet. Microbiol,1996,53:103-110.
    [54]. Kramps, J. A., B. Perrin, S. Edwards, and J. T. Van Oirschot. A European interlaboratory trial to evaluate the reliability of serological diagnosis of bovine herpesvirus 1 infections. Vet. Microbiol,1996,53:153-161.
    [55]. Kaashoek, M. J., A. Moerman, J. Madic, F. A. M. Rijsewijk, J. Quak, A. L. J. Gielkens, and J. T. Van Oirschot. A conventionelly attenuated glycoprotein E-negative strain of bovine herpesvirus type 1 is an efficacious and safe vaccine. Vaccine,1994,12:439-444.
    [56].陈天祥,李有为,间接血凝检测牛传染性鼻气管炎抗体[J].中国畜禽传染病.1987,36:35-36.
    [57]. Vilcek, S., Nettleton, P.F., Herring, J.A., Herring, A.J. Rapid detection of bovine herpesvirus 1 (BoHV-1) using the polymerase chain reaction. Vet. Microbiol,1994, 42:53-64.
    [58]. Rocha, M.A., Barbosa, E.F., Guimaraes, S.E.F., Neto, E.D., Gouveia, A.M.G. A high sensitivity-nested PCR assay for BoHV-1 detection in semen of naturally infected bulls. Vet. Microbiol,1998,63:1-11.
    [59].杨娟,支海兵.牛传染性鼻气管炎病毒PCR检测方法的建立.中国奶牛.2007,8:7-9.
    [60]. Moore S, Gunn M, Walls D, A rapid and sensitive PCR-based diagnostic assay to detect bovine herpesvirus 1 in routine diagnostic submissions. Vet Microbiol.2000, 75:145-153.
    [61]. Beer M, Konig P, Schielke G, Trapp S. Berl Munch Tierarztl Wochenschr. Diagnostic markers in the prevention of bovine herpesvirus type 1:possibilities and limitations. Berl Munch Tierarztl Wochenschr.2003,116(5-6):183-91.
    [62]. Zhang GP, Guo JQ, Wang XN. Immunochromatographic lateral flow strip tests. Methods Mol Biol.2009,504:169-183.
    [63]. Yates WD. A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral-bacterial synergism in respiratory disease of cattle. Can J Comp Med.1982,46:225-63.
    [64]. Petrini S, Ramadori G, Corradi A, Borghetti P, Lombardi G, Villa R, Bottarelli E, Guercio A, Amici A, Ferrari M. Evaluation of safety and efficacy of DNA vaccines against bovine herpesvirus-1 (BoHV-1) in calves. Comp Immunol Microbiol Infect Dis.2011,34(1):3-10.
    [65]. van Drunen Littel-van den Hurk S, Snider M, Thompson P, Latimer L, Babiuk LA. Strategies for induction of protective immunity to bovine herpesvirus-1 in newborn calves with maternal antibodies. Vaccine.2008,26:3103-11.
    [66]. van Drunen Littel-van den Hurk S, Tikoo SK, van den Hurk JV, Babiuk LA, Van Donkersgoed J. Protective immunity in cattle following vaccination with conventional and marker bovine herpesvirus-1 (BHV1) vaccines. Vaccine.1997, 15:36-44.
    [67]. Wild J, Gruner B, Metzger K. Polyvalent vaccination against hepatitis B surface and core antigen using a dicistronic expression plasmid. Vaccine.1998,16:353-60.
    [68]. Manoj S, Babiuk LA, van Drunen Littel-van den Hurk S. Immunization with a dicistronic plasmid expressing a truncated form of bovine herpesvirus-1 glycoprotein D and the mino-terminal subunit of glycoprotein B results in reduced gB-specific immune responses.Virology.2003,313:296-307.
    [69]. Lewis PJ, van Drunen Littel-Van Den H, Babiuk LA. Induction of immune responses to bovine herpesvirus type 1 gD in passively immune mice after immunization with a DNA-based vaccine. J Gen Virol.1999,80:2829-37.
    [70]. Van Drunen Littel-van den Hurk S, Braun RP, Lewis PJ, Karvonen BC, Babiuk LA, Griebel PJ. Immunization of neonates with DNA encoding a bovine herpesvirus glycoprotein is effective in the presence of maternal antibodies. Viral Immunol; 1999.12:67-77.
    [71]. Gerdts V, Babiuk LA, van Drunen Littel-van den H, Griebel PJ. Fetal immunization by a DNA vaccine delivered into the oral cavity. Nat Med; 2000,6: 929-32.
