不同营养条件对雾培马铃薯生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯是以收获块茎为产物的作物,由于病毒使得马铃薯种性退化,这是制约马铃薯生产的主要因素。为解决马铃薯的退化问题,常采用茎尖脱毒快繁技术,并生产大量的微型种薯及各级种薯在生产中利用。生产微型薯是脱毒技术应用的关键,可以采用基质繁育、雾化繁育和试管薯繁育等方法,但均需人工提供营养液,其营养液提供的方式包括叶面喷施、根系喷雾以及将营养液融入基质(或培养基)让根系直接吸收。不同营养液提供方式的营养吸收机理及其对结薯的影响有所不同。为了研究这种差异,本试验以三种营养液浓度梯度、三种营养方式和三个品种为处理组合,采用三因素裂区试验设计,研究了在雾化栽培方式下不同营养条件对不同马铃薯品种结薯性能与养分吸收的影响效果,得出以下结论:
     1、不同营养条件对马铃薯结薯性能的影响
     试验结果表明,MX和0.8MX浓度梯度对马铃薯结薯性能的提高均有较好的效果,都极显著高于0.6MX浓度梯度处理。0.8MX浓度梯度浓度处理时,三个品种的块茎数最多、块茎重最大(除夏波蒂),略高于MX浓度梯度处理,但二者之间无显著差异。马铃薯的块茎数和块茎重在不同营养方式之间差异均达到极显著水平,对马铃薯块茎数和块茎重的处理效应为叶面营养与根系营养相结合>根系营养>叶面营养。不同品种在不同的营养条件下其产量不同,总体来说,夏波蒂在各种处理组合上平均产量最高,要极显著的高于鄂薯3号和高原7号。整体对三个品种块茎形成比较适宜的处理组合是MX浓度梯度和叶面营养与根系营养相结合处理组合与0.8MX浓度梯度和叶面营养与根系营养相结合处理组合。
     2、不同营养条件对马铃薯植株生长发育的影响
     试验结果表明,在不同的浓度梯度处理中,植株的生长势基本相同,都是在MX浓度梯度和0.8MX浓度梯度时植株的生长势较好,二者的生长势要明显好于0.6MX浓度梯度时的生长势。在不同营养方式下,只施叶面营养处理的植株在定植后各时期的株高、茎粗、茎干重、叶面积系数等都要小于其它营养方式,在定植后27d以后表现的更加明显。叶面营养与根系营养相结合方式和根系营养方式相比较,生长势在定植后27d内基本相同,之后出现了一些明显的差异,后期均表现为叶面营养与根系营养相结合优于根系营养。对于不同的品种来说,植株的生长势也不一样,夏波蒂比鄂薯3号和高原7号具有较大的茎粗、株高、叶绿素含量和叶面积系数;鄂薯3号比夏波蒂和高原7号具有较大的根干重、根系活力、茎干重。
     3、不同营养方式对马铃薯氮磷钾吸收的影响
     试验表明,在不同的营养方式下,叶面营养与根系营养相结合处理的植株中氮磷钾吸收量较其它两种方式高,特别是对定植27d之后,当匍匐茎大量发生,块茎开始形成以后,增加作用更加明显,表现出极显著的增加作用。在只施叶面营养方式下,植株对氮磷钾吸收量要明显减少。植株对氮磷钾的吸收速率表现为前期逐渐升高,在定植后37d达到高值,后期逐渐减少,呈单峰变化曲线,峰值都出现在定植后37d。在整个生育进程中,由于各器官的建成,植株对氮磷钾的需求量不断增加,氮磷钾的吸收速率逐渐升高,特别是在定植37d左右,此时属于块茎大量发生与膨大,由于旺盛的细胞分裂和块茎的迅速建成,氮磷钾的吸收速率明显增高,并达到峰值,而后期由于根、茎、叶的衰老和块茎的生长趋慢,转为淀粉积累与块茎成熟,吸收速率又开始下降。在整个生育期中,植株对氮磷钾的吸收速率都是钾>氮>磷。氮磷钾在马铃薯各器官内的分配,随着生长中心的转移而发生变化,在马铃薯叶片中的分配率以定植后17d为最高,此后逐渐下降,在块茎形成后块茎中的氮磷钾的分配急剧上升,后期植株中50%左右的氮、60%以上磷和60%左右的钾都分配到块茎中,块茎是氮磷钾的最终贮存器官。
Potato is a crop harvested tuber, but the degradation, due to virus accumulation, restricted potato production. In order to solve the problem of potato degeneration on stream, people usually use rapid propagation technique of meristem tip virus-free to produce large numbers of minituber and all grade seed tuber. The key of use the virus-free technique is to get large numbers of minitubers by producing in substrate condition, in areoponics or in vitro, and so on, which all need manual work to provide nutrition solution. The providing manners of nutrition solution include leaves spill, roots spray and roots absorb nutrition solution from substrate or medium, within the absorption mechanism of nutrition and effect on tuber produce are also different. In order to study the difference, this research had been taken three factors split-plot trial design with three nutrition solution concentration steps, three nutrition manner and three varieties as control combination, to study the effect of different nutrition condition on the potato varieties tuberization capability and the nutrient absorb. The main results were as follows.
     1. The effect of different nutrition condition on potato tuberizing performance