    [72]. Mutwiri G, Benjamin P, Soita H, Babiuk LA.Co-administration of polyphosphazenes with CpG oligonucleotides strongly enhances immune responses in mice immunized with Hepatitis B virus surface antigen. Vaccine.2008, 23:2680-8.
    [72]. Castrucci G, Ferrari M, Marchini C, Salvatori D, Provinciali M, Tosini A, Petrini S, Sardonini Q, Lo Dico M, Frigeri F, Amici A. Immunization against bovine herpesvirus-1 infection. Preliminary tests in calves with a DNA vaccine. Comp Immunol Microbiol Infect Dis.2004,27:171-9.
    [73]. Parreno V, Lopez MV, Rodriguez D, Vena MM, Izuel M, Filippi J, Romera A, Faverin C, Bellinzoni R, Fernandez F, Marangunich L. Development and statistical validation of a guinea pig model for vaccine potency testing against Infectious Bovine Rhinothracheitis (IBR) virus. Vaccine.2010,28:2539-49.
    [74]. Nardelli S, Farina G, Lucchini R, Valorz C, Moresco A, Dal Zotto R, Costanzi C Dynamics of infection and immunity in a dairy cattle population undergoing an eradication programme for Infectious Bovine Rhinotracheitis (IBR). Prev Vet Med. 2008,85:68-80.
    [75].Yan BF, Chao YJ, Chen Z, Tian KG, Wang CB, Lin XM, Chen HC, Guo AZ.Serological survey of bovine herpesvirus type 1 infection in China. Vet Microbil,2008,127:136-141.
    [1]. Kronenberg F, Kronenberg MF, Kiechl S, Trenkwalder E, Santer P, Oberhollenzer F, Egger G, Utermann G. Willeit J.Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis:prospective results from the Bruneck study. Circulation. 1999,100(11):1154-60.
    [2]. Paul Cullen; Fabrizio Jossa; Barry Lewis; Mario Mancini. Coronary Heart Disease: Reducing the Risk. The Scientific Background to Primary and Secondary Prevention of Coronary Heart Disease. A Worldwide View International Task Force for the Prevention of Coronary Heart Disease Gerd Assmann; Arteriosclerosis, Thrombosis, and Vascular Biology.1999,19:1819-1824.
    [3]. Aizaki H, Morikawa K, Fukasawa M, Hara H, Inoue Y, Tani H, Saito K, Nishijima M, Hanada K, Matsuura Y, Lai MM, Miyamura T, Wakita T, Suzuki T. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. Virol. 2008,82(12):5715-24
    [4]. Juckem LK, Boehme KW, Feire AL, Compton T. Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. J Immunol.2008,180 (7):4965-77.
    [5]. Carter GC, Bernstone L, Sangani D, Bee JW, Harder T, James W. HIV entry in macrophages is dependent on intact Lipid rafts. Virology.2009,386(1):192-202.
    [6]. Singer SJ, Nicolson GL. The fluid mosaic model of the structure f cell membranes. Science.1972,175:720-731.
    [7]. Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell.1992, 68:533-544.
    [8]. Simons, K. and van Meer, G. Lipid sorting in epithelial cells. Biochemistry 1988, 27,6197-6202.
    [9]. Simons, K. and Ikonen, E.. Functional rafts in cell membranes. Nature.1997,387, 569-572.
    [10]. Simons, K. and Toomre, D. Lipid rafts and signal transduction. Nat.Rev. Mol. Cell. Biol.2000,1:31-39.
    [11]. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol.2000,149 (7):1455-72.
    [12]. Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol.1999,1 (2):98-105.
    [13]. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature.1998,166: 4773-4779.
    [14]. Heerklotz, H.. Triton promotes domain formation in Lipid raft mixtures. Biophys. J.2002,83,2693-2670.
    [15]. Heerklotz, H., Szadkowska, H., Anderson, T. and Seelig, J. The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton. J. Mol. Biol. 2003,329,793-799.
    [16]. Harder, T. and Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol.1997; 9.534-542.
    [17]. Tadanobu Takahashi and Takashi Suzuki. Role of Membrane Rafts in Viral Infection. The Open Dermatology Journal.2009,3,178-194.
    [18]. Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular transport pathway to the ER. Nat Cell Biol.2001, 3(5):473-83.
    [18]. Arias CF, Isa P, Guerrero CA, Mendez E, Zarate S, Lopez T, Espinosa R, Romero P, Lopez S. Molecular biology of rotavirus cell entry. Arch Med Res.2002, 33:356-361.
    [19]. Stuart AD, Eustace HE, McKee TA, Brown TDK. A novel cell entry pathway for a DAF-using human enterovirus is dependent on Lipid rafts. J Virol.2002,76: 9307-9322.
    [20]. Grassme H, Riehle A, Wilker B, Gulbins E. Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem.2005,280(28): 26256-62.
    [21]. Smith, A.E., and A. Helenius. How viruses enter animal cells. Science.2004, 304:237-242.
    [22]. Liao Z, Graham DR, Hildreth JE. Lipid rafts and HIV pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells. AIDS Res Hum Retroviruses.2003,19(8):675-87.
    [23]. Cherukuri A, Shoham T, Sohn HW, Levy S, Brooks S, Carter R, Pierce SK. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active Lipid rafts. J Immunol.2004, 172(1):370-80.
    [24]. Delmas O, Durand-Schneider AM, Cohen J, Colard O, Trugnan G. Spike protein VP4 assembly with maturing rotavirus requires a postendoplasmic reticulum event in polarized Caco-2 cells. J Virol.2004,78(20):10987-10994.
    [25]. Manie SN, de Breyne S, Vincent S, Gerlier D. Measles virus structural components are enriched into Lipid raft microdomains:a potential cellular location for virus assembly. J Virol.2000,74(1):305-11.
    [26]. Luo C, Wang K, Liu de Q, Li Y, Zhao QS.The functional roles of Lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell Mol Immunol.2008,5(1):1-7.
    [27]. Vanhaesebroeck, B., Leevers, S. J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P. C, Woscholski, R., Parker, P. J., Waterfield, M. D. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem.2001,70:535-602.
    [28]. Wymann MP and Pirola L. Structure and function of phosphoinositide 3-kinases. Biochimica et Biophysica Acta.1998,1436:127-150.
    [29]. Rodrigues GA, Falasca M, Zhang Z, Ong SH & Schlessinger J. A novel positive feedback loop mediated by the docking protein Gabl and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Molecular and Cellular Biology.2000,20:1448-1459.
    [30]. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF & Williams RL. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell. 2000,103:931-943.
    [31]. Cantrell, D. A. Phosphoinositide 3-kinase signalling pathways. J Cell Sci.2001, 114:1439-1445.
    [32]. Leslie, N. R., Downes, C. P., Maehama, T., Dixon, J. E. PTEN:the down side of PI 3-kinase signalling. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. Cell Signal.2002, 14:285-295.
    [33]. Jones,P., Jakubowicz,T., Pitossi,F., Maurer,F. and Hemmings,B. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc. Natl Acad. Sci. USA.1991,88:4171-4175.
    [34]. Coffer, P. J. & Woodgett, J. R. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem.1991,201:475-481.
    [35]. Scheid, M. P. & Woodgett, J. R. Unraveling the activation mechanism of protein kinase B/Akt. FEBS Letters.2003,546:108-112.
    [36]. Stein RC. Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr Relat Cancer.2001,8(3):237-48.
    [37]. Eves, E. M., Xiong, W., Bellacosa, A., Kennedy, S. G, Tsichlis, P. N., Rosner, M. R.& Hay, N. Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol.1998,18:2143-2152.
    [38]. Vanhaesebroeck, B., Alessi, D. R. The PI3K-PDK1 connection:more than just a road to PKB. Biochem J.2000,346:561-576.
    [39]. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S., Reed, J. C. Regulation of cell death protease caspase-9 by phosphorylation. Science.1998,282:1318-1321.
    [40]. Cross, D. A., Alessi, D. R., Cohen, P., Anjelkovic, M., Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995,378:785-789.
    [41]. Burgering, B. M. & Medema, R. H. Decisions on life and death:FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol. 2003,73:689-701.
    [42]. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G., Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem.1999,274:17179-17183.
    [43]. Yang, C. H., Murti, A., Pfeffer, S. R., Kim, J. G., Donner, D. B., Pfeffer, L. M. Interferon a/b promotes cell survival by activating nuclear factor kB through phosphatidylinositol 3-kinase and Akt. J Biol Chem.2001,276:13756-61.
    [44]. Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev.2001,65:288-318.
    [45]. Ichaso N, Dilworth SM. Cell transformation by the middle T-antigen of polyoma virus. Oncogene.2001,20:7908-7916.
    [46]. Yang CS, Vitto MJ, Busby SA, Garcia BA, Kesler CT, Gioeli D, Shabanowitz J, Hunt DF, Rundell K, Brautigan DL, Paschal BM. Simian virus 40 small t antigen mediates conformation-dependent transfer of protein phosphatase 2A onto the androgen receptor. Mol Cell Biol.2005,25:1298-1308.
    [47]. Yu Y, Alwine JC. Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3'-OH kinase pathway and cellular kinase Akt. J Virol.2002, 76:3731-3738.