     The results indicated that the MX and 0.8MX in concentration steps had a better effect than the disposal of 0.6MX concentration step in potato tuberization performance heightens. Three varieties' tuber amount was most and yield was highest in the disposal of 0.8MX concentration step (except Shepody), which was little higher than MX, but did not have significant difference between this two concentration steps. The mount and weight of tuber were mighty significant difference among different nutrition manner, the order of effect were foliar nutrition combines with root nutrition, root nutrition, foliar nutrition from large to small. The yield of different varieties was different in different nutrition condition. In all, the average yield of Shepody was highest in all disposal compounding. The best disposal compounding to potato tuber form were that MX concentration step combines both foliar nutrition and root nutrition, 0.8MX concentration step combines both foliar nutrition and root nutrition.
     2. The effect of different nutrition condition on potato' growth and development
     The results indicated that the plants' growth was basically similar in different concentration steps disposal, the growth vigor of plants in MX and 0.8MX concentration steps was significant better than which in 0.6MX concentration step. In different nutrition manners, the plants' height, stems diameter, stems dry weight and LAI of only spilled foliar nutrition were smaller than other two manners, and much more significant after planted 27 days. Compared foliar nutrition combines with root nutrition to root nutrition, the growth vigor was basically similar in planted 27 days, and then appearance a few obvious difference, in the later of bearing period, the growth vigor of foliar nutrition combines with root nutrition was better than root nutrition. For different varieties, plants' growth vigor was also different, Shepody had a bigger stems diameter, height, chlorophyll content and LAI than Eshu-3 and Gaoyuan-7's, Eshu-3 had a bigger roots dry weight, roots activity, stems dry weight than Shepody and Gaoyuan-7's.
     3. The effect of different nutrition manners to absorb of NPK
     The results indicated that in different nutrition manner, the plants' NPK absorption of foliar nutrition combines with root nutrition was more than other two manners, when stolon and tuber was beginning to form, especially after planted 27 days, the tuber was forming, the enhance effect was much more obviously, putted up mighty significant level. The absorption of NPK was significant reduced in the manner of only spilled foliar nutrition. The absorption rate of NPK gradually hoisted in the prophase, the max absorption rate was appeared in planted 37 days, and then gradually reduced. The absorption rate of NPK was a single apex curve; and the max absorption rate appeared in the day after planted 37 days. In the whole growth and development course, the demand amount of NPK were ceaseless increasing and absorption rate gradually hoisting within organ was forming, especially about in the day after planted 37 days, in this period, owing to hearty cell division and tuber swift form, tuber form fast and growth, and the absorption rate of NPK obviously height, through to the highest, then gradually drop off. In the whole growth period the order of NPK absorption rate from high to slow was N, P, and K. The distribution of NPK in each organ was changed along with the growth central transfer, the distribution rate of NPK in leaves was highest on initial stages then gradually drop; the distribution rate of NPK in tuber was hoiking after the tuber was forming. Finally the tuber distributed nearly 50% N, more than 60%P and nearly 60%K. The tuber was the finally organ of NPK' stockpile.