    [48]. O'Shea C, Klupsch K, Choi S, Bagus B, Soria C, Shen J, McCormick F, Stokoe D. Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. EMBO J.2005,24:1211-1221.
    [49]. Ballif, B. A., and Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ.2001,12:397-408.
    [50]. Rubinfeld, H., and Seger, R. The ERK cascade:a prototype of MAPK signaling. Mol. Biotechnol.2005,31:151-174.
    [51]. Meloche, S., and Pouyssegur, J. The ERK1/2 mitogenactivated protein kinase pathway as a master regulator of the G1-to S-phase transition. Oncogene.2007,26: 3227-3239.
    [52]. Pearson, G, Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., and Cobb, M. H. Mitogenactivated protein (MAP) kinase pathways:regulation and physiological functions. Endocr. Rev.2001,22:153-183.
    [53]. Raman, M., Chen, W., and Cobb, M. H. Differential regulation and properties of MAPKs. Oncogene.2007,26:3100-3112.
    [54]. McKay, M. M., and Morrison, D. K. Integrating signals from RTKs to ERK/MAPK. Oncogene.2007,26:3113-3121.
    [55]. Park, E. R., Eblen, S. T., and Catling, A. D. MEK1 activation by PAK:a novel mechanism. Cell. Signal.2007,19:1488-1496.
    [56]. Zebisch, A., Czernilofsky, A. P., Keri, G., Smigelskaite, J., Sill, H., and Troppmair, J. Signaling through RAS-RAFMEK-ERK:from basics to bedside. Curr. Med. Chem.2007,14:601-623.
    [57]. Rangarajan, A., Hong, S. J., Gifford, A., and Weinberg, R. A. Species-and cell type-specific requirements for cellular transformation. Cancer Cell.2004,6: 171-183.
    [58]. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C.,Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley. J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y, Yuen, S. T., Weber, B. L., Seigler, H. F. Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R., and Futreal, P. A. Mutations of the BRAF gene in human cancer. Nature.2002,417: 949-954.
    [59]. Zhang J, Kamdar O, Le W, Rosen GD, Upadhyay D. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer. Am J Respir Cell Mol Biol.2009,40:135-146.
    [60]. Muzafar A. Macha, Ajay Matta, Shyam Singh Chauhan, K. W. Michael Siu, and Ranju Ralhan. Guggulsterone Targets Smokeless Tobacco Induced PI3K/Akt Pathway in Head and Neck Cancer Cells. PLoS One.2011, doi: 10.1371/journal.pone.0014728.
    [61]. Santiskulvong C, Konecny GE, Fekete M, Chen KY, Karam A, Mulholland DJ, Eng C, Wu H, Song M, Dorigo O. Dual Targeting of Phosphoinositide 3-Kinase and Mammalian Target of Rapamycin Using NVP-BEZ235 as a Novel Therapeutic Approach in Human Ovarian Carcinoma. Clin Cancer Res.2011,17(8):2373-84.
    [62]. Pleschka S.RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biol Chem,2008,389(10):1273-82.
    [63]. Luo, H., Yanagawa, B., Zhang, J., Luo, Z., Zhang, M., Esfandiarei, M, Carthy, C Wilson, J.E., Yang, D., McManus, B.M.. Coxsackievirus B3 replication is reduced by inhibition of the extracellular signalregulated kinase (ERK) signaling pathway. J Virol.2002,76:3365-3373.
    [64]. Zhang, H.M., Yuan, J., Cheung, P., Luo, H., Yanagawa, B., Chau, D., Tozy, N.S., Wong, B., Zhang, J., Wilson, J.E., McManus, B.M., Yang, D. Over-expression of interferon-gamma-inducible GTPase inhibits coxsackievirus B3-induced apoptosis through the activation of the PI3-K/Akt pathway and inhibition of viral replication. J Biol Chem.2003,278:33011-33019.
    [1]. Tikoo, S.K, Campos, M., Babiuk, L.A.Bovine herpesvirus 1 (BOHV-1):biology, pathogenesis and control. Adv. Virus. Res.1995,45,191-223.
    [2]. Straub, O.C.Advances in BOHV-1 (IBR) research. Dtsch. Tierarztl. Wochenschr. 2001,108,419-422.
    [3]. Winkler, M.T., Doster. A., Jones, C. Persistence and reactivation of bovine herpesvirus 1 in the tonsils of latently infected calves. J. Virol.2000,74, 5337-5346.