引文
[1] 黄先群 毛堂芬 雷尊国等.马铃薯生产概况及贵州脱毒马铃薯生产存在的问题[J].贵州农业科学,2001,29(1):53~55
    [2] 中国农业年鉴.中国农业年鉴编辑委员会编[M].北京:中国农业出版社,2006:133
    [3] 连勇编著.马铃薯脱毒种薯生产技术[M].北京:中国农业科技出版社,2001:137~139
    [4] 郭军 屈冬玉等.cDNA-AFLP结合BSA研究马铃薯晚疫病菌小种特异无毒基因差异表达片段[J].中国马铃薯,2004(1):1~3
    [5] 王付欣.高效马铃薯茎尖脱毒快繁及微型薯繁育技术研究[J].河南农业科学,2003(7):44~47
    [6] 裘维暮.植物病毒学(修正版)[M].北京:农业出版社,1984:108~113
    [7] Blac L.M., A Study of potato yellow dwarf in New York, N.Y.Agric.Exp.Stn, Comell.Men 1937:209~233
    [8] Morel G.In crop gentic resources for today and tomorrow, O.H.Frankel and Hawkes J.G (eds),Cambridge Univ. London1975:327~332
    [9] 田波主编.类病毒[C].植物病毒学[M].科学出版社,1985:320~337
    [10] 张秀华 夏远南 田波.我国马铃薯防治块茎类病毒的初步研究[J].病毒学集刊,1998,1(1):119~122
    [11] Karin-Seron, Anne-Lise, Haenni. Vascular movement of plant viruses. MPMI. 1996, 9(6):435~442
    [12] 黄华康.马铃薯脱毒对一些生理指标的影响[J].中国马铃薯,2002(3):137~140
    [13] 马厚强 蒋先明.脱毒与带毒马铃薯生理特性的比较研究[J].马铃薯杂志,1992.6(4):205-211
    [14] 王秀芬.荷兰马铃薯种薯生产与检测体系[J].植物检疫,2003.17(1):60~62
    [15] 屈冬玉.2000年马铃薯专业年委员会学术年会总结[J].中国马铃薯,2000,14(4)249~251
    [16] 云庭.种薯生产与质量监控体系建设探讨.中国(昆明)第五届世界马铃薯大会,2003
    [17] 连勇.马铃薯试管薯诱导与应用[J].马铃薯杂志,1995,9(4):237~240
    [18] 马子君 张子义.加快马铃薯生产的几点意见[J].现代农业,2003(8):43~44
    [19] 尹作全 沈德茹等.马铃薯脱毒小薯无基质喷雾栽培技术研究初报[J].马铃薯杂志,1999,13(1):23~24
    [20] 方喜和 周春梅等.浅谈叶面施肥在作物上的应用[J].土壤肥料,2005.184(6):24~25
    [21] 周伯瑜.植物叶面施肥[J].云南农业科技,1991(4):42~44
    [22] 高贤彪 卢丽萍.新型肥料施用技术[J].济南:山东科学出版社,1997:190~191
    [23] E.H.沙康棋编.陈陶耕译.植物的根外追肥[J].北京:科学出版社,1958:1~30
    [24] Cooke G W. The Fertilizer Soc. Proc. 1996, No(92):1120~1125
    [25] Frank W. Ann. Rev. Plant physical. 1967(18):281~300
    [26] 陈笃生.叶面撒布肥料[J].磷肥与复肥,1997(6):77~78
    [27] Mathur B N, Agrawal N K, Singh V S. India J. agric.sci.1968, 38(5):811~815
    [28] 高井康雄[H].敖光明,梁振兴译.植物营养与技术[M].北京:中国农业出版社,1998:392~393
    [29] 连兆煌.无土栽培原理与技术[M].北京:中国农业出版社,1993:6~26
    [30] 严小龙.“根系生物学”:一个新兴的研究领域[J].广东科技,2000(12):32
    [31] 黎孟波 张光婉.土壤肥力概论及模式[J].土壤肥力研究进展.科学技术出版社,1991:208~211
    [32] 王空军 董树亭等.我国玉米品种更替过程中根系生理特性的演进[J].作物学报,2002,28(2):185~189
    [33] 王志芬 陈学留等.冬小麦根系~(32)p吸收活力的变化规律及其与器官建成关系的研究[J].作物学报,1995,21(4):458~462
    [34] 刘殿英 黄炳茹等.土壤水分对冬小麦根系的影响[J].山东农业大学学报,1996,1(5):67~73
    [35] 杨秀红 吴宗璞.大豆品种根系形状与地上部形状的相关性研究[J].作物学报,2002,28(1):72~75
    [36] 马元喜 王晨阳.中国农业栽培植物根系研究史料浅析[J].河南农业大学学报,1994.28(4):332~338
    [37] 王忠主编.植物生理学[M].北京:中国农业出版社.2000:121~186
    [38] 周娜娜 秦亚斌等.马铃薯氮素营养诊断及追肥推荐模型的研究[J].宁夏农业科技,2004(2):1~2
    [39] Mitsuru Osaki. Effects of ammonium and nutrate assimilation on the growth and tuber swelling of potato plants. Soil Sci. Plant Nutr. 1985,41(4):709~719
    [40] 高聚林 刘克礼等.马铃薯磷素的吸收、积累与分配规律[J].中国马铃薯, 2003(4):199~203
    [41] 张旭东 叶晓玲等.马铃薯缺素症的预防及补救措施[J].农家致富,2006(5):35~35
    [42] 李玉影.马铃薯需钾特性及钾肥效应[J].马铃薯杂志,1999.13(1):9~12
    [43] 张朝春 江荣风等.氮磷钾对马铃薯营养状况及块茎产量的影响[J].中国农学通报,2005.21(9):279~283
    [44] 彭慧峰.马铃薯高产施肥技术[J].农村科技,2006(2):37~37
    [45] 张振贤主编.蔬菜栽培学[M].北京:中国农业大学出版社,2003:438~452
    [46] 卢育华主编.蔬菜栽培学各论(北方本)[M].北京:中国农业出版社,2000:205~207
    [47] Boynton D. 1954: Nutrition by foliar application. Annu. Rev. Plant Physiol. 5:31~54
    [48] 王鑫.植物生长调节剂的研究现状及其在马铃薯田的应用进展[J].安徽农学通报,2006, 12(13):61~63
    [49] 杜守宇 季希明.“植物动力2003”对马铃薯的施用效果及施用方法研究[J].中国马铃薯,2000,14(1):20~22
    [50] 王桂清 黄存林等.植物动力2003试验示范研究初报[J].内蒙古农业科技,1998,(6):24~27
    [51] 赵贵宾 陈祖敬.几种叶面肥喷施马铃薯效果的对比试验[J].中国马铃薯,2001,15(2):106~108
    [52] 孔令强 张霞.马铃薯叶面喷施增产增效试验研究[J].中国马铃薯,2001(3)166~167
    [53] 何建平,陶启珍,易平.腐植酸液体叶面肥对马铃薯产量和品质的影响[J].腐植酸,2004(1):24~26
    [54] 路永贵 闫当萍等.马铃薯喷施丰产宝增产效应试验[J].中国马铃薯,2004.18(2):106~107
    [55] 侯桂兰 李宝等.马铃薯施用腐植酸活性肥惠满丰的效果试验[J].中国马铃薯,2000.14(2):98~99
    [56] 金维续.提高农作物产品品质的施肥技术[J].土壤肥料,1994(4):15~17
    [57] 李裕荣 尹迪信等.马铃薯平衡施肥效益及合理配比试验[J].贵州农业科学,2000,28(3):49~51
    [58] 王玉堂.怎样提高作物叶面追肥的效果[J].农村经济与科技,2002.118(13):28~29
    [59] 韩效钊.高效多元叶面肥[J].安徽化工,2002(2):12~13
    [60] 庄舜尧 曹志洪.叶面肥的研究与发展[J].土壤,1998(5):9~13