    [4]. Kampa, J., Alenius, S., Emanuelson, U., Chanlun, A., Aiumlamai, S. Bovine herpesvirus type 1 (BOHV-1) and bovine viral diarrhoea virus (BVDV) infections in dairy herds:Self clearance and the detection of seroconversions against a new atypical pestivirus. Vet. J.2008, doi:10.1016/j.tvjl.2008.07.006
    [5]. Simons. K., and Ikonen, E. Functional rafts in cell membranes. Nature.1997,387, 569-572.
    [6]. Simons, K., Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol.2000,1,31-39.
    [7]. Simons, K., van Meer, G. Lipid sorting in epithelial cells. Biochemistry.1988,27, 6197-202.
    [8]. Parolini, I., Topa, S., Sorice, M., Pace, A., Ceddia, P., Montesoro, E., Pavan, A., Lisanti, M.P., Peschle, C., Sargiacomo, M. Phorbol ester-induced disruption of the CD4-Lck complex occurs within a detergent-resistant microdomain of the plasma membrane. Involvement of the translocation of activated protein kinase C isoforms. J. Biol. Chem.1999,274,14176-14187.
    [9]. Schutz, G.J., Kada, G., Pastushenko, V.P., Schindler, H., Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO. J.2000,19,892-901.
    [10]. Brown, D.A., London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol.1998,164,103-114.
    [11]. Harris, T.J, Siu., C.H. Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays.2002,24,996-1003
    [12]. Tsui-Pierchala, B.A., Encinas, M., Milbrandt, J., Johnson, E.M. Jr. Lipid rafts in neuronal signaling and function. Trends Neurosci.2002,25,412-417.
    [13]. Guyader, M., Kiyokawa, E., Abrami, L., Turelli, P., Trono, D. Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J. Virol.2002,76,10356-10364.
    [14]. Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H., Hildreth, J.E. Lipid rafts and HIV pathogenesis:host membrane cholesterol is required for infection by HIV type 1. AIDS. Res. Hum. Retroviruses.2001,17,1009-1019.
    [15]. Liao, Z., Graham, D.R., Hildreth, J.E. Lipid rafts and HIV pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells. AIDS. Res. Hum. Retroviruses.2003,19,675-687.
    [16]. Phalen, T., and Kielian, M. Cholesterol is required for infection by Semliki Forest virus. J. Cell. Biol.1991,112,615-623.
    [17]. Ahn, A., Gibbons, D.L., Kielian, M. The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains. J. Virol.2002,76,3267-3275.
    [18]. Li, G.M., Li, Y.G., Yamate, M., Li, S.M., Ikuta, K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes. Infect.2007,9,96-102.
    [19]. Anderson, H.A., Chen, Y., Norkin, L.C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell.1996,7,1825-1834.
    [20]. Sun, X., Whittaker, G.R. Role for influenza virus envelope cholesterol in virus entry and infection. J. Virol.2003,77,12543-12551.
    [21]. Funk, A., Mhamdi, M., Hohenberg, H., Heeren, J., Reimer, R., Lambert, C, Prange, R., Sirma, H. Duck hepatitis B virus requires cholesterol for endosomal escape during virus entry. J. Virol.2008,82,10532-10542.
    [22]. Umashankar, M., Sanchez-San Martin, C., Liao, M., Reilly, B., Guo, A., Taylor, G., Kielian,M. Differential cholesterol binding by class Ⅱ fusion proteins determines membrane fusion properties. J. Virol.2008,82,9245-9253.
    [23]. Wang, L., Menon, S., Bolin, S.R., Bello, L.J. A hepadnavirus regulatory element enhances expression of a type 2 bovine viral diarrhea virus E2 protein from a bovine herpesvirus 1 vector. J. Virol.2003,77,8775-82.
    [24]. Lawrence, W.C., D'urso, R.C., Kundel, C.A., Whitbeck, J.C, Bello, L.J. Map location of the gene for a 130,000-dalton glycoprotein of bovine herpesvirus 1. J. Virol.1986,60,405-414.
    [25]. Guo. J., Xiao, B., Zhang, S., Liu, D., Liao, Y., Sun, Q. Growth inhibitory effects of gastric cancer cells with an increase in S phase and alkaline phosphatase activity repression by aloe-emodin. Cancer. Biol. Ther.2007,6,85-8
    [26]. Chung, C.S., Huang. C.Y., Chang, W. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with Lipid rafts. J Virol.2005,79,1623-34.
    [27]. Highlander, S.L., Sutherland, S.L., Gage, P.J., Johnson, D. C., Levine, M., Glorioso. J. C. Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration. J. Virol.1987,61:3356-3364.
    [28]. Reed, L. J., Muench, H. A simple method for estimating 50% endpoints. Am. J. Hyg.1932,27,493-497.
    [29]. Karger, A., Bettin, B., Granzow, H., Mettenleiter, T.C. Simple and rapid purification of alphaherpesviruses by chromatography on a cation exchange membrane. J. Virol. Methods.1998,70,219-24.
    [30]. Pitha, J., Irie, T., Sklar, PB., Nye, J.S. Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives. Life. Sci.1988,43:493-502.
    [31]. Ilangumaran. S., Hoessli, D.C. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasmamembrane. Biochem. J.1998,335. 433-440.
    [32]. Montixi, C., Langlet, C., Bernard, A.M., Thimonier, J., Dubois, C., Wurbel, M.A., Chauvin, J.P., Pierres, M., He, H.T. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO. J. 1998,17,5334-5348.
    [33]. Janes, P.W., Ley, S.C., Magee, A.J. Aggregation of Lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell. Biol.1999,147,447-461.
    [34]. Choi, K.S., Aizaki, H., Lai, M.M.C. Murine coronavirus requires Lipid rafts for virus entry and cell-cell fusion but not for virus release. J. Virol.2005,79, 9862-9871.
    [35]. Huang, H., Li, Y., Sadaoka, T., Tang, H., Yamamoto, T., Yamanishi, K., Mori, Y. Human herpesvirus 6 envelope cholesterol is required for virus entry. J. Gen. Virol. 2006,87,277-285.
    [36]. Hambleton, S., Steinberg, S.P., Gershon, M.D., Gershon, A.A.Cholesterol dependence of varicella-zoster virion entry into target cells. J. Virol.2007,81, 7548-7558.
    [37]. Bender, F.C., Whitbeck, J.C., Ponce de Leon, M., Lou, H., Eisenberg, R.J., Cohen, G.H. Specific association of glycoprotein B with Lipid rafts during herpes simplex virus entry. J. Virol.2003,77,9542-9552.
    [38]. Desplanques, A.S., Nauwynck, H.J.,Vercauteren,D., Geens,T., Favoreel, H.W. Plasma membrane cholesterol is required for efficient pseudorabies virus entry. Virology.2008,376,339-345.
    [39]. Popik, W., Alce, T.M., Au, W.C. Human immunodeficiency virus type 1 uses Lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+T cells. J. Virol.2002,76,4709-4722.
    [40]. Kozak, S.L., Heard, J.M., Kabat, D. Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus. J. Virol.2002,76,1802-1815.
    [41]. Thaker, S.R., Stine, D.L., Zamb, T.J., Srikumaran, S. Identification of a putative cellular receptor for bovine herpesvirus 1. J. Gen. Virol.1994,75,2303-9.
    [42]. Varthakavi, V, Minocha, H.C. Identification of a 56 kDa putative bovine herpesvirus 1 cellular receptor by anti-idiotype antibodies. J. Gen. Virol.1996,77, 1875-82.
    [43]. Connolly, S.A., Whitbeck, J.J., Rux, A.H., Krummenacher, C., van Drunen Littel-van den Hurk, S., Cohen, G.H., Eisenberg, R.J.Glycoprotein D homologs in herpes simplex virus type 1, pseudorabies virus, and bovine herpes virus type 1 bind directly to human HveC(nectin-1) with different affinities. Virology.2001, 280,7-18.
    [1]. Van Refenmortel M., Fauquet C., Bishop D., Carstens E., Estes M., Lemon S., et al. Family Herpesviridae. In:Virus taxonomy; classification and nomenclature of Viruses, Academic Press; San Diego, CA,2000, pp.203-25.
    [2]. Engels M., Ackermann M., Pathogenesis of ruminant herpesvirus infections, Vet Microbiol.1996,53:3-15.
    [3]. Muylkens B., Thiry J., Kirten P., Schynts F., Thiry E., Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis, Vet Res.2007,38:181-209.
    [4]. van Drunen Littel-van den Hurk S., Snider M., Thompson P., Latimer L., Babiuk L.A., Strategies for induction of protective immunity to bovine herpesvirus-1 in newborn calves with maternal antibodies,Vaccine.2008,26:3103-11
    [5]. Donofrio G., Sartori C., Franceschi V., Capocefalo A., Cavirani S., Taddei S., Flammini C.F., Double immunization strategy with a BoHV-4-vectorialized secreted chimeric peptide BVDV-E2/BoHV-1-gD, Vaccine.2008,26:6031-42.
    [6]. Shin Y.K., Liu Q., Tikoo S.K., Babiuk L.A., Zhou Y., Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation, J Gen Virol.2007,88:942-50.