    [61] 于广武.对化肥及叶面肥的再认识[J].农业与技术,2001(2):15~16
    [62] 张丕方 赵庆华.叶面肥在农业上的应用[M].上海:上海科学技术文献出版社,1990:38
    [63] 康重成.马铃薯增施钾肥的效果[J].内蒙古农业科技,1997(2):19~20
    [64] 志平.叶面肥的种类及使用方法[J].植物医生,2005(7):54
    [65] 刘思平.怎样合理施用叶面肥[J].种植世界,2005(6):4~10
    [66] 阿夫多宁等著.苏少泉,等译.植物的根外追肥[M].北京:科学出版社,1995:101~108
    [67] 张喜英编著.作物根系与土壤水利用[M].北京:气象出版社,1999,122~147
    [68] Coale. F.J. Grove J.H. Effects of soil potassium availability on soybean root and shoot growth under unrestrained rooting conditions. J of Plant Nutrition. 1986,9:1565~1584
    [69] Oikeh S.O. Kling J.G. et al. Growth and distribution of maize roots under nitrogen fertilization in plinthite soil. Field-Crops-Research (Netherlands). 1999, 62(1): 1~13
    [70] Arteca R.N. Absorption of CO_2 by potato roots and its subsequent translocation. Am. Soc. Hortic. Sci. 1982,107:398~401
    [71] Ivins J.D. Bremner P.M. Growth development and yield in the potato. Outlook Agric. 1965, 4:211~217
    [72] Polizotto K.P. Response of growth and mineral composition of potato to nitrate and ammonium nitrogen. J. Amer. Soc. Hort. Sci. 1975, 100:165~168
    [73] Davis J.M. Response of potato to nitrogen from and to change in nitrogen form at tuber initiation. J. Amer. Soc. Hort. Sci. 1986, 111:70~72
    [74] 王惠珠.菜用马铃薯平衡施肥技术[J].农业科技通讯,2003(12):28~29
    [75] 魏宇会.春秋马铃薯无公害栽培技术[J].安徽农学通报,2003,9(5):43~46
    [76] Clark C F. Development of tubers in the potato. USDA Bulletin,1921 (958):27
    [77] 门福义 刘梦云.马铃薯栽培生理[M].北京:中国农业出版社,1995:128
    [78] 高炳德.马铃薯产量形成与环境条件和营养条件的关系[J].马铃薯杂志,1986(1):9~13
    [79] Kim YC.In vitro tuber formation from proliferated shoots of potato (solannmm tuberosu) as a method of especial maiteaanee. Ph D Thesis south korea,1982:89~92
    [80] Po-jen Wang and Ching-yeh Hu. In vitro mass tuberation and vine-free seed patato production in Taiwan. Am P J,1982,59:33~37