    [7]. Vanhaesebroeck B., Leevers S. J., Ahmadi K., Timms J., Katso R., Driscoll P. C Woscholski R., Parker P.J., Waterfield.M.D., Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem.2001,70:535-602.
    [8]. Toker A., Cantley L.C., Signalling through the lipid products of phosphoinositide-3-OH kinase, Nature.1997,387:673-676.
    [9]. Scheid M.P., Woodgett J.R., Unraveling the activation mechanism of protein kinase B/Akt, FEBS Letters.2003,546:108-112.
    [10]. Manning B.D., Cantley L.C.AKT/PKB signaling:navigating downstream, Cell. 2007,129:261-1274.
    [11]. Lange-Carter C.A., Pleiman C.M., Gardner A.M., Blumer K.J., Johnson G.L., A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf, Science.1993,260:315-319.
    [12]. Marshall C.J., Specificity of receptor tyrosine kinase signaling:transient versus sustained extracellular signal-regulated kinase activation, Cell.1995,80:179-185.
    [13]. Johnson R.A., Wang X., Ma, X.L.. Huong S.M., Huang E.S., Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling, J Virol.2001,75:6022-6032.
    [14]. Linero F.N.. Scolaro L.A., Participation of the phosphatidylinositol 3-kinase/Akt pathway in Junin virus replication in vitro, Virus Res.2009,145:166-70.
    [15]. Luo H., Yanagawa B., Zhang J., Luo Z., Zhang M., Esfandiarei M., Carthy C. Wilson J.E., Yang D., McManus B.M., Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway, J. Virol.2002,76:3365-73.
    [16]Yang X., Gabuzda D., Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway, J Virol. 1999,73:3460-3466.
    [17]. Zheng Y., Li J., Johnson D.L., Ou J.H., Regulation of hepatitis B virus replication by the ras-mitogen-activated protein kinase signaling pathway, J Virol.2003,77: 7707-7712.
    [18]. Sharma-Walia N., Krishnan H.H.. Naranatt P.P., Zeng L., Smith M.S., Chandran B., ERK 1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J Virol.2005,79:10308-10329.
    [19]. Johnson R.A., Ma X.L., Yurochko A.D., Huang E.S., The role of MKK1/2 kinase activity in human cytomegalovirus infection, J Gen Virol.2001,82:493-7.
    [20]. Wang L., Menon S., Bolin S.R., Bello L.J., A hepadnavirus regulatory element enhances expression of a type 2 bovine viral diarrhea virus E2 protein from a bovine herpesvirus 1 vector, J Virol.2003,77:8775-8782.
    [21]. Reed, L.J., Muench, H., A simple method for estimating 50% endpoints, Am. J. Hyg.1932,27:493-497.
    [22]. Wong W.R., Chen Y.Y., Yang S.M., Chen Y.L., Horng J.T., Phosphorylation of PI3K/Akt and MAPK/ERK in an early entry step of enterovirus 71, Life Sci.2005, 78:82-90.
    [23]. Alessi D.R., Caudwell F.B., Andjelkovic M., Hemmings B.A., Cohen P., Molecular basis for the substrate specificity of protein kinase B:comparison with MAPKAP kinase-1 and p70 S6 kinase, FEBS Lett.1996,399:333-338.
    [24]. Alessi D.R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B.A., Mechanism of activation of protein kinase B by insulin and IGF-1,EMBO J.1996,15:6541-6551.
    [25]. Kandel, E.S., Hay, N., The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB, Exp Cell Res.1999,253:210-229.
    [26]. Rahaus M., Desloges N., Wolff MH., Varicella-zoster virus requires a functional PI3K/Akt/GSK-3 a/β signaling cascade for efficient replication, Cell Signal.2007, 19:312-320.
    [27]. Beck M., Chapman N., McManus B., Mullican J., Tracy S., Secondary enterovirus infection in the murine model of myocarditis. Pathologic and immunologic aspects, American Journal of Pathology.1990,136:669-681.
    [28]. Teodoro J.G., Branton P.E., Regulation of apoptosis by viral gene products, J Virol. 1997,71:1739-1746.
    [29]. Karger A., Bettin B., Granzow H., Mettenleiter T.C., Simple and rapid purification of alphaherpesviruses by chromatography on a cation exchange membrane, J Virol Methods.1998,70:219-224.
    [30]. Saeed M.F., Kolokoltsov A.A., Freiberg A.N., Holbrook M.R., Davey R.A., Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus, PLoS Pathog.2008, doi:10.1371/journal.ppat.1000141[31] Seamone M.E., Wang W., Acott P., Beck P.L., Tibbles L.A., Muruve D.A., MAP Kinase Activation Increases BK Polyomavirus Replication and Facilitates Viral Propagation In Vitro, J Virol Methods.2010,170:21-9.
    [32], Popik W., Hesselgesser J.E., Pitha P.M., Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway, J Virol.1998, 72:6406-6413.
    [33]. Rusnati M., Urbinati C., Musulin B., Ribatti D., Albini A., Noonan D., Marchisone C., Waltenberger J., Presta M., Activation of endothelial cell mitogen activated protein kinase ERK(1/2) by extracellular HIV-1 Tat protein, Endothelium.2001,8: 65-74.
    [1]. Muylkens B., Thiry J., Kirten P., Schynts F., Thiry E. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet. Res.2007,38 (2):181-209.
    [2]. Guarino H., N ez A., Repiso M.V.. Gil A., Dargatz D.A Prevalence of serum antibodies to bovine herpesvirus-1 and bovine viral diarrhea virus in beef cattle in Uruguay. Prev. vet. Med.2008,85 (1-2):34-40.
    [3]. Wang P., Hurley D.J., Braun L.J. & Chase C.C. Detection of bovine herpesvirus-1 in peripheral blood mononuclear cells eight months postinfection. J. vet. diagn. Invest.2001,13 (5):424-427.
    [4]. Winkler M.T., Doster A. & Jones C. Persistence and reactivation of bovine herpesvirus 1 in the tonsils of latently infected calves. J. Virol.2000,74 (11): 5337-5346.
    [5]. Brown, D. A., and J. K. Rose. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell.1992,68:533-544.
    [6]. Mayor, S., and H. Riezman. Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell Biol.2004,5:110-120.
    [7]. He, H. T., A. Lellouch, and D. Marguet. Lipid rafts and the initiation of T cell receptor signaling. Semin. Immunol.2005,17:23-33.
    [8]. Jacob, R., M. Heine, J. Eikemeyer, N. Frerker, K. P. Zimmer, U. Rescher, V. Gerke, and H. Y. Naim. Annexin Ⅱ is required for apical transport in polarized epithelial cells. J. Biol. Chem.2004,279:3680-3684.
    [9]. Parton, R. G., and J. F. Hancock. Lipid rafts and plasma membrane microorganization:insights from Ras. Trends Cell Biol.2004,14:141-147.
    [10]. Simons, K., and D. Toomre. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol.2000,1:31-39.
    [11]. Chazal, N., and D. Gerlier. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol Rev.2003,67:226-237.
    [12]. Manes, S., G. del Real, and A. C. Martinez. Pathogens:raft hijackers. Nat. Rev. Immunol.2003,3:557-568.
    [13]. Liqian Zhu, Xiuyan Ding, Jie Tao, Jianye Wang. Xin Zhao, Guoqiang Zhu. Critical role of cholesterol in bovine herpesvirus type 1 infection of MDBK cells. Vet Microbiol.2010,144:51-57.
    [14]. Liqian Zhu, Xiuyan Ding, Xiao fang Zhu, Songshu Meng, Jianye Wang, Hong Zhou, Qiangde Duan, Dieter M. Schifferli, Guoqiang Zhu. Biphasic activation of PI3K/Akt and MAPK/ERK signaling pathways in bovine herpesvirus type 1 infection of MDBK cells. Vet Res.2011,42(1):57.
    [15]. Lawrence, W.C., D'urso, R.C., Kundel, C.A., Whitbeck, J.C, Bello, L.J. Map location of the gene for a 130,000-dalton glycoprotein of bovine herpesvirus 1. J. Virol.1986,60:405-414.
    [16]. Wong W.R., Chen Y.Y., Yang S.M., Chen Y.L., Horng J.T., Phosphorylation of PI3K/Akt and MAPK/ERK in an early entry step of enterovirus 71, Life Sci.2005, 78:82-90.
    [17]. Zhu L, Ding X, Tao J, Wang J, Zhao X, Zhu G. Critical role of cholesterol in bovine herpesvirus type 1 infection of MDBK cells. Vet Microbiol.2010, 144(1-2):51-7.
    [18]. Liqian Zhu, Xiuyan Ding, Xiao fang Zhu, Songshu Meng, Jianye Wang, HongZhou, Qiangde Duan, Jie Tao, Dieter M. Schifferli, Guoqiang Zhu. Biphasic activation of PI3K/Akt and MAPK/Erkl/2 signaling pathways in bovine herpesvirus type 1 infection of MDBK cells.2011. Vet Res,42(1):57.
    [19]. Zhuang L, Lin J, Lu ML, Solomon KR, Freeman MRCholesterol-rich Lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res.2002, 62(8):2227-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700