    [81] Pilar Tovar a al. Induction and use of in vitro potato tuber. Cbeular. 1985, 13(4): 1~5
    [82] DienerT.O.and W.B.Raymer W.B. Potato spindle tuber virus A Plant Virus With Properties of a free mucleicaci. Sci. 1967, 158:378~381
    [83] Rolando Lizanage et al. In vitro conservation of potato germplasm at the international potato congress. Am PJ,1989, 66:253~263
    [84] 冉毅东 王蒂等.用组培法诱导试管徽型薯的研究[J].马铃薯杂志,1991,5(4):193~198
    [85] 谢庆华 吴毅欲等.固定物对马铃薯脱毒试管苗生长的影响[J].中国马铃薯,2001,15(1):20~21
    [86] 杨文玉.不同组织培养条件对马铃薯试管徽型薯的诱导[J].马铃薯杂志,1996,10(1):20~23
    [87] 谢从华 黄大恩等.马铃薯试管块茎形成机制的研究[J].马铃薯杂志,1995,9(1):7~11
    [88] 胡云海 蒋先明.不同糖类和BA对马铃薯试管薯的影响[J].马铃薯杂志,1989,3(4):203~206
    [89] 连勇 邹颖等.马铃薯试管薯发育机理的研究.外源诱导剂对试管薯形成的研究[J].马铃薯杂志,1996,10(3):130~132
    [90] 连勇.马铃薯试管薯诱导与应用[J].马铃薯杂志,1995,9(4):237~240
    [91] 陈芝兰 栾运芳等.西藏地区马铃薯茎尖脱毒快繁及试管薯生产技术[J].马铃薯杂志,1999,13(1):34~38
    [92] 王春林等.利用试管薯快速繁殖马铃薯[J].马铃薯杂志,1992,6(2):82~85
    [93] 王军.马铃薯快繁技术的某些进展[A].中国马铃薯种薯生产研讨会文集[C].呼和浩特,1992:9~15
    [94] 李玉巧 朱鹿鸣.PP_(333),GA_3和BA对马铃薯试管苗生长[J].作物学报,1994,20(1):59~66
    [95] 王巧玲等.马铃薯脱毒试管苗壮苗培育初探田[J].马铃薯杂志,1999,13(3):155~156
    [96] 张磊.环境因素对马铃薯试管薯诱导和发育及其内源激素的影响.北京:中国农业科学 院,1997.88~92
    [97] 幸田泰则.马铃薯块茎形成的因素.北海道大学农学部邦文纪要,1988,16(1):82~121
    [98] 林长春 李其文.马铃落茎尖脱毒与种质资源研究[J].马铃薯杂志,1989,3(2),73~78
    [99] 王怀利.马铃薯脱毒种薯快繁推广体系的探索[J].马铃薯杂志,1985.13(3),170~172
    [100] 李文刚 梁东超等.马铃薯脱毒微型种薯工厂化繁育技术研究[J].中国马铃薯,2001,15(5):278~280
    [101] 杨春 齐海英等.提高马铃薯扦插成活率的关键技术[J].中国马铃薯,2001(3):173~175
    [102] 郭洪云.NAA和2,4-D对脱毒马铃薯扦插苗生长及产量的影响[J].马铃薯杂志,1998,12(2):74~76
    [103] 何庆学 王季春 唐道彬等.营养液对雾化栽培不同品种马铃薯生长的影响[J].西南农业大学学报,2003,25(3):64~67
    [104] 于品华 戴朝曦 曲秀兰.无土栽培马铃薯微型种薯营养液的筛选研究[J].甘肃农业大学学报,1994,30(4):356~358
    [105] 卢泳全 陈伊里等.营养液栽培法在马铃薯研究中的应用[J].马铃薯杂志,1999,13(4):240~244
    [106] 何庆学 王季春 唐道彬等.提高雾化栽培马铃薯微型薯结薯能力的初步研究[J].中国马铃薯,2003,17(2):70~73
    [107] 李凤云.马铃薯叶面喷施多效唑的作用及施用技术要点[J].中国农学通报,2002,18(6):133~134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700